fix 'hf iclass reader'

* code deduplication. Use functions from iso15693.c
* speedup CodeIso15693AsReader()
* invert reader command coding. 0 now means 'unmodulated' ( = field on)
* decode SOF only as a valid tag response in Handle15693SamplesFromTag()
* complete decoding of EOF in Handle15693SamplesFromTag()
* determine and write correct times to trace
* FPGA-change: generate shorter frame signal to allow proper sync in StartCountSspClk()
* modify StartCountSspClk() for 16bit SSC transfers
* whitespace in util.c
* add specific LogTrace_ISO15693() with scaled down duration. Modify cmdhflist.c accordingly.
* allow 'hf 15 raw' with single byte commands
* check for buffer overflow, card timeout and single SOF in 'hf 15 raw'
This commit is contained in:
pwpiwi 2019-10-16 09:36:37 +02:00
parent b41be3cb11
commit c41dd5f9f6
9 changed files with 446 additions and 535 deletions

View file

@ -57,14 +57,17 @@
#include "usb_cdc.h" // for usb_poll_validate_length
#include "fpgaloader.h"
static int timeout = 4096;
// iCLASS has a slightly different timing compared to ISO15693. According to the picopass data sheet the tag response is expected 330us after
// the reader command. This is measured from end of reader EOF to first modulation of the tag's SOF which starts with a 56,64us unmodulated period.
// 330us = 140 ssp_clk cycles @ 423,75kHz when simulating.
// 56,64us = 24 ssp_clk_cycles
#define DELAY_ICLASS_VCD_TO_VICC_SIM 140
#define TAG_SOF_UNMODULATED 24
#define DELAY_ICLASS_VCD_TO_VICC_SIM (140 - 24)
// times in ssp_clk_cycles @ 3,3625MHz when acting as reader
#define DELAY_ICLASS_VICC_TO_VCD_READER DELAY_ISO15693_VICC_TO_VCD_READER
// times in samples @ 212kHz when acting as reader
#define ICLASS_READER_TIMEOUT_ACTALL 330 // 1558us, nominal 330us + 7slots*160us = 1450us
#define ICLASS_READER_TIMEOUT_OTHERS 80 // 380us, nominal 330us
//-----------------------------------------------------------------------------
// The software UART that receives commands from the reader, and its state
@ -698,7 +701,7 @@ void RAMFUNC SnoopIClass(void) {
//if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
uint8_t parity[MAX_PARITY_SIZE];
GetParity(Uart.output, Uart.byteCnt, parity);
LogTrace(Uart.output, Uart.byteCnt, time_start, time_stop, parity, true);
LogTrace_ISO15693(Uart.output, Uart.byteCnt, time_start*32, time_stop*32, parity, true);
/* And ready to receive another command. */
Uart.state = STATE_UNSYNCD;
@ -723,7 +726,7 @@ void RAMFUNC SnoopIClass(void) {
uint8_t parity[MAX_PARITY_SIZE];
GetParity(Demod.output, Demod.len, parity);
LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, false);
LogTrace_ISO15693(Demod.output, Demod.len, time_start*32, time_stop*32, parity, false);
// And ready to receive another response.
memset(&Demod, 0, sizeof(Demod));
@ -1230,9 +1233,9 @@ int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
A legit tag has about 273,4us delay between reader EOT and tag SOF.
**/
if (modulated_response_size > 0) {
uint32_t response_time = reader_eof_time + DELAY_ICLASS_VCD_TO_VICC_SIM - TAG_SOF_UNMODULATED - DELAY_ARM_TO_READER_SIM;
uint32_t response_time = reader_eof_time + DELAY_ICLASS_VCD_TO_VICC_SIM;
TransmitTo15693Reader(modulated_response, modulated_response_size, &response_time, 0, false);
LogTrace(trace_data, trace_data_size, response_time + DELAY_ARM_TO_READER_SIM, response_time + (modulated_response_size << 6) + DELAY_ARM_TO_READER_SIM, NULL, false);
LogTrace_ISO15693(trace_data, trace_data_size, response_time*32, response_time*32 + modulated_response_size/2, NULL, false);
}
}
@ -1327,214 +1330,22 @@ void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain
/// THE READER CODE
//-----------------------------------------------------------------------------
// Transmit the command (to the tag) that was placed in ToSend[].
//-----------------------------------------------------------------------------
static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) {
int c;
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
AT91C_BASE_SSC->SSC_THR = 0x00;
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
static void ReaderTransmitIClass(uint8_t *frame, int len, uint32_t *start_time) {
if (wait) {
if (*wait < 10) *wait = 10;
CodeIso15693AsReader(frame, len);
for (c = 0; c < *wait;) {
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
c++;
}
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
(void)r;
}
WDT_HIT();
}
}
TransmitTo15693Tag(ToSend, ToSendMax, start_time);
uint8_t sendbyte;
bool firstpart = true;
c = 0;
for (;;) {
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
// DOUBLE THE SAMPLES!
if (firstpart) {
sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
} else {
sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
c++;
}
if (sendbyte == 0xff) {
sendbyte = 0xfe;
}
AT91C_BASE_SSC->SSC_THR = sendbyte;
firstpart = !firstpart;
if (c >= len) {
break;
}
}
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
(void)r;
}
WDT_HIT();
}
if (samples && wait) *samples = (c + *wait) << 3;
uint32_t end_time = *start_time + 32*(8*ToSendMax-4); // substract the 4 padding bits after EOF
LogTrace_ISO15693(frame, len, *start_time*4, end_time*4, NULL, true);
}
//-----------------------------------------------------------------------------
// Prepare iClass reader command to send to FPGA
//-----------------------------------------------------------------------------
void CodeIClassCommand(const uint8_t *cmd, int len) {
int i, j, k;
ToSendReset();
// Start of Communication: 1 out of 4
ToSend[++ToSendMax] = 0xf0;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0x0f;
ToSend[++ToSendMax] = 0x00;
// Modulate the bytes
for (i = 0; i < len; i++) {
uint8_t b = cmd[i];
for (j = 0; j < 4; j++) {
for (k = 0; k < 4; k++) {
if (k == (b & 3)) {
ToSend[++ToSendMax] = 0x0f;
} else {
ToSend[++ToSendMax] = 0x00;
}
}
b >>= 2;
}
}
// End of Communication
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0xf0;
ToSend[++ToSendMax] = 0x00;
// Convert from last character reference to length
ToSendMax++;
}
static void ReaderTransmitIClass(uint8_t *frame, int len) {
int wait = 0;
int samples = 0;
// This is tied to other size changes
CodeIClassCommand(frame, len);
// Select the card
TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
if (trigger)
LED_A_ON();
// Store reader command in buffer
uint8_t par[MAX_PARITY_SIZE];
GetParity(frame, len, par);
LogTrace(frame, len, rsamples, rsamples, par, true);
}
//-----------------------------------------------------------------------------
// Wait a certain time for tag response
// If a response is captured return true
// If it takes too long return false
//-----------------------------------------------------------------------------
static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) {
//uint8_t *buffer
// buffer needs to be 512 bytes
int c;
// Set FPGA mode to "reader listen mode", no modulation (listen
// only, since we are receiving, not transmitting).
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
// Now get the answer from the card
Demod.output = receivedResponse;
Demod.len = 0;
Demod.state = DEMOD_UNSYNCD;
uint8_t b;
if (elapsed) *elapsed = 0;
bool skip = false;
c = 0;
for (;;) {
WDT_HIT();
if (BUTTON_PRESS()) return false;
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
if (elapsed) (*elapsed)++;
}
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
if (c < timeout) {
c++;
} else {
return false;
}
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
skip = !skip;
if (skip) continue;
if (ManchesterDecoding(b & 0x0f)) {
*samples = c << 3;
return true;
}
}
}
}
static int ReaderReceiveIClass(uint8_t *receivedAnswer) {
int samples = 0;
if (!GetIClassAnswer(receivedAnswer, 160, &samples, 0)) {
return false;
}
rsamples += samples;
uint8_t parity[MAX_PARITY_SIZE];
GetParity(receivedAnswer, Demod.len, parity);
LogTrace(receivedAnswer, Demod.len, rsamples, rsamples, parity, false);
if (samples == 0) return false;
return Demod.len;
}
static void setupIclassReader() {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Reset trace buffer
set_tracing(true);
clear_trace();
// Setup SSC
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
// Start from off (no field generated)
// Signal field is off with the appropriate LED
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(200);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Now give it time to spin up.
// Signal field is on with the appropriate LED
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
SpinDelay(200);
LED_A_ON();
}
static bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries) {
static bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, size_t max_resp_size,
