Updated proxmark research with Holiman's loclass framework

This commit is contained in:
Andrew Davies 2014-05-02 11:11:54 +01:00
parent c3963755b7
commit a66fca86b9
10 changed files with 2383 additions and 5 deletions

View file

@ -15,7 +15,7 @@ OBJDIR = obj
LDLIBS = -L/opt/local/lib -L/usr/local/lib -lreadline -lpthread ../liblua/liblua.a
LDFLAGS = $(COMMON_FLAGS)
CFLAGS = -std=c99 -I. -I../include -I../common -I/opt/local/include -I../liblua -Wall $(COMMON_FLAGS) -g -O4
CFLAGS = -std=c99 -lcrypto -I. -I../include -I../common -I/opt/local/include -I../liblua -Wall $(COMMON_FLAGS) -g -O4
LUAPLATFORM = generic
ifneq (,$(findstring MINGW,$(platform)))
@ -24,9 +24,9 @@ QTLDLIBS = -L$(QTDIR)/lib -lQtCore4 -lQtGui4
MOC = $(QTDIR)/bin/moc
LUAPLATFORM = mingw
else ifeq ($(platform),Darwin)
CXXFLAGS = -I/Library/Frameworks/QtGui.framework/Versions/Current/Headers -I/Library/Frameworks/QtCore.framework/Versions/Current/Headers
QTLDLIBS = -framework QtGui -framework QtCore
MOC = moc
CXXFLAGS = $(shell pkg-config --cflags QtCore QtGui 2>/dev/null) -Wall -O4
QTLDLIBS = $(shell pkg-config --libs QtCore QtGui 2>/dev/null)
MOC = $(shell pkg-config --variable=moc_location QtCore)
LUAPLATFORM = macosx
else
CXXFLAGS = $(shell pkg-config --cflags QtCore QtGui 2>/dev/null) -Wall -O4
@ -56,6 +56,10 @@ CORESRCS = uart.c \
CMDSRCS = nonce2key/crapto1.c\
nonce2key/crypto1.c\
nonce2key/nonce2key.c\
loclass/cipher.c \
loclass/cipherutils.c \
loclass/des.c \
loclass/ikeys.c \
mifarehost.c\
crc16.c \
iso14443crc.c \
@ -74,8 +78,8 @@ CMDSRCS = nonce2key/crapto1.c\
cmdhfmf.c \
cmdhw.c \
cmdlf.c \
cmdlfhid.c \
cmdlfio.c \
cmdlfhid.c \
cmdlfem4x.c \
cmdlfhitag.c \
cmdlfti.c \

View file

@ -21,6 +21,10 @@
#include "cmdhficlass.h"
#include "common.h"
#include "util.h"
#include "loclass/des.h"
#include "loclass/cipherutils.h"
#include "loclass/cipher.h"
#include "loclass/ikeys.h"
static int CmdHelp(const char *Cmd);
@ -247,6 +251,72 @@ int CmdHFiClassReader_Replay(const char *Cmd)
return 0;
}
int CmdHFiClassReader_Dump(const char *Cmd)
{
uint8_t readerType = 0;
uint8_t MAC[4]={0x00,0x00,0x00,0x00};
uint8_t KEY[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CSN[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CCNR[12]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CC_temp[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t result[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t div_key[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
des_context ctx_enc;
uint64_t crypted_id=0;
if (strlen(Cmd)<3) {
PrintAndLog("Usage: hf iclass dump <Key> <CSN> <CC>");
PrintAndLog(" sample: hf iclass dump 0011223344556677 aabbccddeeffgghh FFFFFFFFFFFFFFFF");
return 0;
}
if (param_gethex(Cmd, 0, KEY, 16)) {
PrintAndLog("KEY must include 16 HEX symbols");
return 1;
}
if (param_gethex(Cmd, 1, CSN, 16)) {
PrintAndLog("CSN must include 16 HEX symbols");
return 1;
}
if (param_gethex(Cmd, 2, CC_temp, 16)) {
PrintAndLog("CC must include 16 HEX symbols");
return 1;
}
memcpy(CCNR,CC_temp,8);
des_setkey_enc( &ctx_enc, KEY);
des_crypt_ecb(&ctx_enc,CSN,result);
PrintAndLog("DES Key: %s",sprint_hex(result,8));
uint64_t newz=0;
crypted_id = bytes_to_num(result,8);
uint64_t x = (crypted_id & 0xFFFF000000000000 );
pushbackSixBitByte(&newz, getSixBitByte(crypted_id,0),7);
pushbackSixBitByte(&newz, getSixBitByte(crypted_id,1),6);
pushbackSixBitByte(&newz, getSixBitByte(crypted_id,2),5);
pushbackSixBitByte(&newz, getSixBitByte(crypted_id,3),4);
pushbackSixBitByte(&newz, getSixBitByte(crypted_id,4),3);
pushbackSixBitByte(&newz, getSixBitByte(crypted_id,5),2);
pushbackSixBitByte(&newz, getSixBitByte(crypted_id,6),1);
pushbackSixBitByte(&newz, getSixBitByte(crypted_id,7),0);
newz|= x;
crypted_id=newz;
num_to_bytes(crypted_id,8,result);
PrintAndLog("DESr Key: %s",sprint_hex(result,8));
//crypted_id = bytes_to_num(result,8);
//memset(result,0,8);
hash0(crypted_id,div_key);
//memcpy(div_key,result,8);
PrintAndLog("Div Key: %s",sprint_hex(div_key,8));
calc_iclass_mac(CCNR,div_key,MAC);
UsbCommand c = {CMD_READER_ICLASS_REPLAY, {readerType}};
memcpy(c.d.asBytes, MAC, 4);
SendCommand(&c);
return 0;
}
static command_t CommandTable[] =
{
@ -256,6 +326,7 @@ static command_t CommandTable[] =
{"sim", CmdHFiClassSim, 0, "Simulate iClass tag"},
{"reader", CmdHFiClassReader, 0, "Read an iClass tag"},
{"replay", CmdHFiClassReader_Replay, 0, "Read an iClass tag via Reply Attack"},
{"dump", CmdHFiClassReader_Dump, 0, "Authenticate and Dump iClass tag"},
{NULL, NULL, 0, NULL}
};

