//----------------------------------------------------------------------------- // Copyright (C) 2014 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Low frequency demod/decode commands - by marshmellow, holiman, iceman and // many others who came before // // NOTES: // LF Demod functions are placed here to allow the flexability to use client or // device side. Most BUT NOT ALL of these functions are currenlty safe for // device side use currently. (DetectST for example...) // // There are likely many improvements to the code that could be made, please // make suggestions... // // we tried to include author comments so any questions could be directed to // the source. // // There are 4 main sections of code below: // Utilities Section: // for general utilities used by multiple other functions // Clock / Bitrate Detection Section: // for clock detection functions for each modulation // Modulation Demods &/or Decoding Section: // for main general modulation demodulating and encoding decoding code. // Tag format detection section: // for detection of specific tag formats within demodulated data // // marshmellow //----------------------------------------------------------------------------- #include // for memset, memcmp and size_t #include "lfdemod.h" #include // for uint_32+ #include // for bool #include "parity.h" // for parity test //********************************************************************************************** //---------------------------------Utilities Section-------------------------------------------- //********************************************************************************************** #define LOWEST_DEFAULT_CLOCK 32 #define FSK_PSK_THRESHOLD 123 //to allow debug print calls when used not on device void dummy(char *fmt, ...){} #ifndef ON_DEVICE #include "ui.h" #include "cmdparser.h" #include "cmddata.h" #define prnt PrintAndLog #else uint8_t g_debugMode=0; #define prnt dummy #endif uint8_t justNoise(uint8_t *BitStream, size_t size) { //test samples are not just noise uint8_t justNoise1 = 1; for(size_t idx=0; idx < size && justNoise1 ;idx++){ justNoise1 = BitStream[idx] < FSK_PSK_THRESHOLD; } return justNoise1; } //by marshmellow //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo) { *high=0; *low=255; // get high and low thresholds for (size_t i=0; i < size; i++){ if (BitStream[i] > *high) *high = BitStream[i]; if (BitStream[i] < *low) *low = BitStream[i]; } if (*high < FSK_PSK_THRESHOLD) return -1; // just noise *high = ((*high-128)*fuzzHi + 12800)/100; *low = ((*low-128)*fuzzLo + 12800)/100; return 1; } // by marshmellow // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType // returns 1 if passed bool parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType) { return oddparity32(bits) ^ pType; } // by marshmellow // takes a array of binary values, start position, length of bits per parity (includes parity bit - MAX 32), // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run) size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen) { uint32_t parityWd = 0; size_t bitCnt = 0; for (int word = 0; word < (bLen); word+=pLen) { for (int bit=0; bit < pLen; bit++) { if (word+bit >= bLen) break; parityWd = (parityWd << 1) | BitStream[startIdx+word+bit]; BitStream[bitCnt++] = (BitStream[startIdx+word+bit]); } if (word+pLen > bLen) break; bitCnt--; // overwrite parity with next data // if parity fails then return 0 switch (pType) { case 3: if (BitStream[bitCnt]==1) {return 0;} break; //should be 0 spacer bit case 2: if (BitStream[bitCnt]==0) {return 0;} break; //should be 1 spacer bit default: if (parityTest(parityWd, pLen, pType) == 0) {return 0;} break; //test parity } parityWd = 0; } // if we got here then all the parities passed //return size return bitCnt; } // by marshmellow // takes a array of binary values, length of bits per parity (includes parity bit), // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run) // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType) { uint32_t parityWd = 0; size_t j = 0, bitCnt = 0; for (int word = 0; word < sourceLen; word+=pLen-1) { for (int bit=0; bit < pLen-1; bit++){ parityWd = (parityWd << 1) | BitSource[word+bit]; dest[j++] = (BitSource[word+bit]); } // if parity fails then return 0 switch (pType) { case 3: dest[j++]=0; break; // marker bit which should be a 0 case 2: dest[j++]=1; break; // marker bit which should be a 1 default: dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1; break; } bitCnt += pLen; parityWd = 0; } // if we got here then all the parities passed //return ID start index and size return bitCnt; } uint32_t bytebits_to_byte(uint8_t *src, size_t numbits) { uint32_t num = 0; for(int i = 0 ; i < numbits ; i++) { num = (num << 1) | (*src); src++; } return num; } //least significant bit first uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits) { uint32_t num = 0; for(int i = 0 ; i < numbits ; i++) { num = (num << 1) | *(src + (numbits-(i+1))); } return num; } // search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found) and length if not fineone // fineone does not look for a repeating preamble for em4x05/4x69 sends preamble once, so look for it once in the first pLen bits bool preambleSearchEx(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx, bool findone) { // Sanity check. If preamble length is bigger than bitstream length. if ( *size <= pLen ) return false; uint8_t foundCnt = 0; for (size_t idx = 0; idx < *size - pLen; idx++) { if (memcmp(BitStream+idx, preamble, pLen) == 0) { //first index found foundCnt++; if (foundCnt == 1) { if (g_debugMode) prnt("DEBUG: preamble found at %u", idx); *startIdx = idx; if (findone) return true; } else if (foundCnt == 2) { *size = idx - *startIdx; return true; } } } return false; } //by marshmellow //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx) { return (preambleSearchEx(BitStream, preamble, pLen, size, startIdx, false)) ? 