uint8_t expected_size, uint8_t retries, uint32_t start_time, uint32_t *eof_time) {
while (retries-- > 0) {
ReaderTransmitIClass(command, cmdsize);
if (expected_size == ReaderReceiveIClass(resp)) {
ReaderTransmitIClass(command, cmdsize, &start_time);
if (expected_size == GetIso15693AnswerFromTag(resp, max_resp_size, ICLASS_READER_TIMEOUT_OTHERS, eof_time)) {
return true;
}
}
@ -1548,12 +1359,11 @@ static bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint
* 1 = Got CSN
* 2 = Got CSN and CC
*/
static uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key) {
static uint8_t act_all[] = { 0x0a };
//static uint8_t identify[] = { 0x0c };
static uint8_t identify[] = { 0x0c, 0x00, 0x73, 0x33 };
static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
static uint8_t readcheck_cc[]= { 0x88, 0x02 };
static uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key, uint32_t *eof_time) {
uint8_t act_all[] = { 0x0a };
uint8_t identify[] = { 0x0c };
uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t readcheck_cc[] = { 0x88, 0x02 };
if (use_credit_key)
readcheck_cc[0] = 0x18;
else
@ -1562,24 +1372,28 @@ static uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key) {
uint8_t resp[ICLASS_BUFFER_SIZE];
uint8_t read_status = 0;
uint32_t start_time = GetCountSspClk();
// Send act_all
ReaderTransmitIClass(act_all, 1);
ReaderTransmitIClass(act_all, 1, &start_time);
// Card present?
if (!ReaderReceiveIClass(resp)) return read_status;//Fail
if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_ACTALL, eof_time) < 0) return read_status;//Fail
//Send Identify
ReaderTransmitIClass(identify, 1);
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
ReaderTransmitIClass(identify, 1, &start_time);
// FpgaDisableTracing(); // DEBUGGING
//We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
uint8_t len = ReaderReceiveIClass(resp);
uint8_t len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
if (len != 10) return read_status;//Fail
//Copy the Anti-collision CSN to our select-packet
memcpy(&select[1], resp, 8);
//Select the card
ReaderTransmitIClass(select, sizeof(select));
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
ReaderTransmitIClass(select, sizeof(select), &start_time);
//We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
len = ReaderReceiveIClass(resp);
len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
if (len != 10) return read_status;//Fail
//Success - level 1, we got CSN
@ -1590,8 +1404,9 @@ static uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key) {
read_status = 1;
// Card selected, now read e-purse (cc) (only 8 bytes no CRC)
ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
if (ReaderReceiveIClass(resp) == 8) {
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc), &start_time);
if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time) == 8) {
//Save CC (e-purse) in response data
memcpy(card_data+8, resp, 8);
read_status++;
@ -1600,8 +1415,8 @@ static uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key) {
return read_status;
}
static uint8_t handshakeIclassTag(uint8_t *card_data) {
return handshakeIclassTag_ext(card_data, false);
static uint8_t handshakeIclassTag(uint8_t *card_data, uint32_t *eof_time) {
return handshakeIclassTag_ext(card_data, false, eof_time);
}
@ -1633,8 +1448,13 @@ void ReaderIClass(uint8_t arg0) {
uint8_t flagReadAA = arg0 & FLAG_ICLASS_READER_AA;
set_tracing(true);
setupIclassReader();
clear_trace();
Iso15693InitReader();
StartCountSspClk();
uint32_t start_time = 0;
uint32_t eof_time = 0;
uint16_t tryCnt = 0;
bool userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
while (!userCancelled) {
@ -1649,29 +1469,31 @@ void ReaderIClass(uint8_t arg0) {
}
WDT_HIT();
read_status = handshakeIclassTag_ext(card_data, use_credit_key);
read_status = handshakeIclassTag_ext(card_data, use_credit_key, &eof_time);
if (read_status == 0) continue;
if (read_status == 1) result_status = FLAG_ICLASS_READER_CSN;
if (read_status == 2) result_status = FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CC;
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
// handshakeIclass returns CSN|CC, but the actual block
// layout is CSN|CONFIG|CC, so here we reorder the data,
// moving CC forward 8 bytes
memcpy(card_data+16, card_data+8, 8);
//Read block 1, config
if (flagReadConfig) {
if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 10)) {
if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, sizeof(resp), 10, 10, start_time, &eof_time)) {
result_status |= FLAG_ICLASS_READER_CONF;
memcpy(card_data+8, resp, 8);
} else {
Dbprintf("Failed to dump config block");
}
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
}
//Read block 5, AA
if (flagReadAA) {
if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 10)) {
if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, sizeof(resp), 10, 10, start_time, &eof_time)) {
result_status |= FLAG_ICLASS_READER_AA;
memcpy(card_data + (8*5), resp, 8);
} else {
@ -1746,9 +1568,14 @@ void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
uint8_t resp[ICLASS_BUFFER_SIZE];
setupIclassReader();
set_tracing(true);
clear_trace();
Iso15693InitReader();
StartCountSspClk();
uint32_t start_time = 0;
uint32_t eof_time = 0;
while (!BUTTON_PRESS()) {
WDT_HIT();
@ -1758,28 +1585,34 @@ void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
break;
}
uint8_t read_status = handshakeIclassTag(card_data);
uint8_t read_status = handshakeIclassTag(card_data, &eof_time);
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
if (read_status < 2) continue;
//for now replay captured auth (as cc not updated)
memcpy(check+5, MAC, 4);
if (!sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 5)) {
if (!sendCmdGetResponseWithRetries(check, sizeof(check), resp, sizeof(resp), 4, 5, start_time, &eof_time)) {
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
Dbprintf("Error: Authentication Fail!");
continue;
}
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
//first get configuration block (block 1)
crc = block_crc_LUT[1];
read[1] = 1;
read[2] = crc >> 8;
read[3] = crc & 0xff;
if (!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10)) {
if (!sendCmdGetResponseWithRetries(read, sizeof(read), resp, sizeof(resp), 10, 10, start_time, &eof_time)) {
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
Dbprintf("Dump config (block 1) failed");
continue;
}
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
mem = resp[5];
memory.k16 = (mem & 0x80);
memory.book = (mem & 0x20);
@ -1800,7 +1633,8 @@ void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
read[2] = crc >> 8;
read[3] = crc & 0xff;
if (sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10)) {
if (sendCmdGetResponseWithRetries(read, sizeof(read), resp, sizeof(resp), 10, 10, start_time, &eof_time)) {
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
block, resp[0], resp[1], resp[2],
resp[3], resp[4], resp[5],
@ -1857,7 +1691,8 @@ void iClass_Authentication(uint8_t *MAC) {
uint8_t resp[ICLASS_BUFFER_SIZE];
memcpy(check+5, MAC, 4);
bool isOK;
isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6);
uint32_t eof_time;
isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, sizeof(resp), 4, 6, 0, &eof_time);
cmd_send(CMD_ACK,isOK, 0, 0, 0, 0);
}
@ -1867,11 +1702,12 @@ static bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) {
uint16_t rdCrc = iclass_crc16(&bl, 1);
readcmd[2] = rdCrc >> 8;
readcmd[3] = rdCrc & 0xff;
uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
uint8_t resp[10];
bool isOK = false;
uint32_t eof_time;
//readcmd[1] = blockNo;
isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, 10, 10);
isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, sizeof(resp), 10, 10, 0, &eof_time);
memcpy(readdata, resp, sizeof(resp));
return isOK;
@ -1929,16 +1765,18 @@ static bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) {
uint16_t wrCrc = iclass_crc16(wrCmd, 13);
write[14] = wrCrc >> 8;
write[15] = wrCrc & 0xff;
uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
uint8_t resp[10];
bool isOK = false;
isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10);
uint32_t eof_time = 0;
isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10, 10, 0, &eof_time);
uint32_t start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
if (isOK) { //if reader responded correctly
//Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
if (memcmp(write+2, resp, 8)) { //if response is not equal to write values
if (blockNo != 3 && blockNo != 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
//error try again
isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10);
isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10, 10, start_time, &eof_time);
}
}
}