260
client/loclass/cipher.c Normal file
View file

@ -0,0 +1,260 @@
/*****************************************************************************
* This file is part of iClassCipher. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with IClassCipher. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <stdint.h>
#include "loclass/cipher.h"
#include "loclass/cipherutils.h"
#include "loclass/ikeys.h"
uint8_t keytable[] = { 0,0,0,0,0,0,0,0};
/**
* Definition 2. The feedback function for the top register T : F 16/2 F 2
* is defined as
* T (x 0 x 1 . . . . . . x 15 ) = x 0 x 1 x 5 x 7 x 10 x 11 x 14 x 15 .
**/
bool T(State state)
{
bool x0 = state.t & 0x8000;
bool x1 = state.t & 0x4000;
bool x5 = state.t & 0x0400;
bool x7 = state.t & 0x0100;
bool x10 = state.t & 0x0020;
bool x11 = state.t & 0x0010;
bool x14 = state.t & 0x0002;
bool x15 = state.t & 0x0001;
return x0 ^ x1 ^ x5 ^ x7 ^ x10 ^ x11 ^ x14 ^ x15;
}
/**
* Similarly, the feedback function for the bottom register B : F 8/2 F 2 is defined as
* B(x 0 x 1 . . . x 7 ) = x 1 x 2 x 3 x 7 .
**/
bool B(State state)
{
bool x1 = state.b & 0x40;
bool x2 = state.b & 0x20;
bool x3 = state.b & 0x10;
bool x7 = state.b & 0x01;
return x1 ^ x2 ^ x3 ^ x7;
}
/**
* Definition 3 (Selection function). The selection function select : F 2 × F 2 ×
* F 8/2 F 3/2 is defined as select(x, y, r) = z 0 z 1 z 2 where
* z 0 = (r 0 r 2 ) (r 1 r 3 ) (r 2 r 4 )
* z 1 = (r 0 r 2 ) (r 5 r 7 ) r 1 r 6 x y
* z 2 = (r 3 r 5 ) (r 4 r 6 ) r 7 x
**/
uint8_t _select(bool x, bool y, uint8_t r)
{
bool r0 = r >> 7 & 0x1;
bool r1 = r >> 6 & 0x1;
bool r2 = r >> 5 & 0x1;
bool r3 = r >> 4 & 0x1;
bool r4 = r >> 3 & 0x1;
bool r5 = r >> 2 & 0x1;
bool r6 = r >> 1 & 0x1;
bool r7 = r & 0x1;
bool z0 = (r0 & r2) ^ (r1 & ~r3) ^ (r2 | r4);
bool z1 = (r0 | r2) ^ ( r5 | r7) ^ r1 ^ r6 ^ x ^ y;
bool z2 = (r3 & ~r5) ^ (r4 & r6 ) ^ r7 ^ x;
// The three bitz z0.. z1 are packed into a uint8_t:
// 00000ZZZ
//Return value is a uint8_t
uint8_t retval = 0;
retval |= (z0 << 2) & 4;
retval |= (z1 << 1) & 2;
retval |= z2 & 1;
// Return value 0 <= retval <= 7
return retval;
}
/**
* Definition 4 (Successor state). Let s = l, r, t, b be a cipher state, k (F 82 ) 8
* be a key and y F 2 be the input bit. Then, the successor cipher state s =
* l , r , t , b is defined as
* t := (T (t) r 0 r 4 )t 0 . . . t 14 l := (k [select(T (t),y,r)] b ) l r
* b := (B(b) r 7 )b 0 . . . b 6 r := (k [select(T (t),y,r)] b ) l
*
* @param s - state
* @param k - array containing 8 bytes
**/
State successor(uint8_t* k, State s, bool y)
{
bool r0 = s.r >> 7 & 0x1;
bool r4 = s.r >> 3 & 0x1;
bool r7 = s.r & 0x1;
State successor = {0,0,0,0};
successor.t = s.t >> 1;
successor.t |= (T(s) ^ r0 ^ r4) << 15;
successor.b = s.b >> 1;
successor.b |= (B(s) ^ r7) << 7;
bool Tt = T(s);
successor.l = ((k[_select(Tt,y,s.r)] ^ successor.b) + s.l+s.r ) & 0xFF;
successor.r = ((k[_select(Tt,y,s.r)] ^ successor.b) + s.l ) & 0xFF;
return successor;
}
/**
* We define the successor function suc which takes a key k (F 82 ) 8 , a state s and
* an input y F 2 and outputs the successor state s . We overload the function suc