1 : 0; } // find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup. size_t findModStart(uint8_t dest[], size_t size, uint8_t expWaveSize) { size_t i = 0; size_t waveSizeCnt = 0; uint8_t thresholdCnt = 0; bool isAboveThreshold = dest[i++] >= FSK_PSK_THRESHOLD; for (; i < size-20; i++ ) { if(dest[i] < FSK_PSK_THRESHOLD && isAboveThreshold) { thresholdCnt++; if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break; isAboveThreshold = false; waveSizeCnt = 0; } else if (dest[i] >= FSK_PSK_THRESHOLD && !isAboveThreshold) { thresholdCnt++; if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break; isAboveThreshold = true; waveSizeCnt = 0; } else { waveSizeCnt++; } if (thresholdCnt > 10) break; } if (g_debugMode == 2) prnt("DEBUG: threshold Count reached at %u, count: %u",i, thresholdCnt); return i; } int getClosestClock(int testclk) { uint8_t fndClk[] = {8,16,32,40,50,64,128}; for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) if (testclk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && testclk <= fndClk[clkCnt]+1) return fndClk[clkCnt]; return 0; } void getNextLow(uint8_t samples[], size_t size, int low, size_t *i) { while ((samples[*i] > low) && (*i < size)) *i+=1; } void getNextHigh(uint8_t samples[], size_t size, int high, size_t *i) { while ((samples[*i] < high) && (*i < size)) *i+=1; } // load wave counters bool loadWaveCounters(uint8_t samples[], size_t size, int lowToLowWaveLen[], int highToLowWaveLen[], int *waveCnt, int *skip, int *minClk, int *high, int *low) { size_t i=0, firstLow, firstHigh; size_t testsize = (size < 512) ? size : 512; if ( getHiLo(samples, testsize, high, low, 80, 80) == -1 ) { if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting"); return false; //just noise } // get to first full low to prime loop and skip incomplete first pulse getNextHigh(samples, size, *high, &i); getNextLow(samples, size, *low, &i); *skip = i; // populate tmpbuff buffer with pulse lengths while (i < size) { // measure from low to low firstLow = i; //find first high point for this wave getNextHigh(samples, size, *high, &i); firstHigh = i; getNextLow(samples, size, *low, &i); if (*waveCnt >= (size/LOWEST_DEFAULT_CLOCK)) break; highToLowWaveLen[*waveCnt] = i - firstHigh; //first high to first low lowToLowWaveLen[*waveCnt] = i - firstLow; *waveCnt += 1; if (i-firstLow < *minClk && i < size) { *minClk = i - firstLow; } } return true; } size_t pskFindFirstPhaseShift(uint8_t samples[], size_t size, uint8_t *curPhase, size_t waveStart, uint16_t fc, uint16_t *fullWaveLen) { uint16_t loopCnt = (size+3 < 4096) ? size : 4096; //don't need to loop through entire array... uint16_t avgWaveVal=0, lastAvgWaveVal=0; size_t i = waveStart, waveEnd, waveLenCnt, firstFullWave; for (; i= samples[i+2]){ waveEnd = i+1; if (g_debugMode == 2) prnt("DEBUG PSK: waveEnd: %u, waveStart: %u", waveEnd, waveStart); waveLenCnt = waveEnd-waveStart; if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+8)){ //not first peak and is a large wave but not out of whack lastAvgWaveVal = avgWaveVal/(waveLenCnt); firstFullWave = waveStart; *fullWaveLen = waveLenCnt; //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting) if (lastAvgWaveVal > FSK_PSK_THRESHOLD) *curPhase ^= 1; return firstFullWave; } waveStart = i+1; avgWaveVal = 0; } avgWaveVal += samples[i+2]; } return 0; } //by marshmellow //amplify based on ask edge detection - not accurate enough to use all the time void askAmp(uint8_t *BitStream, size_t size) { uint8_t Last = 128; for(size_t i = 1; i=30) //large jump up Last = 255; else if(BitStream[i-1]-BitStream[i]>=20) //large jump down Last = 0; BitStream[i-1] = Last; } return; } uint32_t manchesterEncode2Bytes(uint16_t datain) { uint32_t output = 0; uint8_t curBit = 0; for (uint8_t i=0; i<16; i++) { curBit = (datain >> (15-i) & 1); output |= (1<<(((15-i)*2)+curBit)); } return output; } //by marshmellow //encode binary data into binary manchester //NOTE: BitStream must have triple the size of "size" available in memory to do the swap int ManchesterEncode(uint8_t *BitStream, size_t size) { //allow up to 4K out (means BitStream must be at least 2048+4096 to handle the swap) size = (size>2048) ? 2048 : size; size_t modIdx = size; size_t i; for (size_t idx=0; idx < size; idx++){ BitStream[idx+modIdx++] = BitStream[idx]; BitStream[idx+modIdx++] = BitStream[idx]^1; } for (i=0; i<(size*2); i++){ BitStream[i] = BitStream[i+size]; } return i; } // by marshmellow // to detect a wave that has heavily clipped (clean) samples uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low) { bool allArePeaks = true; uint16_t cntPeaks=0; size_t loopEnd = 512+160; if (loopEnd > size) loopEnd = size; for (size_t i=160; ilow && dest[i] 300) return true; } return allArePeaks; } //********************************************************************************************** //-------------------Clock / Bitrate Detection Section------------------------------------------ //********************************************************************************************** // by marshmellow // to help detect clocks on heavily clipped samples // based on count of low to low int DetectStrongAskClock(uint8_t dest[], size_t size, int high, int low, int *clock) { size_t startwave; size_t i = 100; size_t minClk = 255; int shortestWaveIdx = 0; // get to first full low to prime loop and skip incomplete first pulse getNextHigh(dest, size, high, &i); getNextLow(dest, size, low, &i); // loop through all samples while (i < size) { // measure from low to low startwave = i; getNextHigh(dest, size, high, &i); getNextLow(dest, size, low, &i); //get minimum measured distance if (i-startwave < minClk && i < size) { minClk = i - startwave; shortestWaveIdx = startwave; } } // set clock if (g_debugMode==2) prnt("DEBUG ASK: DetectStrongAskClock smallest wave: %d",minClk); *clock = getClosestClock(minClk); if (*clock == 0) return 0; return shortestWaveIdx; } // by marshmellow // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) // maybe somehow adjust peak trimming value based on samples to fix? // return start index of best starting position for that clock and return clock (by reference) int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr) { size_t i=1; uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255}; uint8_t clkEnd = 9; uint8_t loopCnt = 255; //don't need to loop through entire array... if (size <= loopCnt+60) return -1; //not enough samples size -= 60; //sometimes there is a strange end wave - filter out this.... //if we already have a valid clock uint8_t clockFnd=0; for (;i 0) { return ans; //return shortest wave start position } } } uint8_t ii; uint8_t clkCnt, tol = 0; uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; uint8_t bestStart[]={0,0,0,0,0,0,0,0,0}; size_t errCnt = 0; size_t arrLoc, loopEnd; if (clockFnd>0) { clkCnt = clockFnd; clkEnd = clockFnd+1; } else clkCnt=1; //test each valid clock from smallest to greatest to see which lines up for(; clkCnt < clkEnd; clkCnt++){ if (clk[clkCnt] <= 32){ tol=1; }else{ tol=0; } //if no errors allowed - keep start within the first clock if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) loopCnt=clk[clkCnt]*2; bestErr[clkCnt]=1000; //try lining up the peaks by moving starting point (try first few clocks) for (ii=0; ii < loopCnt; ii++){ if (dest[ii] < peak && dest[ii] > low) continue; errCnt=0; // now that we have the first one lined up test rest of wave array loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1; for (i=0; i < loopEnd; ++i){ arrLoc = ii + (i * clk[clkCnt]); if (dest[arrLoc] >= peak || dest[arrLoc] <= low){ }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){ }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){ }else{ //error no peak detected errCnt++; } } //if we found no errors then we can stop here and a low clock (common clocks) // this is correct one - return this clock if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk[clkCnt],errCnt,ii,i); if(errCnt==0 && clkCnt<7) { if (!clockFnd) *clock = clk[clkCnt]; return ii; } //if we found errors see if it is lowest so far and save it as best run if(errCnt= peak || dest[i] <= low) && (i < size)) ++i; while ((dest[i] < peak && dest[i] > low) && (i < size)) ++i; lastWasHigh = (dest[i] >= peak); if (i==size) return 0; transition1 = i; for (;i < size; i++) { if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) { lastWasHigh = (dest[i] >= peak); if (i-transition1 < lowestTransition) lowestTransition = i-transition1; transition1 = i; } else if (dest[i] < peak && dest[i] > low) { transitionSampleCount++; } } if (lowestTransition == 255) lowestTransition = 0; if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition); // if less than 10% of the samples were not peaks (or 90% were peaks) then we have a strong wave if (transitionSampleCount / size < 10) { *strong = true; lowestTransition = getClosestClock(lowestTransition); } return lowestTransition; } //by marshmellow //detect nrz clock by reading #peaks vs no peaks(or errors) int DetectNRZClock(uint8_t dest[], size_t size, int clock, size_t *clockStartIdx) { size_t i=0; uint8_t clk[]={8,16,32,40,50,64,100,128,255}; size_t loopCnt = 4096; //don't need to loop through entire array... if (size == 0) return 0; if (size= peak || dest[i] <= low) { if (firstpeak) continue; smplCnt++; } else { firstpeak = false; if (smplCnt > 0) { if (minPeak > smplCnt && smplCnt > 7) minPeak = smplCnt; peakcnt++; if (g_debugMode == 2) prnt("DEBUG NRZ: minPeak: %d, smplCnt: %d, peakcnt: %d",minPeak,smplCnt,peakcnt); smplCnt = 0; } } } if (minPeak < 8) return 0; bool errBitHigh = 0; bool bitHigh = 0; uint8_t ignoreCnt = 0; uint8_t ignoreWindow = 4; bool lastPeakHigh = 0; int lastBit = 0; size_t bestStart[]={0,0,0,0,0,0,0,0,0}; peakcnt=0; //test each valid clock from smallest to greatest to see which lines up for(clkCnt=0; clkCnt < 8; ++clkCnt) { //ignore clocks smaller than smallest peak if (clk[clkCnt] < minPeak - (clk[clkCnt]/4)) continue; //try lining up the peaks by moving starting point (try first 256) for (ii=20; ii < loopCnt; ++ii) { if ((dest[ii] >= peak) || (dest[ii] <= low)) { peakcnt = 0; bitHigh = false; ignoreCnt = 0; lastBit = ii-clk[clkCnt]; //loop through to see if this start location works for (i = ii; i < size-20; ++i) { //if we are at a clock bit if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) { //test high/low if (dest[i] >= peak || dest[i] <= low) { //if same peak don't count it if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) { peakcnt++; } lastPeakHigh = (dest[i] >= peak); bitHigh = true; errBitHigh = false; ignoreCnt = ignoreWindow; lastBit += clk[clkCnt]; } else if (i == lastBit + clk[clkCnt] + tol) { lastBit += clk[clkCnt]; } //else if not a clock bit and no peaks } else if (dest[i] < peak && dest[i] > low) { if (ignoreCnt==0) { bitHigh=false; if (errBitHigh==true) peakcnt--; errBitHigh=false; } else { ignoreCnt--; } // else if not a clock bit but we have a peak } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) { //error bar found no clock... errBitHigh=true; } } if(peakcnt>peaksdet[clkCnt]) { bestStart[clkCnt]=ii; peaksdet[clkCnt]=peakcnt; } } } } int iii=7; uint8_t best=0; for (iii=7; iii > 0; iii--) { if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) { if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) { best = iii; } } else if (peaksdet[iii] > peaksdet[best]) { best = iii; } if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, minPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],minPeak, clk[best], lowestTransition); } *clockStartIdx = bestStart[best]; return clk[best]; } //by marshmellow //countFC is to detect the field clock lengths. //counts and returns the 2 most common wave lengths //mainly used for FSK field clock detection uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj) { uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; uint8_t fcLensFnd = 0; uint8_t lastFCcnt = 0; uint8_t fcCounter = 0; size_t i; if (size < 180) return 0; // prime i to first up transition for (i = 160; i < size-20; i++) if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) break; for (; i < size-20; i++){ if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ // new up transition fcCounter++; if (fskAdj){ //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8) if (lastFCcnt==5 && fcCounter==9) fcCounter--; //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5) if ((fcCounter==9) || fcCounter==4) fcCounter++; // save last field clock count (fc/xx) lastFCcnt = fcCounter; } // find which fcLens to save it to: for (int ii=0; ii<15; ii++){ if (fcLens[ii]==fcCounter){ fcCnts[ii]++; fcCounter=0; break; } } if (fcCounter>0 && fcLensFnd<15){ //add new fc length fcCnts[fcLensFnd]++; fcLens[fcLensFnd++]=fcCounter; } fcCounter=0; } else { // count sample fcCounter++; } } uint8_t best1=14, best2=14, best3=14; uint16_t maxCnt1=0; // go through fclens and find which ones are bigest 2 for (i=0; i<15; i++){ // get the 3 best FC values if (fcCnts[i]>maxCnt1) { best3=best2; best2=best1; maxCnt1=fcCnts[i]; best1=i; } else if(fcCnts[i]>fcCnts[best2]){ best3=best2; best2=i; } else if(fcCnts[i]>fcCnts[best3]){ best3=i; } if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]); if (fcLens[i]==0) break; } if (fcLens[best1]==0) return 0; uint8_t fcH=0, fcL=0; if (fcLens[best1]>fcLens[best2]){ fcH=fcLens[best1]; fcL=fcLens[best2]; } else{ fcH=fcLens[best2]; fcL=fcLens[best1]; } if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) { if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]); return 0; //lots of waves not psk or fsk } // TODO: take top 3 answers and compare to known Field clocks to get top 2 uint16_t fcs = (((uint16_t)fcH)<<8) | fcL; if (fskAdj) return fcs; return (uint16_t)fcLens[best2] << 8 | fcLens[best1]; } //by marshmellow //detect psk clock by reading each phase shift // a phase shift is determined by measuring the sample length of each wave int DetectPSKClock(uint8_t dest[], size_t size, int clock, size_t *firstPhaseShift, uint8_t *curPhase, uint8_t *fc) { uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock uint16_t loopCnt = 4096; //don't need to loop through entire array... if (size == 0) return 0; if (size+3>8); if ((fcs>>8) == 10 && *fc == 8) return 0; if (*fc!