View file

@ -64,8 +64,26 @@
#define arraylen(x) (sizeof(x)/sizeof((x)[0]))
// Delays in SSP_CLK ticks.
// SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag
#define DELAY_READER_TO_ARM 8
#define DELAY_ARM_TO_READER 0
//SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader. All values should be multiples of 16
#define DELAY_TAG_TO_ARM 32
#define DELAY_ARM_TO_TAG 16
static int DEBUG = 0;
// specific LogTrace function for ISO15693: the duration needs to be scaled because otherwise it won't fit into a uint16_t
bool LogTrace_ISO15693(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag) {
uint32_t duration = timestamp_end - timestamp_start;
duration /= 32;
timestamp_end = timestamp_start + duration;
return LogTrace(btBytes, iLen, timestamp_start, timestamp_end, parity, readerToTag);
}
///////////////////////////////////////////////////////////////////////
// ISO 15693 Part 2 - Air Interface
// This section basically contains transmission and receiving of bits
@ -84,84 +102,37 @@ static int DEBUG = 0;
// resulting data rate is 26.48 kbit/s (fc/512)
// cmd ... data
// n ... length of data
static void CodeIso15693AsReader(uint8_t *cmd, int n)
{
int i, j;
void CodeIso15693AsReader(uint8_t *cmd, int n) {
ToSendReset();
// Give it a bit of slack at the beginning
for(i = 0; i < 24; i++) {
ToSendStuffBit(1);
}
// SOF for 1of4
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
for(i = 0; i < n; i++) {
for(j = 0; j < 8; j += 2) {
int these = (cmd[i] >> j) & 3;
ToSend[++ToSendMax] = 0x84; //10000100
// data
for (int i = 0; i < n; i++) {
for (int j = 0; j < 8; j += 2) {
int these = (cmd[i] >> j) & 0x03;
switch(these) {
case 0:
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSend[++ToSendMax] = 0x40; //01000000
break;
case 1:
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSend[++ToSendMax] = 0x10; //00010000
break;
case 2:
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSend[++ToSendMax] = 0x04; //00000100
break;
case 3:
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSend[++ToSendMax] = 0x01; //00000001
break;
}
}
}
// EOF
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
// Fill remainder of last byte with 1
for(i = 0; i < 4; i++) {
ToSendStuffBit(1);
}
ToSend[++ToSendMax] = 0x20; //0010 + 0000 padding
ToSendMax++;
}
@ -170,46 +141,26 @@ static void CodeIso15693AsReader(uint8_t *cmd, int n)
// is designed for more robust communication over longer distances
static void CodeIso15693AsReader256(uint8_t *cmd, int n)
{
int i, j;
ToSendReset();
// Give it a bit of slack at the beginning
for(i = 0; i < 24; i++) {
ToSendStuffBit(1);
}
// SOF for 1of256
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSend[++ToSendMax] = 0x81; //10000001
for(i = 0; i < n; i++) {
for (j = 0; j<=255; j++) {
if (cmd[i]==j) {
ToSendStuffBit(1);
// data
for(int i = 0; i < n; i++) {
for (int j = 0; j <= 255; j++) {
if (cmd[i] == j) {
ToSendStuffBit(0);
ToSendStuffBit(1);
} else {
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(0);
}
}
}
// EOF
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
// Fill remainder of last byte with 1
for(i = 0; i < 4; i++) {
ToSendStuffBit(1);
}
// EOF
ToSend[++ToSendMax] = 0x20; //0010 + 0000 padding
ToSendMax++;
}
@ -295,27 +246,38 @@ void CodeIso15693AsTag(uint8_t *cmd, size_t len) {
// Transmit the command (to the tag) that was placed in cmd[].
static void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t start_time)
{
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_FULL_MOD);
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t *start_time) {
while (GetCountSspClk() < start_time) ;
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_FULL_MOD);
*start_time = (*start_time - DELAY_ARM_TO_TAG) & 0xfffffff0;
while (GetCountSspClk() > *start_time) { // we may miss the intended time
*start_time += 16; // next possible time
}
while (GetCountSspClk() < *start_time)
/* wait */ ;
LED_B_ON();
for(int c = 0; c < len; c++) {
for (int c = 0; c < len; c++) {
uint8_t data = cmd[c];
for (int i = 0; i < 8; i++) {
uint16_t send_word = (data & 0x80) ? 0x0000 : 0xffff;
uint16_t send_word = (data & 0x80) ? 0xffff : 0x0000;
while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
AT91C_BASE_SSC->SSC_THR = send_word;
while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
AT91C_BASE_SSC->SSC_THR = send_word;
data <<= 1;
}
WDT_HIT();
}
LED_B_OFF();
*start_time = *start_time + DELAY_ARM_TO_TAG;
}
@ -326,7 +288,7 @@ void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time,
// don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K);
uint32_t modulation_start_time = *start_time + 3 * 8; // no need to transfer the unmodulated start of SOF
uint32_t modulation_start_time = *start_time - DELAY_ARM_TO_READER + 3 * 8; // no need to transfer the unmodulated start of SOF
while (GetCountSspClk() > (modulation_start_time & 0xfffffff8) + 3) { // we will miss the intended time
if (slot_time) {
@ -341,7 +303,7 @@ void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time,
uint8_t shift_delay = modulation_start_time & 0x00000007;
*start_time = modulation_start_time - 3 * 8;
*start_time = modulation_start_time + DELAY_ARM_TO_READER - 3 * 8;
LED_C_ON();
uint8_t bits_to_shift = 0x00;
@ -386,15 +348,18 @@ void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time,
// false if we are still waiting for some more
//=============================================================================
#define NOISE_THRESHOLD 160 // don't try to correlate noise
#define NOISE_THRESHOLD 160 // don't try to correlate noise
#define MAX_PREVIOUS_AMPLITUDE (-1 - NOISE_THRESHOLD)
typedef struct DecodeTag {
enum {
STATE_TAG_SOF_LOW,
STATE_TAG_SOF_RISING_EDGE,
STATE_TAG_SOF_HIGH,
STATE_TAG_SOF_HIGH_END,
STATE_TAG_RECEIVING_DATA,
STATE_TAG_EOF
STATE_TAG_EOF,
STATE_TAG_EOF_TAIL
} state;
int bitCount;
int posCount;
@ -409,6 +374,9 @@ typedef struct DecodeTag {
uint8_t *output;
int len;
int sum1, sum2;
int threshold_sof;
int threshold_half;
uint16_t previous_amplitude;
} DecodeTag_t;
@ -416,40 +384,58 @@ static int inline __attribute__((always_inline)) Handle15693SamplesFromTag(uint1
{
switch(DecodeTag->state) {
case STATE_TAG_SOF_LOW:
// waiting for 12 times low (11 times low is accepted as well)
if (amplitude < NOISE_THRESHOLD) {
DecodeTag->posCount++;
} else {
// waiting for a rising edge