* to multiple bit input x F n 2 which we define as
* @param k - array containing 8 bytes
**/
State suc(uint8_t* k,State s, BitstreamIn *bitstream)
{
if(bitsLeft(bitstream) == 0)
{
return s;
}
bool lastbit = tailBit(bitstream);
return successor(k,suc(k,s,bitstream), lastbit);
}
/**
* Definition 5 (Output). Define the function output which takes an internal
* state s =< l, r, t, b > and returns the bit r 5 . We also define the function output
* on multiple bits input which takes a key k, a state s and an input x F n 2 as
* output(k, s, ǫ) = ǫ
* output(k, s, x 0 . . . x n ) = output(s) · output(k, s , x 1 . . . x n )
* where s = suc(k, s, x 0 ).
**/
void output(uint8_t* k,State s, BitstreamIn* in, BitstreamOut* out)
{
if(bitsLeft(in) == 0)
{
return;
}
//printf("bitsleft %d" , bitsLeft(in));
//printf(" %0d", s.r >> 2 & 1);
pushBit(out,(s.r >> 2) & 1);
//Remove first bit
uint8_t x0 = headBit(in);
State ss = successor(k,s,x0);
output(k,ss,in, out);
}
/**
* Definition 6 (Initial state). Define the function init which takes as input a
* key k (F 82 ) 8 and outputs the initial cipher state s =< l, r, t, b >
**/
State init(uint8_t* k)
{
State s = {
((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l
((k[0] ^ 0x4c) + 0x21) & 0xFF,// r
0x4c, // b
0xE012 // t
};
return s;
}
void MAC(uint8_t* k, BitstreamIn input, BitstreamOut out)
{
uint8_t zeroes_32[] = {0,0,0,0};
BitstreamIn input_32_zeroes = {zeroes_32,sizeof(zeroes_32)*8,0};
State initState = suc(k,init(k),&input);
output(k,initState,&input_32_zeroes,&out);
}
void printarr(char * name, uint8_t* arr, int len)
{
int i ;
printf("uint8_t %s[] = {", name);
for(i =0 ; i< len ; i++)
{
printf("0x%02x,",*(arr+i));
}
printf("};\n");
}
int testMAC()
{
//From the "dismantling.IClass" paper:
uint8_t cc_nr[] = {0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0,0,0,0};
// But actually, that must be reversed, it's "on-the-wire" data
reverse_arraybytes(cc_nr,sizeof(cc_nr));
//From the paper
uint8_t div_key[] = {0xE0,0x33,0xCA,0x41,0x9A,0xEE,0x43,0xF9};
uint8_t correct_MAC[] = {0x1d,0x49,0xC9,0xDA};
BitstreamIn bitstream = {cc_nr,sizeof(cc_nr) * 8,0};
uint8_t dest []= {0,0,0,0,0,0,0,0};
BitstreamOut out = { dest, sizeof(dest)*8, 0 };
MAC(div_key,bitstream, out);
//The output MAC must also be reversed
reverse_arraybytes(dest, sizeof(dest));
if(false && memcmp(dest, correct_MAC,4) == 0)
{
printf("MAC calculation OK!\n");
}else
{
printf("MAC calculation failed\n");
printarr("Calculated_MAC", dest, 4);
printarr("Correct_MAC ", correct_MAC, 4);
return 1;
}
return 0;
}
int calc_iclass_mac(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t *mac)
{
uint8_t cc_nr[12];
uint8_t div_key[8];
memcpy(cc_nr,cc_nr_p,12);
memcpy(div_key,div_key_p,8);
reverse_arraybytes(cc_nr,sizeof(cc_nr));
BitstreamIn bitstream = {cc_nr,sizeof(cc_nr) * 8,0};
uint8_t dest []= {0,0,0,0,0,0,0,0};
BitstreamOut out = { dest, sizeof(dest)*8, 0 };
MAC(div_key,bitstream, out);
//The output MAC must also be reversed
reverse_arraybytes(dest, sizeof(dest));
printf("Calculated_MAC\t%02x%02x%02x%02x\n", dest[0],dest[1],dest[2],dest[3]);
memcpy(mac,dest,4);
return 1;
}

