Bugfix hw tune, hf tune: voltage measures were VERY wrong

Modified hw detectreader: display reader field strength in mV units and to be less phony
This commit is contained in:
pwpiwi 2015-02-03 07:21:57 +01:00
parent 146c201cbe
commit 3b692427ac
2 changed files with 60 additions and 39 deletions

View file

@ -135,12 +135,25 @@ static int ReadAdc(int ch)
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
AT91C_BASE_ADC->ADC_MR = AT91C_BASE_ADC->ADC_MR =
ADC_MODE_PRESCALE(32) | ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
ADC_MODE_STARTUP_TIME(16) | ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
ADC_MODE_SAMPLE_HOLD_TIME(8); ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
// Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
// Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
// of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
//
// The maths are:
// If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
//
// v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
//
// Note: with the "historic" values in the comments above, the error was 34% !!!
AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch); AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
; ;
d = AT91C_BASE_ADC->ADC_CDR[ch]; d = AT91C_BASE_ADC->ADC_CDR[ch];
@ -183,9 +196,7 @@ void MeasureAntennaTuning(void)
WDT_HIT(); WDT_HIT();
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
SpinDelay(20); SpinDelay(20);
// Vref = 3.3V, and a 10000:240 voltage divider on the input adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
// can measure voltages up to 137500 mV
adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
if (i==95) vLf125 = adcval; // voltage at 125Khz if (i==95) vLf125 = adcval; // voltage at 125Khz
if (i==89) vLf134 = adcval; // voltage at 134Khz if (i==89) vLf134 = adcval; // voltage at 134Khz
@ -205,11 +216,9 @@ void MeasureAntennaTuning(void)
FpgaDownloadAndGo(FPGA_BITSTREAM_HF); FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(20); SpinDelay(20);
// Vref = 3300mV, and an 10:1 voltage divider on the input vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
// can measure voltages up to 33000 mV
vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),LF_Results,256); cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_A_OFF(); LED_A_OFF();
LED_B_OFF(); LED_B_OFF();
@ -222,19 +231,21 @@ void MeasureAntennaTuningHf(void)
DbpString("Measuring HF antenna, press button to exit"); DbpString("Measuring HF antenna, press button to exit");
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
for (;;) { for (;;) {
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(20); SpinDelay(20);
// Vref = 3300mV, and an 10:1 voltage divider on the input vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
// can measure voltages up to 33000 mV
vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
Dbprintf("%d mV",vHf); Dbprintf("%d mV",vHf);
if (BUTTON_PRESS()) break; if (BUTTON_PRESS()) break;
} }
DbpString("cancelled"); DbpString("cancelled");
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
} }
@ -512,26 +523,32 @@ static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
void ListenReaderField(int limit) void ListenReaderField(int limit)
{ {
int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max; int lf_av, lf_av_new, lf_baseline= 0, lf_max;
int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max; int hf_av, hf_av_new, hf_baseline= 0, hf_max;
int mode=1, display_val, display_max, i; int mode=1, display_val, display_max, i;
#define LF_ONLY 1 #define LF_ONLY 1
#define HF_ONLY 2 #define HF_ONLY 2
#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
// switch off FPGA - we don't want to measure our own signal
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff(); LEDsoff();
lf_av=lf_max=ReadAdc(ADC_CHAN_LF); lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
if(limit != HF_ONLY) { if(limit != HF_ONLY) {
Dbprintf("LF 125/134 Baseline: %d", lf_av); Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
lf_baseline = lf_av; lf_baseline = lf_av;
} }
hf_av=hf_max=ReadAdc(ADC_CHAN_HF); hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
if (limit != LF_ONLY) { if (limit != LF_ONLY) {
Dbprintf("HF 13.56 Baseline: %d", hf_av); Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
hf_baseline = hf_av; hf_baseline = hf_av;
} }
@ -554,38 +571,38 @@ void ListenReaderField(int limit)
WDT_HIT(); WDT_HIT();
if (limit != HF_ONLY) { if (limit != HF_ONLY) {
if(mode==1) { if(mode == 1) {
if (abs(lf_av - lf_baseline) > 10) LED_D_ON(); if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
else LED_D_OFF(); LED_D_ON();
else
LED_D_OFF();
} }
++lf_count; lf_av_new = AvgAdc(ADC_CHAN_LF);
lf_av_new= ReadAdc(ADC_CHAN_LF);
// see if there's a significant change // see if there's a significant change
if(abs(lf_av - lf_av_new) > 10) { if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count); Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
lf_av = lf_av_new; lf_av = lf_av_new;
if (lf_av > lf_max) if (lf_av > lf_max)
lf_max = lf_av; lf_max = lf_av;
lf_count= 0;
} }
} }
if (limit != LF_ONLY) { if (limit != LF_ONLY) {
if (mode == 1){ if (mode == 1){
if (abs(hf_av - hf_baseline) > 10) LED_B_ON(); if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
else LED_B_OFF(); LED_B_ON();
else
LED_B_OFF();
} }
++hf_count; hf_av_new = AvgAdc(ADC_CHAN_HF);
hf_av_new= ReadAdc(ADC_CHAN_HF);
// see if there's a significant change // see if there's a significant change
if(abs(hf_av - hf_av_new) > 10) { if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count); Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
hf_av = hf_av_new; hf_av = hf_av_new;
if (hf_av > hf_max) if (hf_av > hf_max)
hf_max = hf_av; hf_max = hf_av;
hf_count= 0;
} }
} }

View file

@ -38,6 +38,10 @@ void DbpString(char *str);
void Dbprintf(const char *fmt, ...); void Dbprintf(const char *fmt, ...);
void Dbhexdump(int len, uint8_t *d, bool bAsci); void Dbhexdump(int len, uint8_t *d, bool bAsci);
// ADC Vref = 3300mV, and an (10M+1M):1M voltage divider on the HF input can measure voltages up to 36300 mV
#define MAX_ADC_HF_VOLTAGE 36300
// ADC Vref = 3300mV, and an (10000k+240k):240k voltage divider on the LF input can measure voltages up to 140800 mV
#define MAX_ADC_LF_VOLTAGE 140800
int AvgAdc(int ch); int AvgAdc(int ch);
void ToSendStuffBit(int b); void ToSendStuffBit(int b);