if (amplitude > NOISE_THRESHOLD + DecodeTag->previous_amplitude) {
if (DecodeTag->posCount > 10) {
DecodeTag->posCount = 1;
DecodeTag->sum1 = 0;
DecodeTag->state = STATE_TAG_SOF_HIGH;
DecodeTag->threshold_sof = amplitude - DecodeTag->previous_amplitude;
DecodeTag->threshold_half = 0;
DecodeTag->state = STATE_TAG_SOF_RISING_EDGE;
} else {
DecodeTag->posCount = 0;
}
} else {
DecodeTag->posCount++;
DecodeTag->previous_amplitude = amplitude;
}
break;
case STATE_TAG_SOF_RISING_EDGE:
if (amplitude - DecodeTag->previous_amplitude > DecodeTag->threshold_sof) { // edge still rising
if (amplitude - DecodeTag->threshold_sof > DecodeTag->threshold_sof) { // steeper edge, take this as time reference
DecodeTag->posCount = 1;
} else {
DecodeTag->posCount = 2;
}
DecodeTag->threshold_sof = (amplitude - DecodeTag->previous_amplitude) / 2;
} else {
DecodeTag->posCount = 2;
DecodeTag->threshold_sof = DecodeTag->threshold_sof/2;
}
// DecodeTag->posCount = 2;
DecodeTag->state = STATE_TAG_SOF_HIGH;
break;
case STATE_TAG_SOF_HIGH:
// waiting for 10 times high. Take average over the last 8
if (amplitude > NOISE_THRESHOLD) {
if (amplitude > DecodeTag->threshold_sof) {
DecodeTag->posCount++;
if (DecodeTag->posCount > 2) {
DecodeTag->sum1 += amplitude; // keep track of average high value
DecodeTag->threshold_half += amplitude; // keep track of average high value
}
if (DecodeTag->posCount == 10) {
DecodeTag->sum1 >>= 4; // calculate half of average high value (8 samples)
DecodeTag->threshold_half >>= 2; // (4 times 1/2 average)
DecodeTag->state = STATE_TAG_SOF_HIGH_END;
}
} else { // high phase was too short
DecodeTag->posCount = 1;
DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->state = STATE_TAG_SOF_LOW;
}
break;
case STATE_TAG_SOF_HIGH_END:
// waiting for a falling edge
if (amplitude < DecodeTag->sum1) { // signal drops below 50% average high: a falling edge
// check for falling edge
if (DecodeTag->posCount == 13 && amplitude < DecodeTag->threshold_sof) {
DecodeTag->lastBit = SOF_PART1; // detected 1st part of SOF (12 samples low and 12 samples high)
DecodeTag->shiftReg = 0;
DecodeTag->bitCount = 0;
@ -458,11 +444,18 @@ static int inline __attribute__((always_inline)) Handle15693SamplesFromTag(uint1
DecodeTag->sum2 = 0;
DecodeTag->posCount = 2;
DecodeTag->state = STATE_TAG_RECEIVING_DATA;
// FpgaDisableTracing(); // DEBUGGING
// Dbprintf("amplitude = %d, threshold_sof = %d, threshold_half/4 = %d, previous_amplitude = %d",
// amplitude,
// DecodeTag->threshold_sof,
// DecodeTag->threshold_half/4,
// DecodeTag->previous_amplitude); // DEBUGGING
LED_C_ON();
} else {
DecodeTag->posCount++;
if (DecodeTag->posCount > 13) { // high phase too long
DecodeTag->posCount = 0;
DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
}
@ -480,18 +473,16 @@ static int inline __attribute__((always_inline)) Handle15693SamplesFromTag(uint1
DecodeTag->sum2 += amplitude;
}
if (DecodeTag->posCount == 8) {
int32_t corr_1 = DecodeTag->sum2 - DecodeTag->sum1;
int32_t corr_0 = -corr_1;
int32_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 2;
if (corr_EOF > corr_0 && corr_EOF > corr_1) {
if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 > DecodeTag->threshold_half) { // modulation in both halves
if (DecodeTag->lastBit == LOGIC0) { // this was already part of EOF
DecodeTag->state = STATE_TAG_EOF;
} else {
DecodeTag->posCount = 0;
DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
}
} else if (corr_1 > corr_0) {
} else if (DecodeTag->sum1 < DecodeTag->threshold_half && DecodeTag->sum2 > DecodeTag->threshold_half) { // modulation in second half
// logic 1
if (DecodeTag->lastBit == SOF_PART1) { // still part of SOF
DecodeTag->lastBit = SOF_PART2; // SOF completed
@ -503,20 +494,21 @@ static int inline __attribute__((always_inline)) Handle15693SamplesFromTag(uint1
if (DecodeTag->bitCount == 8) {
DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
DecodeTag->len++;
// if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
if (DecodeTag->len > DecodeTag->max_len) {
// buffer overflow, give up
DecodeTag->posCount = 0;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
return true;
}
DecodeTag->bitCount = 0;
DecodeTag->shiftReg = 0;
}
}
} else {
} else if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // modulation in first half
// logic 0
if (DecodeTag->lastBit == SOF_PART1) { // incomplete SOF
DecodeTag->posCount = 0;
DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
} else {
@ -526,9 +518,11 @@ static int inline __attribute__((always_inline)) Handle15693SamplesFromTag(uint1
if (DecodeTag->bitCount == 8) {
DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
DecodeTag->len++;
// if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
if (DecodeTag->len > DecodeTag->max_len) {
// buffer overflow, give up
DecodeTag->posCount = 0;
DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
}
@ -536,6 +530,15 @@ static int inline __attribute__((always_inline)) Handle15693SamplesFromTag(uint1
DecodeTag->shiftReg = 0;
}
}
} else { // no modulation
if (DecodeTag->lastBit == SOF_PART2) { // only SOF (this is OK for iClass)
LED_C_OFF();
return true;
} else {
DecodeTag->posCount = 0;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
}
}
DecodeTag->posCount = 0;
}
@ -553,21 +556,42 @@ static int inline __attribute__((always_inline)) Handle15693SamplesFromTag(uint1
DecodeTag->sum2 += amplitude;
}
if (DecodeTag->posCount == 8) {
int32_t corr_1 = DecodeTag->sum2 - DecodeTag->sum1;
int32_t corr_0 = -corr_1;
int32_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 2;
if (corr_EOF > corr_0 || corr_1 > corr_0) {
if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // modulation in first half
DecodeTag->posCount = 0;
DecodeTag->state = STATE_TAG_EOF_TAIL;
} else {
DecodeTag->posCount = 0;
DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
} else {
LED_C_OFF();
return true;
}
}
DecodeTag->posCount++;
break;
case STATE_TAG_EOF_TAIL:
if (DecodeTag->posCount == 1) {
DecodeTag->sum1 = 0;
DecodeTag->sum2 = 0;
}
if (DecodeTag->posCount <= 4) {
DecodeTag->sum1 += amplitude;
} else {
DecodeTag->sum2 += amplitude;
}
if (DecodeTag->posCount == 8) {
if (DecodeTag->sum1 < DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // no modulation in both halves
LED_C_OFF();
return true;
} else {
DecodeTag->posCount = 0;
DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
}
}