46
client/loclass/cipher.h Normal file
View file

@ -0,0 +1,46 @@
/*****************************************************************************
* This file is part of iClassCipher. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with IClassCipher. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#ifndef CIPHER_H
#define CIPHER_H
#include <stdint.h>
/**
* Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2
* consisting of the following four components:
* 1. the left register l = (l 0 . . . l 7 ) F 8/2 ;
* 2. the right register r = (r 0 . . . r 7 ) F 8/2 ;
* 3. the top register t = (t 0 . . . t 15 ) F 16/2 .
* 4. the bottom register b = (b 0 . . . b 7 ) F 8/2 .
**/
typedef struct {
uint8_t l;
uint8_t r;
uint8_t b;
uint16_t t;
} State;
void printarr(char * name, uint8_t* arr, int len);
int calc_iclass_mac(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t *mac);
#endif // CIPHER_H

View file

@ -0,0 +1,195 @@
/*****************************************************************************
* This file is part of iClassCipher. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with IClassCipher. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#include "cipherutils.h"
#include "../util.h"
#include <stdint.h>
#include <stdio.h>
#include <string.h>
/**
*
* @brief Return and remove the first bit (x0) in the stream : <x0 x1 x2 x3 ... xn >
* @param stream
* @return
*/
bool headBit( BitstreamIn *stream)
{
int bytepos = stream->position >> 3; // divide by 8
int bitpos = (stream->position++) & 7; // mask out 00000111
return (*(stream->buffer + bytepos) >> (7-bitpos)) & 1;
}
/**
* @brief Return and remove the last bit (xn) in the stream: <x0 x1 x2 ... xn>
* @param stream
* @return
*/
bool tailBit( BitstreamIn *stream)
{
int bitpos = stream->numbits -1 - (stream->position++);
int bytepos= bitpos >> 3;
bitpos &= 7;
return (*(stream->buffer + bytepos) >> (7-bitpos)) & 1;
}
/**
* @brief Pushes bit onto the stream
* @param stream
* @param bit
*/
void pushBit( BitstreamOut* stream, bool bit)
{
int bytepos = stream->position >> 3; // divide by 8
int bitpos = stream->position & 7;
*(stream->buffer+bytepos) |= (bit & 1) << (7 - bitpos);
stream->position++;
stream->numbits++;
}
/**
* @brief Pushes the lower six bits onto the stream
* as b0 b1 b2 b3 b4 b5 b6
* @param stream
* @param bits
*/
void push6bits( BitstreamOut* stream, uint8_t bits)
{
pushBit(stream, bits & 0x20);
pushBit(stream, bits & 0x10);
pushBit(stream, bits & 0x08);
pushBit(stream, bits & 0x04);
pushBit(stream, bits & 0x02);
pushBit(stream, bits & 0x01);
}
/**
* @brief bitsLeft
* @param stream
* @return number of bits left in stream
*/
int bitsLeft( BitstreamIn *stream)
{
return stream->numbits - stream->position;
}
/**
* @brief numBits
* @param stream
* @return Number of bits stored in stream
*/
int numBits(BitstreamOut *stream)
{
return stream->numbits;
}
uint8_t reversebytes(uint8_t b) {
b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
return b;
}
void reverse_arraybytes(uint8_t* arr, size_t len)
{
uint8_t i;
for( i =0; i< len ; i++)
{
arr[i] = reversebytes(arr[i]);
}
}
//-----------------------------
// Code for testing below
//-----------------------------
int testBitStream()
{
uint8_t input [] = {0xDE,0xAD,0xBE,0xEF,0xDE,0xAD,0xBE,0xEF};
uint8_t output [] = {0,0,0,0,0,0,0,0};
BitstreamIn in = { input, sizeof(input) * 8,0};
BitstreamOut out ={ output, 0,0}
;
while(bitsLeft(&in) > 0)
{
pushBit(&out, headBit(&in));
//printf("Bits left: %d\n", bitsLeft(&in));
//printf("Bits out: %d\n", numBits(&out));
}
if(memcmp(input, output, sizeof(input)) == 0)
{
printf("Bitstream test 1 ok\n");
}else
{
printf("Bitstream test 1 failed\n");
uint8_t i;
for(i = 0 ; i < sizeof(input) ; i++)
{
printf("IN %02x, OUT %02x\n", input[i], output[i]);
}
return 1;
}
return 0;
}
int testReversedBitstream()
{
uint8_t input [] = {0xDE,0xAD,0xBE,0xEF,0xDE,0xAD,0xBE,0xEF};
uint8_t reverse [] = {0,0,0,0,0,0,0,0};
uint8_t output [] = {0,0,0,0,0,0,0,0};
BitstreamIn in = { input, sizeof(input) * 8,0};
BitstreamOut out ={ output, 0,0};
BitstreamIn reversed_in ={ reverse, sizeof(input)*8,0};
BitstreamOut reversed_out ={ reverse,0 ,0};
while(bitsLeft(&in) > 0)
{
pushBit(&reversed_out, tailBit(&in));
}
while(bitsLeft(&reversed_in) > 0)
{
pushBit(&out, tailBit(&reversed_in));
}
if(memcmp(input, output, sizeof(input)) == 0)
{
printf("Bitstream test 2 ok\n");
}else
{
printf("Bitstream test 2 failed\n");
uint8_t i;
for(i = 0 ; i < sizeof(input) ; i++)
{
printf("IN %02x, MIDDLE: %02x, OUT %02x\n", input[i],reverse[i], output[i]);
}
return 1;
}
return 0;
}
int testCipherUtils(void)
{
int retval = 0;
retval |= testBitStream();
retval |= testReversedBitstream();
return retval;
}

View file

@ -0,0 +1,55 @@
/*****************************************************************************
* This file is part of iClassCipher. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with IClassCipher. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#ifndef CIPHERUTILS_H
#define CIPHERUTILS_H
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
typedef struct {
uint8_t * buffer;
uint8_t numbits;
uint8_t position;
} BitstreamIn;
typedef struct {
uint8_t * buffer;
uint8_t numbits;
uint8_t position;
}BitstreamOut;
bool headBit( BitstreamIn *stream);
bool tailBit( BitstreamIn *stream);
void pushBit( BitstreamOut *stream, bool bit);
int bitsLeft( BitstreamIn *stream);
bool xorbits_8(uint8_t val);
bool xorbits_16(uint16_t val);
int testCipherUtils(void);
int testMAC();
void push6bits( BitstreamOut* stream, uint8_t bits);
void EncryptDES(bool key[56], bool outBlk[64], bool inBlk[64], int verbose) ;
uint8_t reversebytes(uint8_t b);
void reverse_arraybytes(uint8_t* arr, size_t len);
#endif // CIPHERUTILS_H