=2 && *fc!=4 && *fc!=8) return 0; //if we already have a valid clock quit size_t i=1; for (; i < 8; ++i) if (clk[i] == clock) return clock; size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0; uint8_t clkCnt, tol=1; uint16_t peakcnt=0, errCnt=0, waveLenCnt=0, fullWaveLen=0; uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0}; //find start of modulating data in trace i = findModStart(dest, size, *fc); firstFullWave = pskFindFirstPhaseShift(dest, size, curPhase, i, *fc, &fullWaveLen); if (firstFullWave == 0) { // no phase shift detected - could be all 1's or 0's - doesn't matter where we start // so skip a little to ensure we are past any Start Signal firstFullWave = 160; fullWaveLen = 0; } *firstPhaseShift = firstFullWave; if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); //test each valid clock from greatest to smallest to see which lines up for(clkCnt=7; clkCnt >= 1 ; clkCnt--) { tol = *fc/2; lastClkBit = firstFullWave; //set end of wave as clock align waveStart = 0; errCnt=0; peakcnt=0; if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit); for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){ //top edge of wave = start of new wave if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ if (waveStart == 0) { waveStart = i+1; waveLenCnt=0; } else { //waveEnd waveEnd = i+1; waveLenCnt = waveEnd-waveStart; if (waveLenCnt > *fc){ //if this wave is a phase shift if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,*fc); if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit peakcnt++; lastClkBit+=clk[clkCnt]; } else if (i lastClkBit + clk[clkCnt] + tol + *fc){ lastClkBit+=clk[clkCnt]; //no phase shift but clock bit } waveStart=i+1; } } } if (errCnt == 0){ return clk[clkCnt]; } if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt; if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt; } //all tested with errors //return the highest clk with the most peaks found uint8_t best=7; for (i=7; i>=1; i--){ if (peaksdet[i] > peaksdet[best]) { best = i; } if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]); } return clk[best]; } //by marshmellow //detects the bit clock for FSK given the high and low Field Clocks uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow, int *firstClockEdge) { uint8_t clk[] = {8,16,32,40,50,64,100,128,0}; uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; uint8_t rfLensFnd = 0; uint8_t lastFCcnt = 0; uint16_t fcCounter = 0; uint16_t rfCounter = 0; uint8_t firstBitFnd = 0; size_t i; if (size == 0) return 0; uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2); rfLensFnd=0; fcCounter=0; rfCounter=0; firstBitFnd=0; //PrintAndLog("DEBUG: fcTol: %d",fcTol); // prime i to first peak / up transition for (i = 160; i < size-20; i++) if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]) break; for (; i < size-20; i++){ fcCounter++; rfCounter++; if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1]) continue; // else new peak // if we got less than the small fc + tolerance then set it to the small fc // if it is inbetween set it to the last counter if (fcCounter < fcHigh && fcCounter > fcLow) fcCounter = lastFCcnt; else if (fcCounter < fcLow+fcTol) fcCounter = fcLow; else //set it to the large fc fcCounter = fcHigh; //look for bit clock (rf/xx) if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){ //not the same size as the last wave - start of new bit sequence if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit for (int ii=0; ii<15; ii++){ if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){ rfCnts[ii]++; rfCounter = 0; break; } } if (rfCounter > 0 && rfLensFnd < 15){ //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter); rfCnts[rfLensFnd]++; rfLens[rfLensFnd++] = rfCounter; } } else { *firstClockEdge = i; firstBitFnd++; } rfCounter=0; lastFCcnt=fcCounter; } fcCounter=0; } uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15; for (i=0; i<15; i++){ //get highest 2 RF values (might need to get more values to compare or compare all?) if (rfCnts[i]>rfCnts[rfHighest]){ rfHighest3=rfHighest2; rfHighest2=rfHighest; rfHighest=i; } else if(rfCnts[i]>rfCnts[rfHighest2]){ rfHighest3=rfHighest2; rfHighest2=i; } else if(rfCnts[i]>rfCnts[rfHighest3]){ rfHighest3=i; } if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]); } // set allowed clock remainder tolerance to be 1 large field clock length+1 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off uint8_t tol1 = fcHigh+1; if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]); // loop to find the highest clock that has a remainder less than the tolerance // compare samples counted divided by // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less) int ii=7; for (; ii>=2; ii--){ if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){ if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){ if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){ if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]); break; } } } } if (ii<2) return 0; // oops we went too far return clk[ii]; } //********************************************************************************************** //--------------------Modulation Demods &/or Decoding Section----------------------------------- //********************************************************************************************** // look for Sequence Terminator - should be pulses of clk*(1 or 2), clk*2, clk*(1.5 or 2), by idx we mean graph position index... bool findST(int *stStopLoc, int *stStartIdx, int lowToLowWaveLen[], int highToLowWaveLen[], int clk, int tol, int buffSize, size_t *i) { if (buffSize < *i+4) return false; for (; *i < buffSize - 4; *i+=1) { *stStartIdx += lowToLowWaveLen[*i]; //caution part of this wave may be data and part may be ST.... to be accounted for in main function for now... if (lowToLowWaveLen[*i] >= clk*1-tol && lowToLowWaveLen[*i] <= (clk*2)+tol && highToLowWaveLen[*i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior if (lowToLowWaveLen[*i+1] >= clk*2-tol && lowToLowWaveLen[*i+1] <= clk*2+tol && highToLowWaveLen[*i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2 if (lowToLowWaveLen[*i+2] >= (clk*3)/2-tol && lowToLowWaveLen[*i+2] <= clk*2+tol && highToLowWaveLen[*i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave if (lowToLowWaveLen[*i+3] >= clk*1-tol && lowToLowWaveLen[*i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit *stStopLoc = *i + 3; return true; } } } } } return false; } //by marshmellow //attempt to identify a Sequence Terminator in ASK modulated raw wave bool DetectST(uint8_t buffer[], size_t *size, int *foundclock, size_t *ststart, size_t *stend) { size_t bufsize = *size; //need to loop through all samples and identify our clock, look for the ST pattern int clk = 0; int tol = 0; int j=0, high, low, skip=0, start=0, end=0, minClk=255; size_t i = 0; //probably should malloc... || test if memory is available ... handle device side? memory danger!!! [marshmellow] int tmpbuff[bufsize / LOWEST_DEFAULT_CLOCK]; // low to low wave count //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured int waveLen[bufsize / LOWEST_DEFAULT_CLOCK]; // high to low wave count //if clock is larger then we waste memory in array size that is not needed... //size_t testsize = (bufsize < 512) ? bufsize : 512; int phaseoff = 0; high = low = 128; memset(tmpbuff, 0, sizeof(tmpbuff)); memset(waveLen, 0, sizeof(waveLen)); if (!loadWaveCounters(buffer, bufsize, tmpbuff, waveLen, &j, &skip, &minClk, &high, &low)) return false; // set clock - might be able to get this externally and remove this work... clk = getClosestClock(minClk); // clock not found - ERROR if (clk == 0) { if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting"); return false; } *foundclock = clk; tol = clk/8; if (!findST(&start, &skip, tmpbuff, waveLen, clk, tol, j, &i)) { // first ST not found - ERROR if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting"); return false; } else { if (g_debugMode==2) prnt("DEBUG STT: first STT found at wave: %i, skip: %i, j=%i", start, skip, j); } if (waveLen[i+2] > clk*1+tol) phaseoff = 0; else phaseoff = clk/2; // skip over the remainder of ST skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point // now do it again to find the end int dummy1 = 0; end = skip; i+=3; if (!findST(&dummy1, &end, tmpbuff, waveLen, clk, tol, j, &i)) { //didn't find second ST - ERROR if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting"); return false; } end -= phaseoff; if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff); //now begin to trim out ST so we can use normal demod cmds start = skip; size_t datalen = end - start; // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock if ( clk - (datalen % clk) <= clk/8) { // padd the amount off - could be problematic... but shouldn't happen often datalen += clk - (datalen % clk); } else if ( (datalen % clk) <= clk/8 ) { // padd the amount off - could be problematic... but shouldn't happen often datalen -= datalen % clk; } else { if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk); return false; } // if datalen is less than one t55xx block - ERROR if (datalen/clk < 8*4) { if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting"); return false; } size_t dataloc = start; if (buffer[dataloc-(clk*4)-(clk/4)] <= low && buffer[dataloc] <= low && buffer[dataloc-(clk*4)] >= high) { //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start for ( i=0; i <= (clk/4); ++i ) { if ( buffer[dataloc - (clk*4) - i] <= low ) { dataloc -= i; break; } } } size_t newloc = 0; i=0; if (g_debugMode==2) prnt("DEBUG STT: Starting STT trim - start: %d, datalen: %d ",dataloc, datalen); bool firstrun = true; // warning - overwriting buffer given with raw wave data with ST removed... while ( dataloc < bufsize-(clk/2) ) { //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part) if (buffer[dataloc]low && buffer[dataloc+clk/4]low) { for(i=0; i < clk/2-tol; ++i) { buffer[dataloc+i] = high+5; } } //test for small spike outlier (high between two lows) in the case of very strong waves if (buffer[dataloc] > low && buffer[dataloc+clk/4] <= low) { for(i=0; i < clk/4; ++i) { buffer[dataloc+i] = buffer[dataloc+clk/4]; } } if (firstrun) { *stend = dataloc; *ststart = dataloc-(clk*4); firstrun=false; } for (i=0; i 2 && (halfClkErr & 0x7) == 0) || (halfClkErr & 0x1F) == 0x1F) { errCnt++; BitStream[bitCnt++] = 7; continue; } BitStream[bitCnt++] = BitStream[i] ^ BitStream[i+1] ^ invert; if (bitCnt > MaxBits) break; } *size = bitCnt; return errCnt; } //by marshmellow //take 01 or 10 = 1 and 11 or 00 = 0 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int *offset, int invert) { uint16_t bitnum = 0; uint16_t errCnt = 0; size_t i = *offset; uint16_t MaxBits=512; //if not enough samples - error if (*size < 51) return -1; //check for phase change faults - skip one sample if faulty uint8_t offsetA = 1, offsetB = 1; for (; i<48; i+=2){ if (BitStream[i+1]==BitStream[i+2]) offsetA=0; if (BitStream[i+2]==BitStream[i+3]) offsetB=0; } if (!offsetA && offsetB) *offset+=1; for (i=*offset; i<*size-3; i+=2){ //check for phase error if (BitStream[i+1]==BitStream[i+2]) { BitStream[bitnum++]=7; errCnt++; } if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){ BitStream[bitnum++]=1^invert; } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){ BitStream[bitnum++]=invert; } else { BitStream[bitnum++]=7; errCnt++; } if(bitnum>MaxBits) break; } *size=bitnum; return errCnt; } //by marshmellow //take 10 and 01 and manchester decode //run through 2 times and take least errCnt int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert, uint8_t *alignPos) { uint16_t bitnum=0, MaxBits = 512, errCnt = 0; size_t i, ii; uint16_t bestErr = 1000, bestRun = 0; if (*size < 16) return -1; //find correct start position [alignment] for (ii=0;ii<2;++ii){ for (i=ii; i<*size-3; i+=2) if (BitStream[i]==BitStream[i+1]) errCnt++; if (bestErr>errCnt){ bestErr=errCnt; bestRun=ii; } errCnt=0; } *alignPos=bestRun; //decode for (i=bestRun; i < *size-3; i+=2){ if(BitStream[i] == 1 && (BitStream[i+1] == 0)){ BitStream[bitnum++]=invert; } else if((BitStream[i] == 0) && BitStream[i+1] == 1){ BitStream[bitnum++]=invert^1; } else { BitStream[bitnum++]=7; } if(bitnum>MaxBits) break; } *size=bitnum; return bestErr; } //by marshmellow //demodulates strong heavily clipped samples int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low, int *startIdx) { *startIdx=0; size_t bitCnt=0, smplCnt=1, errCnt=0; bool waveHigh = (BinStream[0] >= high); for (size_t i=1; i < *size; i++){ if (BinStream[i] >= high && waveHigh){ smplCnt++; } else if (BinStream[i] <= low && !waveHigh){ smplCnt++; } else { //transition if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){ if (smplCnt > clk-(clk/4)-1) { //full clock if (smplCnt > clk + (clk/4)+1) { //too many samples errCnt++; if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i); BinStream[bitCnt++] = 