DecodeTag->posCount++;
break;
}
return false;
@ -576,6 +600,7 @@ static int inline __attribute__((always_inline)) Handle15693SamplesFromTag(uint1
static void DecodeTagInit(DecodeTag_t *DecodeTag, uint8_t *data, uint16_t max_len)
{
DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->posCount = 0;
DecodeTag->state = STATE_TAG_SOF_LOW;
DecodeTag->output = data;
@ -587,18 +612,19 @@ static void DecodeTagReset(DecodeTag_t *DecodeTag)
{
DecodeTag->posCount = 0;
DecodeTag->state = STATE_TAG_SOF_LOW;
DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
}
/*
* Receive and decode the tag response, also log to tracebuffer
*/
static int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, int timeout)
{
int samples = 0;
bool gotFrame = false;
int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, uint16_t timeout, uint32_t *eof_time) {
uint16_t *dmaBuf = (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE*sizeof(uint16_t));
int samples = 0;
int ret = 0;
uint16_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
// the Decoder data structure
DecodeTag_t DecodeTag = { 0 };
@ -613,6 +639,7 @@ static int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, int tim
// Setup and start DMA.
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
uint32_t dma_start_time = 0;
uint16_t *upTo = dmaBuf;
for(;;) {
@ -620,12 +647,19 @@ static int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, int tim
if (behindBy == 0) continue;
samples++;
if (samples == 1) {
// DMA has transferred the very first data
dma_start_time = GetCountSspClk() & 0xfffffff0;
}
uint16_t tagdata = *upTo++;
if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
upTo = dmaBuf; // start reading the circular buffer from the beginning
if(behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
ret = -1;
break;
}
}
@ -634,30 +668,42 @@ static int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, int tim
AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
}
samples++;
if (Handle15693SamplesFromTag(tagdata, &DecodeTag)) {
gotFrame = true;
*eof_time = dma_start_time + samples*16 - DELAY_TAG_TO_ARM; // end of EOF
if (DecodeTag.lastBit == SOF_PART2) {
*eof_time -= 8*16; // needed 8 additional samples to confirm single SOF (iCLASS)
}
if (DecodeTag.len > DecodeTag.max_len) {
ret = -2; // buffer overflow
}
break;
}
if (samples > timeout && DecodeTag.state < STATE_TAG_RECEIVING_DATA) {
DecodeTag.len = 0;
ret = -1; // timeout
break;
}
}
FpgaDisableSscDma();
BigBuf_free();
if (DEBUG) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
samples, gotFrame, DecodeTag.state, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount);
if (DEBUG) Dbprintf("samples = %d, ret = %d, Decoder: state = %d, lastBit = %d, len = %d, bitCount = %d, posCount = %d",
samples, ret, DecodeTag.state, DecodeTag.lastBit, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount);
if (DecodeTag.len > 0) {
LogTrace(DecodeTag.output, DecodeTag.len, 0, 0, NULL, false);
if (ret < 0) {
return ret;
}
uint32_t sof_time = *eof_time
- DecodeTag.len * 8 * 8 * 16 // time for byte transfers
- 32 * 16 // time for SOF transfer
- (DecodeTag.lastBit != SOF_PART2?32*16:0); // time for EOF transfer
if (DEBUG) Dbprintf("timing: sof_time = %d, eof_time = %d", sof_time, *eof_time);
LogTrace_ISO15693(DecodeTag.output, DecodeTag.len, sof_time*4, *eof_time*4, NULL, false);
return DecodeTag.len;
}
@ -977,7 +1023,7 @@ int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eo
for (int i = 7; i >= 0; i--) {
if (Handle15693SampleFromReader((b >> i) & 0x01, &DecodeReader)) {
*eof_time = dma_start_time + samples - DELAY_READER_TO_ARM_SIM; // end of EOF
*eof_time = dma_start_time + samples - DELAY_READER_TO_ARM; // end of EOF
gotFrame = true;
break;
}
@ -1006,7 +1052,7 @@ int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eo
- DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128:2048) // time for byte transfers
- 32 // time for SOF transfer
- 16; // time for EOF transfer
LogTrace(DecodeReader.output, DecodeReader.byteCount, sof_time, *eof_time, NULL, true);
LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, sof_time*32, *eof_time*32, NULL, true);
}
return DecodeReader.byteCount;
@ -1060,7 +1106,8 @@ void AcquireRawAdcSamplesIso15693(void)
SpinDelay(100);
// Now send the command
TransmitTo15693Tag(ToSend, ToSendMax, 0);
uint32_t start_time = 0;
TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
// wait for last transfer to complete
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)) ;
@ -1156,7 +1203,7 @@ void SnoopIso15693(void)
if (Handle15693SampleFromReader(snoopdata & 0x02, &DecodeReader)) {
FpgaDisableSscDma();
ExpectTagAnswer = true;
LogTrace(DecodeReader.output, DecodeReader.byteCount, samples, samples, NULL, true);
LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, samples*64, samples*64, NULL, true);
/* And ready to receive another command. */
DecodeReaderReset(&DecodeReader);
/* And also reset the demod code, which might have been */
@ -1168,7 +1215,7 @@ void SnoopIso15693(void)
if (Handle15693SampleFromReader(snoopdata & 0x01, &DecodeReader)) {
FpgaDisableSscDma();
ExpectTagAnswer = true;
LogTrace(DecodeReader.output, DecodeReader.byteCount, samples, samples, NULL, true);
LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, samples*64, samples*64, NULL, true);
/* And ready to receive another command. */
DecodeReaderReset(&DecodeReader);
/* And also reset the demod code, which might have been */
@ -1184,7 +1231,7 @@ void SnoopIso15693(void)
if (Handle15693SamplesFromTag(snoopdata >> 2, &DecodeTag)) {
FpgaDisableSscDma();
//Use samples as a time measurement
LogTrace(DecodeTag.output, DecodeTag.len, samples, samples, NULL, false);
LogTrace_ISO15693(DecodeTag.output, DecodeTag.len, samples*64, samples*64, NULL, false);
// And ready to receive another response.
DecodeTagReset(&DecodeTag);
DecodeReaderReset(&DecodeReader);
@ -1213,10 +1260,8 @@ void SnoopIso15693(void)
// Initialize the proxmark as iso15k reader
static void Iso15693InitReader() {
void Iso15693InitReader() {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Setup SSC
// FpgaSetupSsc();
// Start from off (no field generated)
LED_D_OFF();
@ -1300,17 +1345,20 @@ static void BuildInventoryResponse(uint8_t *uid)
// init ... should we initialize the reader?
// speed ... 0 low speed, 1 hi speed
// *recv will contain the tag's answer