1014
client/loclass/des.c Normal file

File diff suppressed because it is too large Load diff

256
client/loclass/des.h Normal file
View file

@ -0,0 +1,256 @@
/**
* \file des.h
*
* \brief DES block cipher
*
* Copyright (C) 2006-2013, Brainspark B.V.
*
* This file is part of PolarSSL (http://www.polarssl.org)
* Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef POLARSSL_DES_H
#define POLARSSL_DES_H
//#include "config.h"
#include <string.h>
#if defined(_MSC_VER) && !defined(EFIX64) && !defined(EFI32)
#include <basetsd.h>
typedef UINT32 uint32_t;
#else
#include <inttypes.h>
#endif
#define DES_ENCRYPT 1
#define DES_DECRYPT 0
#define POLARSSL_ERR_DES_INVALID_INPUT_LENGTH -0x0032 /**< The data input has an invalid length. */
#define DES_KEY_SIZE 8
#if !defined(POLARSSL_DES_ALT)
// Regular implementation
//
#ifdef __cplusplus
extern "C" {
#endif
/**
* \brief DES context structure
*/
typedef struct
{
int mode; /*!< encrypt/decrypt */
uint32_t sk[32]; /*!< DES subkeys */
}
des_context;
/**
* \brief Triple-DES context structure
*/
typedef struct
{
int mode; /*!< encrypt/decrypt */
uint32_t sk[96]; /*!< 3DES subkeys */
}
des3_context;
/**
* \brief Set key parity on the given key to odd.
*
* DES keys are 56 bits long, but each byte is padded with
* a parity bit to allow verification.
*
* \param key 8-byte secret key
*/
void des_key_set_parity( unsigned char key[DES_KEY_SIZE] );
/**
* \brief Check that key parity on the given key is odd.
*
* DES keys are 56 bits long, but each byte is padded with
* a parity bit to allow verification.
*
* \param key 8-byte secret key
*
* \return 0 is parity was ok, 1 if parity was not correct.
*/
int des_key_check_key_parity( const unsigned char key[DES_KEY_SIZE] );
/**
* \brief Check that key is not a weak or semi-weak DES key
*
* \param key 8-byte secret key
*
* \return 0 if no weak key was found, 1 if a weak key was identified.
*/
int des_key_check_weak( const unsigned char key[DES_KEY_SIZE] );
/**
* \brief DES key schedule (56-bit, encryption)
*
* \param ctx DES context to be initialized
* \param key 8-byte secret key
*
* \return 0
*/
int des_setkey_enc( des_context *ctx, const unsigned char key[DES_KEY_SIZE] );
/**
* \brief DES key schedule (56-bit, decryption)
*
* \param ctx DES context to be initialized
* \param key 8-byte secret key
*
* \return 0
*/
int des_setkey_dec( des_context *ctx, const unsigned char key[DES_KEY_SIZE] );
/**
* \brief Triple-DES key schedule (112-bit, encryption)
*
* \param ctx 3DES context to be initialized
* \param key 16-byte secret key
*
* \return 0
*/
int des3_set2key_enc( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 2] );
/**
* \brief Triple-DES key schedule (112-bit, decryption)
*
* \param ctx 3DES context to be initialized
* \param key 16-byte secret key
*
* \return 0
*/
int des3_set2key_dec( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 2] );
/**
* \brief Triple-DES key schedule (168-bit, encryption)
*
* \param ctx 3DES context to be initialized
* \param key 24-byte secret key
*
* \return 0
*/
int des3_set3key_enc( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 3] );
/**
* \brief Triple-DES key schedule (168-bit, decryption)
*
* \param ctx 3DES context to be initialized
* \param key 24-byte secret key
*
* \return 0
*/
int des3_set3key_dec( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 3] );
/**
* \brief DES-ECB block encryption/decryption
*
* \param ctx DES context
* \param input 64-bit input block
* \param output 64-bit output block
*
* \return 0 if successful
*/
int des_crypt_ecb( des_context *ctx,
const unsigned char input[8],
unsigned char output[8] );
#if defined(POLARSSL_CIPHER_MODE_CBC)
/**
* \brief DES-CBC buffer encryption/decryption
*
* \param ctx DES context
* \param mode DES_ENCRYPT or DES_DECRYPT
* \param length length of the input data
* \param iv initialization vector (updated after use)
* \param input buffer holding the input data
* \param output buffer holding the output data
*/
int des_crypt_cbc( des_context *ctx,
int mode,
size_t length,
unsigned char iv[8],
const unsigned char *input,
unsigned char *output );
#endif /* POLARSSL_CIPHER_MODE_CBC */
/**
* \brief 3DES-ECB block encryption/decryption
*
* \param ctx 3DES context
* \param input 64-bit input block
* \param output 64-bit output block
*
* \return 0 if successful
*/
int des3_crypt_ecb( des3_context *ctx,
const unsigned char input[8],
unsigned char output[8] );
#if defined(POLARSSL_CIPHER_MODE_CBC)
/**
* \brief 3DES-CBC buffer encryption/decryption
*
* \param ctx 3DES context
* \param mode DES_ENCRYPT or DES_DECRYPT
* \param length length of the input data
* \param iv initialization vector (updated after use)
* \param input buffer holding the input data
* \param output buffer holding the output data
*
* \return 0 if successful, or POLARSSL_ERR_DES_INVALID_INPUT_LENGTH
*/
int des3_crypt_cbc( des3_context *ctx,
int mode,
size_t length,
unsigned char iv[8],
const unsigned char *input,
unsigned char *output );
#endif /* POLARSSL_CIPHER_MODE_CBC */
#ifdef __cplusplus
}
#endif
#else /* POLARSSL_DES_ALT */
#include "des_alt.h"
#endif /* POLARSSL_DES_ALT */
#ifdef __cplusplus
extern "C" {
#endif
/**
* \brief Checkup routine
*
* \return 0 if successful, or 1 if the test failed
*/
int des_self_test( int verbose );
#ifdef __cplusplus
}
#endif
#endif /* des.h */