7; } else if (waveHigh) { BinStream[bitCnt++] = invert; BinStream[bitCnt++] = invert; } else if (!waveHigh) { BinStream[bitCnt++] = invert ^ 1; BinStream[bitCnt++] = invert ^ 1; } if (*startIdx==0) *startIdx = i-clk; waveHigh = !waveHigh; smplCnt = 0; } else if (smplCnt > (clk/2) - (clk/4)-1) { //half clock if (waveHigh) { BinStream[bitCnt++] = invert; } else if (!waveHigh) { BinStream[bitCnt++] = invert ^ 1; } if (*startIdx==0) *startIdx = i-(clk/2); waveHigh = !waveHigh; smplCnt = 0; } else { smplCnt++; //transition bit oops } } else { //haven't hit new high or new low yet smplCnt++; } } } *size = bitCnt; return errCnt; } //by marshmellow //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester int askdemod_ext(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType, int *startIdx) { if (*size==0) return -1; int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default if (*clk==0 || start < 0) return -3; if (*invert != 1) *invert = 0; if (amp==1) askAmp(BinStream, *size); if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk, start, amp); //start pos from detect ask clock is 1/2 clock offset // NOTE: can be negative (demod assumes rest of wave was there) *startIdx = start - (*clk/2); uint8_t initLoopMax = 255; if (initLoopMax > *size) initLoopMax = *size; // Detect high and lows //25% clip in case highs and lows aren't clipped [marshmellow] int high, low; if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1) return -2; //just noise size_t errCnt = 0; // if clean clipped waves detected run alternate demod if (DetectCleanAskWave(BinStream, *size, high, low)) { if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod"); errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low, startIdx); if (askType) { //askman uint8_t alignPos = 0; errCnt = manrawdecode(BinStream, size, 0, &alignPos); *startIdx += *clk/2 * alignPos; if (g_debugMode) prnt("DEBUG ASK CLEAN: startIdx %i, alignPos %u", *startIdx, alignPos); return errCnt; } else { //askraw return errCnt; } } if (g_debugMode) prnt("DEBUG ASK WEAK: startIdx %i", *startIdx); if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod"); int lastBit; //set first clock check - can go negative size_t i, bitnum = 0; //output counter uint8_t midBit = 0; uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely size_t MaxBits = 3072; //max bits to collect lastBit = start - *clk; for (i = start; i < *size; ++i) { if (i-lastBit >= *clk-tol){ if (BinStream[i] >= high) { BinStream[bitnum++] = *invert; } else if (BinStream[i] <= low) { BinStream[bitnum++] = *invert ^ 1; } else if (i-lastBit >= *clk+tol) { if (bitnum > 0) { if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i); BinStream[bitnum++]=7; errCnt++; } } else { //in tolerance - looking for peak continue; } midBit = 0; lastBit += *clk; } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){ if (BinStream[i] >= high) { BinStream[bitnum++] = *invert; } else if (BinStream[i] <= low) { BinStream[bitnum++] = *invert ^ 1; } else if (i-lastBit >= *clk/2+tol) { BinStream[bitnum] = BinStream[bitnum-1]; bitnum++; } else { //in tolerance - looking for peak continue; } midBit = 1; } if (bitnum >= MaxBits) break; } *size = bitnum; return errCnt; } int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType) { int start = 0; return askdemod_ext(BinStream, size, clk, invert, maxErr, amp, askType, &start); } // by marshmellow - demodulate NRZ wave - requires a read with strong signal // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert, int *startIdx) { if (justNoise(dest, *size)) return -1; size_t clkStartIdx = 0; *clk = DetectNRZClock(dest, *size, *clk, &clkStartIdx); if (*clk==0) return -2; size_t i, gLen = 4096; if (gLen>*size) gLen = *size-20; int high, low; if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low uint8_t bit=0; //convert wave samples to 1's and 0's for(i=20; i < *size-20; i++){ if (dest[i] >= high) bit = 1; if (dest[i] <= low) bit = 0; dest[i] = bit; } //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit) size_t lastBit = 0; size_t numBits = 0; for(i=21; i < *size-20; i++) { //if transition detected or large number of same bits - store the passed bits if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) { memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk); numBits += (i - lastBit + (*clk/4)) / *clk; if (lastBit == 0) { *startIdx = i - (numBits * *clk); if (g_debugMode==2) prnt("DEBUG NRZ: startIdx %i", *startIdx); } lastBit = i-1; } } *size = numBits; return 0; } //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq]) size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow, int *startIdx) { size_t last_transition = 0; size_t idx = 1; if (fchigh==0) fchigh=10; if (fclow==0) fclow=8; //set the threshold close to 0 (graph) or 128 std to avoid static size_t preLastSample = 0; size_t LastSample = 0; size_t currSample = 0; if ( size < 1024 ) return 0; // not enough samples //find start of modulating data in trace idx = findModStart(dest, size, fchigh); // Need to threshold first sample if(dest[idx] < FSK_PSK_THRESHOLD) dest[0] = 0; else dest[0] = 1; last_transition = idx; idx++; size_t numBits = 0; // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 // (could also be fc/5 && fc/7 for fsk1 = 4-9) for(; idx < size; idx++) { // threshold current value if (dest[idx] < FSK_PSK_THRESHOLD) dest[idx] = 0; else dest[idx] = 1; // Check for 0->1 transition if (dest[idx-1] < dest[idx]) { preLastSample = LastSample; LastSample = currSample; currSample = idx-last_transition; if (currSample < (fclow-2)) { //0-5 = garbage noise (or 0-3) //do nothing with extra garbage } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5) //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5) if (numBits > 1 && LastSample > (fchigh-2) && (preLastSample < (fchigh-1))){ dest[numBits-1]=1; } dest[numBits++]=1; if (numBits > 0 && *startIdx==0) *startIdx = idx - fclow; } else if (currSample > (fchigh+1) && numBits < 3) { //12 + and first two bit = unusable garbage //do nothing with beginning garbage and reset.. should be rare.. numBits = 0; } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's) dest[numBits++]=1; if (numBits > 0 && *startIdx==0) *startIdx = idx - fclow; } else { //9+ = 10 sample waves (or 6+ = 7) dest[numBits++]=0; if (numBits > 0 && *startIdx==0) *startIdx = idx - fchigh; } last_transition = idx; } } return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 } //translate 11111100000 to 10 //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow, int *startIdx) { uint8_t lastval=dest[0]; size_t idx=0; size_t numBits=0; uint32_t n=1; for( idx=1; idx < size; idx++) { n++; if (dest[idx]==lastval) continue; //skip until we hit a transition //find out how many bits (n) we collected (use 1/2 clk tolerance) //if lastval was 1, we have a 1->0 crossing if (dest[idx-1]==1) { n = (n * fclow + rfLen/2) / rfLen; } else {// 0->1 crossing n = (n * fchigh + rfLen/2) / rfLen; } if (n == 0) n = 1; //first transition - save startidx if (numBits == 0) { if (lastval == 1) { //high to low *startIdx += (fclow * idx) - (n*rfLen); if (g_debugMode==2) prnt("DEBUG FSK: startIdx %i, fclow*idx %i, n*rflen %u", *startIdx, fclow*(idx), n*rfLen); } else { *startIdx += (fchigh * idx) - (n*rfLen); if (g_debugMode==2) prnt("DEBUG FSK: startIdx %i, fchigh*idx %i, n*rflen %u", *startIdx, fchigh*(idx), n*rfLen); } } //add to our destination the bits we collected memset(dest+numBits, dest[idx-1]^invert , n); numBits += n; n=0; lastval=dest[idx]; }//end for // if valid extra bits at the end were all the same frequency - add them in if (n > rfLen/fchigh) { if (dest[idx-2]==1) { n = (n * fclow + rfLen/2) / rfLen; } else { n = (n * fchigh + rfLen/2) / rfLen; } memset(dest+numBits, dest[idx-1]^invert , n); numBits += n; } return numBits; } //by marshmellow (from holiman's base) // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow, int *startIdx) { if (justNoise(dest, size)) return 0; // FSK demodulator size = fsk_wave_demod(dest, size, fchigh, fclow, startIdx); size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow, startIdx); return size; } // by marshmellow // convert psk1 demod to psk2 demod // only transition waves are 1s void psk1TOpsk2(uint8_t *BitStream, size_t size) { size_t i=1; uint8_t lastBit=BitStream[0]; for (; i= dest[i+2]) { if (waveStart == 0) { waveStart = i+1; waveLenCnt = 0; avgWaveVal = dest[i+1]; } else { //waveEnd waveEnd = i+1; waveLenCnt = waveEnd-waveStart; if (waveLenCnt > fc) { //this wave is a phase shift //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc); if (i+1 >= lastClkBit + *clock - tol) { //should be a clock bit curPhase ^= 1; dest[numBits++] = curPhase; lastClkBit += *clock; } else if (i < lastClkBit+10+fc) { //noise after a phase shift - ignore } else { //phase shift before supposed to based on clock errCnt++; dest[numBits++] = 7; } } else if (i+1 > lastClkBit + *clock + tol + fc) { lastClkBit += *clock; //no phase shift but clock bit dest[numBits++] = curPhase; } else if (waveLenCnt < fc - 1) { //wave is smaller than field clock (shouldn't happen often) errCnt2++; if(errCnt2 > 101) return errCnt2; avgWaveVal += dest[i+1]; continue; } avgWaveVal = 0; waveStart = i+1; } } avgWaveVal += dest[i+1]; } *size = numBits; return errCnt; } int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) { int startIdx = 0; return pskRawDemod_ext(dest, size, clock, invert, &startIdx); } //********************************************************************************************** //-----------------Tag format detection section------------------------------------------------- //********************************************************************************************** // by marshmellow // FSK Demod then try to locate an AWID ID int AWIDdemodFSK(uint8_t *dest, size_t *size, int *waveStartIdx) { //make sure buffer has enough data if (*size < 96*50) return -1; // FSK demodulator *size = fskdemod(dest, *size, 50, 1, 10, 8, waveStartIdx); // fsk2a RF/50 if (*size < 96) return -3; //did we get a good demod? uint8_t preamble[] = {0,0,0,0,0,0,0,1}; size_t startIdx = 0; uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); if (errChk == 0) return -4; //preamble not found if (*size != 96) return -5; return (int)startIdx; } //by marshmellow //takes 1s and 0s and searches for EM410x format - output EM ID uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo) { //sanity checks if (*size < 64) return 0; if (BitStream[1]>1) return 0; //allow only 1s and 0s // 111111111 bit pattern represent start of frame // include 0 in front to help get start pos uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1}; uint8_t errChk = 0; uint8_t FmtLen = 10; // sets of 4 bits = end data *startIdx = 0; errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx); if ( errChk == 0 || (*size != 64 && *size != 128) ) return 0; if (*size == 128) FmtLen = 22; // 22 sets of 4 bits //skip last 4bit parity row for simplicity *size = removeParity(BitStream, *startIdx + sizeof(preamble), 5, 0, FmtLen * 5); if (*size == 40) { // std em410x format *hi = 0; *lo = ((uint64_t)(bytebits_to_byte(BitStream, 8)) << 32) | (bytebits_to_byte(BitStream + 8, 32)); } else if (*size == 88) { // long em format *hi = (bytebits_to_byte(BitStream, 24)); *lo = ((uint64_t)(bytebits_to_byte(BitStream + 24, 32)) << 32) | (bytebits_to_byte(BitStream + 24 + 32, 32)); } else { if (g_debugMode) prnt("Error removing parity: %u", *size); return 0; } return 1; } // Ask/Biphase Demod then try to locate an ISO 11784/85 ID // BitStream must contain previously askrawdemod and biphasedemoded data int FDXBdemodBI(uint8_t *dest, size_t *size) { //make sure buffer has enough data if (*size < 128) return -1; size_t startIdx = 0; uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1}; uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); if (errChk == 0) return -2; //preamble not found if (*size != 128) return -3; //wrong size for fdxb //return start position return (int)startIdx; } // by marshmellow // demod gProxIIDemod // error returns as -x // success returns start position in BitStream // BitStream must contain previously askrawdemod and biphasedemoded data int gProxII_Demod(uint8_t BitStream[], size_t *size) { size_t startIdx=0; uint8_t preamble[] = {1,1,1,1,1,0}; uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx); if (errChk == 0) return -3; //preamble not found if (*size != 96) return -2; //should have found 96 bits //check first 6 spacer bits to verify format if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){ //confirmed proper separator bits found //return start position return (int) startIdx; } return -5; //spacer bits not found - not a valid gproxII } // loop to get raw HID waveform then FSK demodulate the TAG ID from it int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo, int *waveStartIdx) { size_t numStart=0, size2=*size, startIdx=0; // FSK demodulator fsk2a so invert and fc/10/8 *size = fskdemod(dest, size2, 50, 1, 10, 8, waveStartIdx); if (*size < 96*2) return -2; // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 uint8_t preamble[] = {0,0,0,1,1,1,0,1}; // find bitstring in array uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); if (errChk == 0) return -3; //preamble not found numStart = startIdx + sizeof(preamble); // final loop, go over previously decoded FSK data and manchester decode into usable tag ID for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ if (dest[idx] == dest[idx+1]){ return -4; //not manchester data } *hi2 = (*hi2<<1)|(*hi>>31); *hi = (*hi<<1)|(*lo>>31); //Then, shift in a 0 or one into low if (dest[idx] && !dest[idx+1]) // 1 0 *lo=(*lo<<1)|1; else // 0 1 *lo=(*lo<<1)|0; } return (int)startIdx; } int IOdemodFSK(uint8_t *dest, size_t size, int *waveStartIdx) { //make sure buffer has data if (size < 66*64) return -2; // FSK demodulator RF/64, fsk2a so invert, and fc/10/8 size = fskdemod(dest, size, 64, 1, 10, 8, waveStartIdx); if (size < 65) return -3; //did we get a good demod? //Index map //0 10 20 30 40 50 60 //| | | | | | | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 //----------------------------------------------------------------------------- //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 // //XSF(version)facility:codeone+codetwo //Handle the data size_t startIdx = 0; uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1}; uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx); if (errChk == 0) return -4; //preamble not found if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){ //confirmed proper separator bits found //return start position return (int) startIdx; } return -5; } // redesigned by marshmellow adjusted from existing decode functions // indala id decoding int indala64decode(uint8_t *bitStream, size_t *size, uint8_t *invert) { //standard 64 bit indala formats including 26 bit 40134 format uint8_t preamble64[] = {1,0,1,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 1}; uint8_t preamble64_i[] = {0,1,0,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 0}; size_t startidx = 0; size_t found_size = *size; bool found = preambleSearch(bitStream, preamble64, sizeof(preamble64), &found_size, &startidx); if (!found) { found = preambleSearch(bitStream, preamble64_i, sizeof(preamble64_i), &found_size, &startidx); if (!found) return -1; *invert ^= 1; } if (found_size != 64) return -2; if (*invert==1) for (size_t i = startidx; i < found_size + startidx; i++) bitStream[i] ^= 1; // note: don't change *size until we are sure we got it... *size = found_size; return (int) startidx; } int indala224decode(uint8_t *bitStream, size_t *size, uint8_t *invert) { //large 224 bit indala formats (different preamble too...) uint8_t preamble224[] = {1,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,1}; uint8_t preamble224_i[] = {0,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,0}; size_t startidx = 0; size_t found_size = *size; bool found = preambleSearch(bitStream, preamble224, sizeof(preamble224), &found_size, &startidx); if (!found) { found = preambleSearch(bitStream, preamble224_i, sizeof(preamble224_i), &found_size, &startidx); if (!found) return -1; *invert ^= 1; } if (found_size != 224) return -2; if (*invert==1 && startidx > 0) for (size_t i = startidx-1; i < found_size + startidx + 2; i++) bitStream[i] ^= 1; // 224 formats are typically PSK2 (afaik 2017 Marshmellow) // note loses 1 bit at beginning of transformation... // don't need to verify array is big enough as to get here there has to be a full preamble after all of our data psk1TOpsk2(bitStream + (startidx-1), found_size+2); startidx++; *size = found_size; return (int) startidx; } // loop to get raw paradox waveform then FSK demodulate the TAG ID from it int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo, int *waveStartIdx) { size_t numStart=0, size2=*size, startIdx=0; // FSK demodulator *size = fskdemod(dest, size2,50,1,10,8,waveStartIdx); //fsk2a if (*size < 96) return -2; // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 uint8_t preamble[] = {0,0,0,0,1,1,1,1}; uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); if (errChk == 0) return -3; //preamble not found numStart = startIdx + sizeof(preamble); // final loop, go over previously decoded FSK data and manchester decode into usable tag ID for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ if (dest[idx] == dest[idx+1]) return -4; //not manchester data *hi2 = (*hi2<<1)|(*hi>>31); *hi = (*hi<<1)|(*lo>>31); //Then, shift in a 0 or one into low if (dest[idx] && !dest[idx+1]) // 1 0 *lo=(*lo<<1)|1; else // 0 1 *lo=(*lo<<1)|0; } return (int)startIdx; } // find presco preamble 0x10D in already demoded data int PrescoDemod(uint8_t *dest, size_t *size) { //make sure buffer has data if (*size < 64*2) return -2; size_t startIdx = 0; uint8_t preamble[] = {1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0}; uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); if (errChk == 0) return -4; //preamble not found //return start position return (int) startIdx; } // by marshmellow // FSK Demod then try to locate a Farpointe Data (pyramid) ID int PyramiddemodFSK(uint8_t *dest, size_t *size, int *waveStartIdx) { //make sure buffer has data if (*size < 128*50) return -5; // FSK demodulator *size = fskdemod(dest, *size, 50, 1, 10, 8, waveStartIdx); // fsk2a RF/50 if (*size < 128) return -2; //did we get a good demod? uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; size_t startIdx = 0; uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); if (errChk == 0) return -4; //preamble not found if (*size != 128) return -3; return (int)startIdx; } // by marshmellow // find viking preamble 0xF200 in already demoded data int VikingDemod_AM(uint8_t *dest, size_t *size) { //make sure buffer has data if (*size < 64*2) return -2; size_t startIdx = 0; uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); if (errChk == 0) return -4; //preamble not found uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^ bytebits_to_byte(dest+startIdx+8,8) ^ bytebits_to_byte(dest+startIdx+16,8) ^ bytebits_to_byte(dest+startIdx+24,8) ^ bytebits_to_byte(dest+startIdx+32,8) ^ bytebits_to_byte(dest+startIdx+40,8) ^ bytebits_to_byte(dest+startIdx+48,8) ^ bytebits_to_byte(dest+startIdx+56,8); if ( checkCalc != 0xA8 ) return -5; if (*size != 64) return -6; //return start position return (int) startIdx; } // by iceman // find Visa2000 preamble in already demoded data int Visa2kDemod_AM(uint8_t *dest, size_t *size) { if (*size < 96) return -1; //make sure buffer has data size_t startIdx = 0; uint8_t preamble[] = {0,1,0,1,0,1,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0}; if (preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx) == 0) return -2; //preamble not found if (*size != 96) return -3; //wrong demoded size //return start position return (int)startIdx; }