// return: lenght of received data
int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t *recv, uint16_t max_recv_len, uint32_t start_time) {
// return: length of received data, or -1 for timeout
int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t *recv, uint16_t max_recv_len, uint32_t start_time, uint32_t *eof_time) {
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
if (init) Iso15693InitReader();
int answerLen=0;
if (init) {
Iso15693InitReader();
StartCountSspClk();
}
int answerLen = 0;
if (!speed) {
// low speed (1 out of 256)
CodeIso15693AsReader256(send, sendlen);
@ -1319,11 +1367,14 @@ int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t *recv,
CodeIso15693AsReader(send, sendlen);
}
TransmitTo15693Tag(ToSend, ToSendMax, start_time);
if (start_time == 0) {
start_time = GetCountSspClk();
}
TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
// Now wait for a response
if (recv != NULL) {
answerLen = GetIso15693AnswerFromTag(recv, max_recv_len, DELAY_ISO15693_VCD_TO_VICC_READER * 2);
answerLen = GetIso15693AnswerFromTag(recv, max_recv_len, DELAY_ISO15693_VCD_TO_VICC_READER * 2, eof_time);
}
LED_A_OFF();
@ -1445,11 +1496,13 @@ void ReaderIso15693(uint32_t parameter)
// Now send the IDENTIFY command
BuildIdentifyRequest();
TransmitTo15693Tag(ToSend, ToSendMax, 0);
uint32_t start_time = 0;
TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
// Now wait for a response
answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2) ;
uint32_t start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
uint32_t eof_time;
answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2, &eof_time) ;
start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
if (answerLen >=12) // we should do a better check than this
{
@ -1487,9 +1540,9 @@ void ReaderIso15693(uint32_t parameter)
if (answerLen >= 12 && DEBUG) {
for (int i = 0; i < 32; i++) { // sanity check, assume max 32 pages
BuildReadBlockRequest(TagUID, i);
TransmitTo15693Tag(ToSend, ToSendMax, start_time);
int answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2);
start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
int answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2, &eof_time);
start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
if (answerLen > 0) {
Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i, answerLen);
DbdecodeIso15693Answer(answerLen, answer);
@ -1535,7 +1588,7 @@ void SimTagIso15693(uint32_t parameter, uint8_t *uid)
if ((cmd_len >= 5) && (cmd[0] & ISO15693_REQ_INVENTORY) && (cmd[1] == ISO15693_INVENTORY)) { // TODO: check more flags
bool slow = !(cmd[0] & ISO15693_REQ_DATARATE_HIGH);
start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM - DELAY_ARM_TO_READER_SIM;
start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM;
TransmitTo15693Reader(ToSend, ToSendMax, &start_time, 0, slow);
}
@ -1557,11 +1610,8 @@ void BruteforceIso15693Afi(uint32_t speed)
uint8_t data[6];
uint8_t recv[ISO15693_MAX_RESPONSE_LENGTH];
int datalen=0, recvlen=0;
Iso15693InitReader();
StartCountSspClk();
int datalen = 0, recvlen = 0;
uint32_t eof_time;
// first without AFI
// Tags should respond without AFI and with AFI=0 even when AFI is active
@ -1570,8 +1620,9 @@ void BruteforceIso15693Afi(uint32_t speed)
data[1] = ISO15693_INVENTORY;
data[2] = 0; // mask length
datalen = Iso15693AddCrc(data,3);
recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), 0);
uint32_t start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
uint32_t start_time = GetCountSspClk();
recvlen = SendDataTag(data, datalen, true, speed, recv, sizeof(recv), 0, &eof_time);
start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
WDT_HIT();
if (recvlen>=12) {
Dbprintf("NoAFI UID=%s", Iso15693sprintUID(NULL, &recv[2]));
@ -1587,8 +1638,8 @@ void BruteforceIso15693Afi(uint32_t speed)
for (int i = 0; i < 256; i++) {
data[2] = i & 0xFF;
datalen = Iso15693AddCrc(data,4);
recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), start_time);
start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), start_time, &eof_time);
start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
WDT_HIT();
if (recvlen >= 12) {
Dbprintf("AFI=%i UID=%s", i, Iso15693sprintUID(NULL, &recv[2]));
@ -1605,7 +1656,8 @@ void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint
int recvlen = 0;
uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
uint32_t eof_time;
LED_A_ON();
if (DEBUG) {
@ -1613,24 +1665,27 @@ void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint
Dbhexdump(datalen, data, false);
}
recvlen = SendDataTag(data, datalen, true, speed, (recv?recvbuf:NULL), sizeof(recvbuf), 0);
if (recv) {
if (DEBUG) {
Dbprintf("RECV:");
Dbhexdump(recvlen, recvbuf, false);
DbdecodeIso15693Answer(recvlen, recvbuf);
}
cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
}
recvlen = SendDataTag(data, datalen, true, speed, (recv?recvbuf:NULL), sizeof(recvbuf), 0, &eof_time);
// for the time being, switch field off to protect rdv4.0
// note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
if (recv) {
if (DEBUG) {
Dbprintf("RECV:");
if (recvlen > 0) {
Dbhexdump(recvlen, recvbuf, false);
DbdecodeIso15693Answer(recvlen, recvbuf);
}
}
if (recvlen > ISO15693_MAX_RESPONSE_LENGTH) {
recvlen = ISO15693_MAX_RESPONSE_LENGTH;
}
cmd_send(CMD_ACK, recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
}
LED_A_OFF();
}
@ -1648,7 +1703,8 @@ void SetTag15693Uid(uint8_t *uid)
int recvlen = 0;
uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
uint32_t eof_time;
LED_A_ON();
// Command 1 : 02213E00000000
@ -1687,7 +1743,7 @@ void SetTag15693Uid(uint8_t *uid)
cmd[3][5] = uid[1];
cmd[3][6] = uid[0];
for (int i=0; i<4; i++) {
for (int i = 0; i < 4; i++) {
// Add the CRC
crc = Iso15693Crc(cmd[i], 7);
cmd[i][7] = crc & 0xff;
@ -1698,12 +1754,14 @@ void SetTag15693Uid(uint8_t *uid)
Dbhexdump(sizeof(cmd[i]), cmd[i], false);
}
recvlen = SendDataTag(cmd[i], sizeof(cmd[i]), true, 1, recvbuf, sizeof(recvbuf), 0);
recvlen = SendDataTag(cmd[i], sizeof(cmd[i]), true, 1, recvbuf, sizeof(recvbuf), 0, &eof_time);
if (DEBUG) {
Dbprintf("RECV:");
Dbhexdump(recvlen, recvbuf, false);
DbdecodeIso15693Answer(recvlen, recvbuf);
if (recvlen > 0) {
Dbhexdump(recvlen, recvbuf, false);
DbdecodeIso15693Answer(recvlen, recvbuf);
}
}
cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);