469
client/loclass/ikeys.c Normal file
View file

@ -0,0 +1,469 @@
/*****************************************************************************
* This file is part of iClassCipher. It is a reconstructon of the cipher engine
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with IClassCipher. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
/**
From "Dismantling iclass":
This section describes in detail the built-in key diversification algorithm of iClass.
Besides the obvious purpose of deriving a card key from a master key, this
algorithm intends to circumvent weaknesses in the cipher by preventing the
usage of certain weak keys. In order to compute a diversified key, the iClass
reader first encrypts the card identity id with the master key K, using single
DES. The resulting ciphertext is then input to a function called hash0 which
outputs the diversified key k.
k = hash0(DES enc (id, K))
Here the DES encryption of id with master key K outputs a cryptogram c
of 64 bits. These 64 bits are divided as c = x, y, z [0] , . . . , z [7] F 82 × F 82 × (F 62 ) 8
which is used as input to the hash0 function. This function introduces some
obfuscation by performing a number of permutations, complement and modulo
operations, see Figure 2.5. Besides that, it checks for and removes patterns like
similar key bytes, which could produce a strong bias in the cipher. Finally, the
output of hash0 is the diversified card key k = k [0] , . . . , k [7] (F 82 ) 8 .
**/
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include "cipherutils.h"
#include "cipher.h"
#include "../util.h"
#include <stdio.h>
#include "des.h"
#include <inttypes.h>
uint8_t pi[35] = {0x0F,0x17,0x1B,0x1D,0x1E,0x27,0x2B,0x2D,0x2E,0x33,0x35,0x39,0x36,0x3A,0x3C,0x47,0x4B,0x4D,0x4E,0x53,0x55,0x56,0x59,0x5A,0x5C,0x63,0x65,0x66,0x69,0x6A,0x6C,0x71,0x72,0x74,0x78};
static des_context ctx_enc = {DES_ENCRYPT,{0}};
static des_context ctx_dec = {DES_DECRYPT,{0}};
static bool debug_print = false;
/**
* @brief The key diversification algorithm uses 6-bit bytes.
* This implementation uses 64 bit uint to pack seven of them into one
* variable. When they are there, they are placed as follows:
* XXXX XXXX N0 .... N7, occupying the lsat 48 bits.
*
* This function picks out one from such a collection
* @param all
* @param n bitnumber
* @return
*/
uint8_t getSixBitByte(uint64_t c, int n)
{
return (c >> (42-6*n)) & 0x3F;
//return (c >> n*6) & 0x3f;
}
/**
* @brief Puts back a six-bit 'byte' into a uint64_t.
* @param c buffer
* @param z the value to place there
* @param n bitnumber.
*/
void pushbackSixBitByte(uint64_t *c, uint8_t z, int n)
{
//0x XXXX YYYY ZZZZ ZZZZ ZZZZ
// ^z0 ^z7
//z0: 1111 1100 0000 0000
uint64_t masked = z & 0x3F;
uint64_t eraser = 0x3F;
masked <<= 42-6*n;
eraser <<= 42-6*n;
//masked <<= 6*n;
//eraser <<= 6*n;
eraser = ~eraser;
(*c) &= eraser;
(*c) |= masked;
}
uint64_t swapZvalues(uint64_t c)
{
uint64_t newz = 0;
pushbackSixBitByte(&newz, getSixBitByte(c,0),7);
pushbackSixBitByte(&newz, getSixBitByte(c,1),6);
pushbackSixBitByte(&newz, getSixBitByte(c,2),5);
pushbackSixBitByte(&newz, getSixBitByte(c,3),4);
pushbackSixBitByte(&newz, getSixBitByte(c,4),3);
pushbackSixBitByte(&newz, getSixBitByte(c,5),2);
pushbackSixBitByte(&newz, getSixBitByte(c,6),1);
pushbackSixBitByte(&newz, getSixBitByte(c,7),0);
newz |= (c & 0xFFFF000000000000);
return newz;
}
/**
* @return 4 six-bit bytes chunked into a uint64_t,as 00..00a0a1a2a3
*/
uint64_t ck(int i, int j, uint64_t z)
{
// printf("ck( i=%d, j=%d), zi=[%d],zj=[%d] \n",i,j,getSixBitByte(z,i),getSixBitByte(z,j) );
if(i == 1 && j == -1)
{
// ck(1, 1, z [0] . . . z [3] ) = z [0] . . . z [3]
return z;
}else if( j == -1)
{
// ck(i, 1, z [0] . . . z [3] ) = ck(i 1, i 2, z [0] . . . z [3] )