View file

@ -17,16 +17,18 @@
// Delays in SSP_CLK ticks.
// SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag
#define DELAY_READER_TO_ARM_SIM 8
#define DELAY_ARM_TO_READER_SIM 0
#define DELAY_ISO15693_VCD_TO_VICC_SIM 132 // 132/423.75kHz = 311.5us from end of command EOF to start of tag response
//SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader
#define DELAY_ISO15693_VCD_TO_VICC_SIM 132 // 132/423.75kHz = 311.5us from end of command EOF to start of tag response
//SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader. All values should be multiples of 16
#define DELAY_ISO15693_VCD_TO_VICC_READER 1056 // 1056/3,39MHz = 311.5us from end of command EOF to start of tag response
#define DELAY_ISO15693_VICC_TO_VCD_READER 1017 // 1017/3.39MHz = 300us between end of tag response and next reader command
#define DELAY_ISO15693_VICC_TO_VCD_READER 1024 // 1024/3.39MHz = 302.1us between end of tag response and next reader command
void Iso15693InitReader();
void CodeIso15693AsReader(uint8_t *cmd, int n);
void CodeIso15693AsTag(uint8_t *cmd, size_t len);
int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time);
void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time, uint32_t slot_time, bool slow);
int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time);
void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t *start_time);
int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, uint16_t timeout, uint32_t *eof_time);
void SnoopIso15693(void);
void AcquireRawAdcSamplesIso15693(void);
void ReaderIso15693(uint32_t parameter);
@ -35,5 +37,6 @@ void BruteforceIso15693Afi(uint32_t speed);
void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint8_t data[]);
void SetTag15693Uid(uint8_t *uid);
void SetDebugIso15693(uint32_t flag);
bool LogTrace_ISO15693(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag);
#endif

View file

@ -21,7 +21,7 @@ void print_result(char *name, uint8_t *buf, size_t len) {
if ( len % 16 == 0 ) {
for(; p-buf < len; p += 16)
Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
name,
p-buf,
len,
@ -30,7 +30,7 @@ void print_result(char *name, uint8_t *buf, size_t len) {
}
else {
for(; p-buf < len; p += 8)
Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x", name, p-buf, len, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x", name, p-buf, len, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
}
}
@ -68,17 +68,17 @@ uint64_t bytes_to_num(uint8_t* src, size_t len)
// RotateLeft - Ultralight, Desfire
void rol(uint8_t *data, const size_t len){
uint8_t first = data[0];
for (size_t i = 0; i < len-1; i++) {
data[i] = data[i+1];
}
data[len-1] = first;
uint8_t first = data[0];
for (size_t i = 0; i < len-1; i++) {
data[i] = data[i+1];
}
data[len-1] = first;
}
void lsl (uint8_t *data, size_t len) {
for (size_t n = 0; n < len - 1; n++) {
data[n] = (data[n] << 1) | (data[n+1] >> 7);
}
data[len - 1] <<= 1;
for (size_t n = 0; n < len - 1; n++) {
data[n] = (data[n] << 1) | (data[n+1] >> 7);
}
data[len - 1] <<= 1;
}
void LEDsoff()
@ -309,16 +309,16 @@ void FormatVersionInformation(char *dst, int len, const char *prefix, void *vers
// -------------------------------------------------------------------------
// test procedure:
//
// ti = GetTickCount();
// SpinDelay(1000);
// ti = GetTickCount() - ti;
// Dbprintf("timer(1s): %d t=%d", ti, GetTickCount());
// ti = GetTickCount();
// SpinDelay(1000);
// ti = GetTickCount() - ti;
// Dbprintf("timer(1s): %d t=%d", ti, GetTickCount());
void StartTickCount()
{
// This timer is based on the slow clock. The slow clock frequency is between 22kHz and 40kHz.
// We can determine the actual slow clock frequency by looking at the Main Clock Frequency Register.
uint16_t mainf = AT91C_BASE_PMC->PMC_MCFR & 0xffff; // = 16 * main clock frequency (16MHz) / slow clock frequency
uint16_t mainf = AT91C_BASE_PMC->PMC_MCFR & 0xffff; // = 16 * main clock frequency (16MHz) / slow clock frequency
// set RealTimeCounter divider to count at 1kHz:
AT91C_BASE_RTTC->RTTC_RTMR = AT91C_RTTC_RTTRST | ((256000 + (mainf/2)) / mainf);
// note: worst case precision is approx 2.5%
@ -334,12 +334,12 @@ uint32_t RAMFUNC GetTickCount(){
// -------------------------------------------------------------------------
// microseconds timer
// microseconds timer
// -------------------------------------------------------------------------
void StartCountUS()
{
AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
// AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC1XC1S_TIOA0;
// AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC1XC1S_TIOA0;
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
// fast clock
@ -349,10 +349,10 @@ void StartCountUS()
AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
AT91C_BASE_TC0->TC_RA = 1;
AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from timer 0
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN;
AT91C_BASE_TCB->TCB_BCR = 1;
@ -375,61 +375,72 @@ uint32_t RAMFUNC GetDeltaCountUS(){
// -------------------------------------------------------------------------
// Timer for iso14443 commands. Uses ssp_clk from FPGA
// Timer for iso14443 commands. Uses ssp_clk from FPGA
// -------------------------------------------------------------------------
void StartCountSspClk()
{
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1) | (1 << AT91C_ID_TC2); // Enable Clock to all timers
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1
| AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none
| AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1
| AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none
| AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0
// configure TC1 to create a short pulse on TIOA1 when a rising edge on TIOB1 (= ssp_clk from FPGA) occurs:
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC1 Clock = MCK(48MHz)/2 = 24MHz
| AT91C_TC_CPCSTOP // Stop clock on RC compare
| AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event
| AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16 ... 13,56MHz/4)
| AT91C_TC_ENETRG // Enable external trigger event
| AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_AEEVT_SET // Set TIOA1 on external event
| AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare
AT91C_BASE_TC1->TC_RC = 0x02; // RC Compare value = 0x02
| AT91C_TC_CPCSTOP // Stop clock on RC compare
| AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event
| AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16 ... 13,56MHz/4)
| AT91C_TC_ENETRG // Enable external trigger event
| AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_AEEVT_SET // Set TIOA1 on external event
| AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare
AT91C_BASE_TC1->TC_RC = 0x02; // RC Compare value = 0x02
// use TC0 to count TIOA1 pulses
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_WAVESEL_UP // just count
| AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare
| AT91C_TC_ACPC_SET; // Set TIOA0 on RC Compare
AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2
AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_WAVESEL_UP // just count
| AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare
| AT91C_TC_ACPC_SET; // Set TIOA0 on RC Compare
AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2
AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow
// use TC2 to count TIOA0 pulses (giving us a 32bit counter (TC0/TC2) clocked by ssp_clk)
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2
AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_WAVESEL_UP; // just count
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; // enable TC0
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN; // enable TC1
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN; // enable TC2
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2
AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_WAVESEL_UP; // just count
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; // enable TC0
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN; // enable TC1
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN; // enable TC2
//
// synchronize the counter with the ssp_frame signal. Note: FPGA must be in a FPGA mode with SSC transfer, otherwise SSC_FRAME and SSC_CLK signals would not be present
// synchronize the counter with the ssp_frame signal. Note: FPGA must be in a FPGA mode with SSC transfer, otherwise SSC_FRAME and SSC_CLK signals would not be present
//
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame)
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high
// note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame)
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 1st ssp_clk after start of frame
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 2nd ssp_clk after start of frame
if ((AT91C_BASE_SSC->SSC_RFMR & SSC_FRAME_MODE_BITS_IN_WORD(32)) == SSC_FRAME_MODE_BITS_IN_WORD(16)) {
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 3rd ssp_clk after start of frame
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 4th ssp_clk after start of frame
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 5th ssp_clk after start of frame
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 6th ssp_clk after start of frame
}
// it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge
AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge)
// at the next (3rd) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0)
// at the next (4th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on,
AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge)
// at the next (3rd/7th) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0)
// at the next (4th/8th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on,
// whenever the last three bits of our counter go 0, we can be sure to be in the middle of a frame transfer.
// (just started with the transfer of the 4th Bit).
// (just started with the transfer of the 3rd Bit).
// The high word of the counter (TC2) will not reset until the low word (TC0) overflows. Therefore need to wait quite some time before
// we can use the counter.
while (AT91C_BASE_TC0->TC_CV < 0xFFFF);
@ -445,19 +456,17 @@ void ResetSspClk(void) {
while (AT91C_BASE_TC2->TC_CV > 0);
}
uint32_t GetCountSspClk(){
uint32_t hi, lo;
do {
do {
hi = AT91C_BASE_TC2->TC_CV;
lo = AT91C_BASE_TC0->TC_CV;
} while(hi != AT91C_BASE_TC2->TC_CV);
} while (hi != AT91C_BASE_TC2->TC_CV);
return (hi << 16) | lo;
}
// -------------------------------------------------------------------------
// Timer for bitbanging, or LF stuff when you need a very precis timer
// 1us = 1.5ticks
@ -476,11 +485,11 @@ void StartTicks(void){
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // re-enable timer and wait for TC0
// second configure TC0 (lower, 0x0000FFFF) 16 bit counter
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz) / 32
AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO |
AT91C_TC_ACPA_CLEAR | // RA comperator clears TIOA (carry bit)
AT91C_TC_ACPC_SET | // RC comperator sets TIOA (carry bit)
AT91C_TC_ASWTRG_SET; // SWTriger sets TIOA (carry bit)
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz) / 32
AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO |
AT91C_TC_ACPA_CLEAR | // RA comperator clears TIOA (carry bit)
AT91C_TC_ACPC_SET | // RC comperator sets TIOA (carry bit)
AT91C_TC_ASWTRG_SET; // SWTriger sets TIOA (carry bit)
AT91C_BASE_TC0->TC_RC = 0; // set TIOA (carry bit) on overflow, return to zero
AT91C_BASE_TC0->TC_RA = 1; // clear carry bit on next clock cycle
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // reset and re-enable timer
@ -517,7 +526,7 @@ void WaitTicks(uint32_t ticks){
}
// Wait / Spindelay in us (microseconds)
// Wait / Spindelay in us (microseconds)
// 1us = 1.5ticks.
void WaitUS(uint16_t us){
WaitTicks( (uint32_t)us * 3 / 2 ) ;
@ -546,7 +555,7 @@ void ResetTimer(AT91PS_TC timer){
// stop clock
void StopTicks(void){
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
}