return ck(i-1,i-2, z);
}
if(getSixBitByte(z,i) == getSixBitByte(z,j))
{
// TODO, I dont know what they mean here in the paper
//ck(i, j 1, z [0] . . . z [i] ← j . . . z [3] )
uint64_t newz = 0;
int c;
//printf("z[i]=z[i] (0x%02x), i=%d, j=%d\n",getSixBitByte(z,i),i,j );
for(c = 0; c < 4 ;c++)
{
uint8_t val = getSixBitByte(z,c);
if(c == i)
{
//printf("oops\n");
pushbackSixBitByte(&newz, j, c);
}else
{
pushbackSixBitByte(&newz, val, c);
}
}
return ck(i,j-1,newz);
}else
{
return ck(i,j-1,z);
}
}
/**
Definition 8.
Let the function check : (F 62 ) 8 (F 62 ) 8 be defined as
check(z [0] . . . z [7] ) = ck(3, 2, z [0] . . . z [3] ) · ck(3, 2, z [4] . . . z [7] )
where ck : N × N × (F 62 ) 4 (F 62 ) 4 is defined as
ck(1, 1, z [0] . . . z [3] ) = z [0] . . . z [3]
ck(i, 1, z [0] . . . z [3] ) = ck(i 1, i 2, z [0] . . . z [3] )
ck(i, j, z [0] . . . z [3] ) =
ck(i, j 1, z [0] . . . z [i] j . . . z [3] ), if z [i] = z [j] ;
ck(i, j 1, z [0] . . . z [3] ), otherwise
otherwise.
**/
uint64_t check(uint64_t z)
{
//These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
// ck(3, 2, z [0] . . . z [3] )
uint64_t ck1 = ck(3,2, z );
// ck(3, 2, z [4] . . . z [7] )
uint64_t ck2 = ck(3,2, z << 24);
ck1 &= 0x00000000FFFFFF000000;
ck2 &= 0x00000000FFFFFF000000;
return ck1 | ck2 >> 24;
}
void permute(BitstreamIn *p_in, uint64_t z,int l,int r, BitstreamOut* out)
{
if(bitsLeft(p_in) == 0)
{
return;
}
bool pn = tailBit(p_in);
if( pn ) // pn = 1
{
uint8_t zl = getSixBitByte(z,l);
//printf("permute pushing, zl=0x%02x, zl+1=0x%02x\n", zl, zl+1);
push6bits(out, zl+1);
permute(p_in, z, l+1,r, out);
}else // otherwise
{
uint8_t zr = getSixBitByte(z,r);
//printf("permute pushing, zr=0x%02x\n", zr);
push6bits(out, zr);
permute(p_in,z,l,r+1,out);
}
}
void testPermute()
{
uint64_t x = 0;
pushbackSixBitByte(&x,0x00,0);
pushbackSixBitByte(&x,0x01,1);
pushbackSixBitByte(&x,0x02,2);
pushbackSixBitByte(&x,0x03,3);
pushbackSixBitByte(&x,0x04,4);
pushbackSixBitByte(&x,0x05,5);
pushbackSixBitByte(&x,0x06,6);
pushbackSixBitByte(&x,0x07,7);
uint8_t mres[8] = { getSixBitByte(x, 0),
getSixBitByte(x, 1),
getSixBitByte(x, 2),
getSixBitByte(x, 3),
getSixBitByte(x, 4),
getSixBitByte(x, 5),
getSixBitByte(x, 6),
getSixBitByte(x, 7)};
printarr("input_perm", mres,8);
uint8_t p = ~pi[0];
BitstreamIn p_in = { &p, 8,0 };
uint8_t outbuffer[] = {0,0,0,0,0,0,0,0};
BitstreamOut out = {outbuffer,0,0};
permute(&p_in, x,0,4, &out);
uint64_t permuted = bytes_to_num(outbuffer,8);
//printf("zTilde 0x%"PRIX64"\n", zTilde);
permuted >>= 16;
uint8_t res[8] = { getSixBitByte(permuted, 0),
getSixBitByte(permuted, 1),
getSixBitByte(permuted, 2),
getSixBitByte(permuted, 3),
getSixBitByte(permuted, 4),
getSixBitByte(permuted, 5),
getSixBitByte(permuted, 6),
getSixBitByte(permuted, 7)};
printarr("permuted", res, 8);
}
void printbegin()
{
if(! debug_print)
return;
printf(" | x| y|z0|z1|z2|z3|z4|z5|z6|z7|\n");
}
void printState(char* desc, int x,int y, uint64_t c)
{
if(! debug_print)
return;
printf("%s : ", desc);
//uint8_t x = (c & 0xFF00000000000000 ) >> 56;
//uint8_t y = (c & 0x00FF000000000000 ) >> 48;
printf(" %02x %02x", x,y);
int i ;
for(i =0 ; i < 8 ; i++)
{
printf(" %02x", getSixBitByte(c,i));
}
printf("\n");
}
/**
* @brief
*Definition 11. Let the function hash0 : F 82 × F 82 × (F 62 ) 8 (F 82 ) 8 be defined as
* hash0(x, y, z [0] . . . z [7] ) = k [0] . . . k [7] where
* z'[i] = (z[i] mod (63-i)) + i i = 0...3
* z'[i+4] = (z[i+4] mod (64-i)) + i i = 0...3
* = check(z');
* @param c
* @param k this is where the diversified key is put (should be 8 bytes)
* @return
*/
void hash0(uint64_t c, uint8_t *k)
{
printbegin();
//These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
// x = 8 bits