View file

@ -66,7 +66,7 @@ uint32_t RAMFUNC GetDeltaCountUS();
void StartCountSspClk();
void ResetSspClk(void);
uint32_t RAMFUNC GetCountSspClk();
uint32_t GetCountSspClk();
extern void StartTicks(void);
extern uint32_t GetTicks(void);

View file

@ -464,7 +464,7 @@ int CmdHF15CmdRaw (const char *cmd) {
char *hexout;
if (strlen(cmd)<3) {
if (strlen(cmd)<2) {
PrintAndLog("Usage: hf 15 cmd raw [-r] [-2] [-c] <0A 0B 0C ... hex>");
PrintAndLog(" -r do not read response");
PrintAndLog(" -2 use slower '1 out of 256' mode");
@ -526,22 +526,31 @@ int CmdHF15CmdRaw (const char *cmd) {
SendCommand(&c);
if (reply) {
if (WaitForResponseTimeout(CMD_ACK,&resp,1000)) {
if (WaitForResponseTimeout(CMD_ACK, &resp, 1000)) {
recv = resp.d.asBytes;
PrintAndLog("received %i octets",resp.arg[0]);
hexout = (char *)malloc(resp.arg[0] * 3 + 1);
if (hexout != NULL) {
for (int i = 0; i < resp.arg[0]; i++) { // data in hex
sprintf(&hexout[i * 3], "%02X ", recv[i]);
int recv_len = resp.arg[0];
if (recv_len == 0) {
PrintAndLog("received SOF only. Maybe Picopass/iCLASS?");
} else if (recv_len > 0) {
PrintAndLog("received %i octets", recv_len);
hexout = (char *)malloc(resp.arg[0] * 3 + 1);
if (hexout != NULL) {
for (int i = 0; i < resp.arg[0]; i++) { // data in hex
sprintf(&hexout[i * 3], "%02X ", recv[i]);
}
PrintAndLog("%s", hexout);
free(hexout);
}
PrintAndLog("%s", hexout);
free(hexout);
} else if (recv_len == -1) {
PrintAndLog("card didn't respond");
} else if (recv_len == -2) {
PrintAndLog("receive buffer overflow");
}
} else {
PrintAndLog("timeout while waiting for reply.");
}
} // if reply
}
return 0;
}

View file

@ -903,8 +903,6 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
// adjust for different time scales
if (protocol == ICLASS || protocol == ISO_15693) {
first_timestamp *= 32;
timestamp *= 32;
duration *= 32;
}
@ -1037,10 +1035,6 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
if (showWaitCycles && !isResponse && next_record_is_response(tracepos, trace)) {
uint32_t next_timestamp = *((uint32_t *)(trace + tracepos));
// adjust for different time scales
if (protocol == ICLASS || protocol == ISO_15693) {
next_timestamp *= 32;
}
PrintAndLog(" %10d | %10d | %s | fdt (Frame Delay Time): %d",
(EndOfTransmissionTimestamp - first_timestamp),

Binary file not shown.

View file

@ -247,9 +247,9 @@ begin
// set ssp_frame signal for corr_i_cnt = 1..3
// (send one frame with 16 Bits)
if (corr_i_cnt == 6'd2)
if (corr_i_cnt == 6'd1)
ssp_frame <= 1'b1;
if (corr_i_cnt == 6'd14)
if (corr_i_cnt == 6'd5)
ssp_frame <= 1'b0;
end