// y = 8 bits
// z0-z7 6 bits each : 48 bits
uint8_t x = (c & 0xFF00000000000000 ) >> 56;
uint8_t y = (c & 0x00FF000000000000 ) >> 48;
printState("origin",x,y,c);
int n;
uint8_t zn, zn4, _zn, _zn4;
uint64_t zP = 0;
for(n = 0; n < 4 ; n++)
{
zn = getSixBitByte(c,n);
zn4 = getSixBitByte(c,n+4);
_zn = (zn % (63-n)) + n;
_zn4 = (zn4 % (64-n)) + n;
pushbackSixBitByte(&zP, _zn,n);
pushbackSixBitByte(&zP, _zn4,n+4);
}
printState("x|y|z'",x,y,zP);
uint64_t zCaret = check(zP);
printState("x|y|z^",x,y,zP);
uint8_t p = pi[x % 35];
if(x & 1) //Check if x7 is 1
{
p = ~p;
}
printState("p|y|z^",p,y,zP);
//if(debug_print) printf("p:%02x\n", p);
BitstreamIn p_in = { &p, 8,0 };
uint8_t outbuffer[] = {0,0,0,0,0,0,0,0};
BitstreamOut out = {outbuffer,0,0};
permute(&p_in,zCaret,0,4,&out);//returns 48 bits? or 6 8-bytes
//Out is now a buffer containing six-bit bytes, should be 48 bits
// if all went well
//printf("Permute output is %d num bits (48?)\n", out.numbits);
//Shift z-values down onto the lower segment
uint64_t zTilde = bytes_to_num(outbuffer,8);
//printf("zTilde 0x%"PRIX64"\n", zTilde);
zTilde >>= 16;
//printf("z~ 0x%"PRIX64"\n", zTilde);
printState("p|y|z~", p,y,zTilde);
int i;
int zerocounter =0 ;
for(i =0 ; i < 8 ; i++)
{
// the key on index i is first a bit from y
// then six bits from z,
// then a bit from p
// Init with zeroes
k[i] = 0;
// First, place yi leftmost in k
//k[i] |= (y << i) & 0x80 ;
// First, place y(7-i) leftmost in k
k[i] |= (y << (7-i)) & 0x80 ;
//printf("y%d = %d\n",i,(y << i) & 0x80);
uint8_t zTilde_i = getSixBitByte(zTilde, i);
//printf("zTilde_%d 0x%02x (should be <= 0x3F)\n",i, zTilde_i);
// zTildeI is now on the form 00XXXXXX
// with one leftshift, it'll be
// 0XXXXXX0
// So after leftshift, we can OR it into k
// However, when doing complement, we need to
// again MASK 0XXXXXX0 (0x7E)
zTilde_i <<= 1;
//Finally, add bit from p or p-mod
//Shift bit i into rightmost location (mask only after complement)
uint8_t p_i = p >> i & 0x1;
if( k[i] )// yi = 1
{
//printf("k[%d] +1\n", i);
k[i] |= ~zTilde_i & 0x7E;
k[i] |= p_i & 1;
k[i] += 1;
}else // otherwise
{
k[i] |= zTilde_i & 0x7E;
k[i] |= (~p_i) & 1;
}
if((k[i] & 1 )== 0)
{
zerocounter ++;
}
}
//printf("zerocounter=%d (should be 4)\n",zerocounter);
//printf("permute fin, y:0x%02x, x: 0x%02x\n", y, x);
//return k;
}
void reorder(uint8_t arr[8])
{
uint8_t tmp[4] = {arr[3],arr[2],arr[1], arr[0]};
arr[0] = arr[7];
arr[1] = arr[6];
arr[2] = arr[5];
arr[3] = arr[4];
arr[4] = tmp[0];//arr[3];
arr[5] = tmp[1];//arr[2];
arr[6] = tmp[2];//arr[3];
arr[7] = tmp[3];//arr[1]
}
//extern void printarr(char * name, uint8_t* arr, int len);
bool des_getParityBitFromKey(uint8_t key)
{//The top 7 bits is used
bool parity = ((key & 0x80) >> 7)
^ ((key & 0x40) >> 6) ^ ((key & 0x20) >> 5)
^ ((key & 0x10) >> 4) ^ ((key & 0x08) >> 3)
^ ((key & 0x04) >> 2) ^ ((key & 0x02) >> 1);
return !parity;
}
void des_checkParity(uint8_t* key)
{
int i;
int fails =0;
for(i =0 ; i < 8 ; i++)
{
bool parity = des_getParityBitFromKey(key[i]);
if(parity != (key[i] & 0x1))
{
fails++;
printf("parity1 fail, byte %d [%02x] was %d, should be %d\n",i,key[i],(key[i] & 0x1),parity);
}
}
if(fails)
{
printf("parity fails: %d\n", fails);
}else
{
printf("Key syntax is with parity bits inside each byte\n");
}
}
void printarr2(char * name, uint8_t* arr, int len)
{
int i ;
printf("%s :", name);
for(i =0 ; i< len ; i++)
{
printf("%02x",*(arr+i));
}
printf("\n");
}

8
client/loclass/ikeys.h Normal file
View file

@ -0,0 +1,8 @@
#ifndef IKEYS_H
#define IKEYS_H
int testKeyDiversification();
int doKeyTests();
void hash0(uint64_t c, uint8_t *k);
void pushbackSixBitByte(uint64_t *c, uint8_t z, int n);
uint8_t getSixBitByte(uint64_t c, int n);
#endif // IKEYS_H