//----------------------------------------------------------------------------- // The main application code. This is the first thing called after start.c // executes. // Jonathan Westhues, Mar 2006 // Edits by Gerhard de Koning Gans, Sep 2007 (##) //----------------------------------------------------------------------------- #include #include #include "apps.h" #ifdef WITH_LCD #include "fonts.h" #include "LCD.h" #endif // The large multi-purpose buffer, typically used to hold A/D samples, // maybe pre-processed in some way. DWORD BigBuf[16000]; int usbattached = 0; //============================================================================= // A buffer where we can queue things up to be sent through the FPGA, for // any purpose (fake tag, as reader, whatever). We go MSB first, since that // is the order in which they go out on the wire. //============================================================================= BYTE ToSend[256]; int ToSendMax; static int ToSendBit; void BufferClear(void) { memset(BigBuf,0,sizeof(BigBuf)); DbpString("Buffer cleared"); } void ToSendReset(void) { ToSendMax = -1; ToSendBit = 8; } void ToSendStuffBit(int b) { if(ToSendBit >= 8) { ToSendMax++; ToSend[ToSendMax] = 0; ToSendBit = 0; } if(b) { ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); } ToSendBit++; if(ToSendBit >= sizeof(ToSend)) { ToSendBit = 0; DbpString("ToSendStuffBit overflowed!"); } } //============================================================================= // Debug print functions, to go out over USB, to the usual PC-side client. //============================================================================= void DbpString(char *str) { /* this holds up stuff unless we're connected to usb */ // if (!usbattached) // return; UsbCommand c; c.cmd = CMD_DEBUG_PRINT_STRING; c.ext1 = strlen(str); memcpy(c.d.asBytes, str, c.ext1); UsbSendPacket((BYTE *)&c, sizeof(c)); // TODO fix USB so stupid things like this aren't req'd SpinDelay(50); } void DbpIntegers(int x1, int x2, int x3) { /* this holds up stuff unless we're connected to usb */ // if (!usbattached) // return; UsbCommand c; c.cmd = CMD_DEBUG_PRINT_INTEGERS; c.ext1 = x1; c.ext2 = x2; c.ext3 = x3; UsbSendPacket((BYTE *)&c, sizeof(c)); // XXX SpinDelay(50); } void AcquireRawAdcSamples125k(BOOL at134khz) { if(at134khz) { FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); } else { FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); } // Connect the A/D to the peak-detected low-frequency path. SetAdcMuxFor(GPIO_MUXSEL_LOPKD); // Give it a bit of time for the resonant antenna to settle. SpinDelay(50); // Now set up the SSC to get the ADC samples that are now streaming at us. FpgaSetupSsc(); // Now call the acquisition routine DoAcquisition125k(at134khz); } // split into two routines so we can avoid timing issues after sending commands // void DoAcquisition125k(BOOL at134khz) { BYTE *dest = (BYTE *)BigBuf; int n = sizeof(BigBuf); int i; memset(dest,0,n); i = 0; for(;;) { if(SSC_STATUS & (SSC_STATUS_TX_READY)) { SSC_TRANSMIT_HOLDING = 0x43; LED_D_ON(); } if(SSC_STATUS & (SSC_STATUS_RX_READY)) { dest[i] = (BYTE)SSC_RECEIVE_HOLDING; i++; LED_D_OFF(); if(i >= n) { break; } } } DbpIntegers(dest[0], dest[1], at134khz); } void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command) { BOOL at134khz; // see if 'h' was specified if(command[strlen((char *) command) - 1] == 'h') at134khz= TRUE; else at134khz= FALSE; if(at134khz) { FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); } else { FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); } // Give it a bit of time for the resonant antenna to settle. SpinDelay(50); // Now set up the SSC to get the ADC samples that are now streaming at us. FpgaSetupSsc(); // now modulate the reader field while(*command != '\0' && *command != ' ') { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); SpinDelayUs(delay_off); if(at134khz) { FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); } else { FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); } LED_D_ON(); if(*(command++) == '0') SpinDelayUs(period_0); else SpinDelayUs(period_1); } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); SpinDelayUs(delay_off); if(at134khz) { FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); } else { FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); } // now do the read DoAcquisition125k(at134khz); } void AcquireTiType(void) { int i; int n = 5000; // clear buffer memset(BigBuf,0,sizeof(BigBuf)); // Set up the synchronous serial port PIO_DISABLE = (1<= n) return; } WDT_HIT(); } // return stolen pin to SSP PIO_DISABLE = (1<> 5; } void MeasureAntennaTuning(void) { BYTE *dest = (BYTE *)BigBuf; int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;; int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV UsbCommand c; DbpString("Measuring antenna characteristics, please wait."); memset(BigBuf,0,sizeof(BigBuf)); /* * Sweeps the useful LF range of the proxmark from * 46.8kHz (divisor=255) to 600kHz (divisor=19) and * read the voltage in the antenna, the result left * in the buffer is a graph which should clearly show * the resonating frequency of your LF antenna * ( hopefully around 95 if it is tuned to 125kHz!) */ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); for (i=255; i>19; i--) { FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); SpinDelay(20); // Vref = 3.3V, and a 10000:240 voltage divider on the input // can measure voltages up to 137500 mV adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10); if (i==95) vLf125 = adcval; // voltage at 125Khz if (i==89) vLf134 = adcval; // voltage at 134Khz dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes if(dest[i] > peak) { peakv = adcval; peak = dest[i]; peakf = i; ptr = i; } } // Let the FPGA drive the high-frequency antenna around 13.56 MHz. FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); SpinDelay(20); // Vref = 3300mV, and an 10:1 voltage divider on the input // can measure voltages up to 33000 mV vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; c.cmd = CMD_MEASURED_ANTENNA_TUNING; c.ext1 = (vLf125 << 0) | (vLf134 << 16); c.ext2 = vHf; c.ext3 = peakf | (peakv << 16); UsbSendPacket((BYTE *)&c, sizeof(c)); } void SimulateTagLowFrequency(int period, int ledcontrol) { int i; BYTE *tab = (BYTE *)BigBuf; FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR); PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK); PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT); PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK); #define SHORT_COIL() LOW(GPIO_SSC_DOUT) #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) i = 0; for(;;) { while(!(PIO_PIN_DATA_STATUS & (1<0xFFF) { DbpString("Tags can only have 44 bits."); return; } fc(0,&n); // special start of frame marker containing invalid bit sequences fc(8, &n); fc(8, &n); // invalid fc(8, &n); fc(10, &n); // logical 0 fc(10, &n); fc(10, &n); // invalid fc(8, &n); fc(10, &n); // logical 0 WDT_HIT(); // manchester encode bits 43 to 32 for (i=11; i>=0; i--) { if ((i%4)==3) fc(0,&n); if ((hi>>i)&1) { fc(10, &n); fc(8, &n); // low-high transition } else { fc(8, &n); fc(10, &n); // high-low transition } } WDT_HIT(); // manchester encode bits 31 to 0 for (i=31; i>=0; i--) { if ((i%4)==3) fc(0,&n); if ((lo>>i)&1) { fc(10, &n); fc(8, &n); // low-high transition } else { fc(8, &n); fc(10, &n); // high-low transition } } if (ledcontrol) LED_A_ON(); SimulateTagLowFrequency(n, ledcontrol); if (ledcontrol) LED_A_OFF(); } // loop to capture raw HID waveform then FSK demodulate the TAG ID from it static void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) { BYTE *dest = (BYTE *)BigBuf; int m=0, n=0, i=0, idx=0, found=0, lastval=0; DWORD hi=0, lo=0; FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); // Connect the A/D to the peak-detected low-frequency path. SetAdcMuxFor(GPIO_MUXSEL_LOPKD); // Give it a bit of time for the resonant antenna to settle. SpinDelay(50); // Now set up the SSC to get the ADC samples that are now streaming at us. FpgaSetupSsc(); for(;;) { WDT_HIT(); if (ledcontrol) LED_A_ON(); if(BUTTON_PRESS()) { DbpString("Stopped"); if (ledcontrol) LED_A_OFF(); return; } i = 0; m = sizeof(BigBuf); memset(dest,128,m); for(;;) { if(SSC_STATUS & (SSC_STATUS_TX_READY)) { SSC_TRANSMIT_HOLDING = 0x43; if (ledcontrol) LED_D_ON(); } if(SSC_STATUS & (SSC_STATUS_RX_READY)) { dest[i] = (BYTE)SSC_RECEIVE_HOLDING; // we don't care about actual value, only if it's more or less than a // threshold essentially we capture zero crossings for later analysis if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; i++; if (ledcontrol) LED_D_OFF(); if(i >= m) { break; } } } // FSK demodulator // sync to first lo-hi transition for( idx=1; idx>1)&0xffff); /* if we're only looking for one tag */ if (findone) { *high = hi; *low = lo; return; } hi=0; lo=0; found=0; } } if (found) { if (dest[idx] && (!dest[idx+1]) ) { hi=(hi<<1)|(lo>>31); lo=(lo<<1)|0; } else if ( (!dest[idx]) && dest[idx+1]) { hi=(hi<<1)|(lo>>31); lo=(lo<<1)|1; } else { found=0; hi=0; lo=0; } idx++; } if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) { found=1; idx+=6; if (found && (hi|lo)) { DbpString("TAG ID"); DbpIntegers(hi, lo, (lo>>1)&0xffff); /* if we're only looking for one tag */ if (findone) { *high = hi; *low = lo; return; } hi=0; lo=0; found=0; } } } WDT_HIT(); } } void SimulateTagHfListen(void) { BYTE *dest = (BYTE *)BigBuf; int n = sizeof(BigBuf); BYTE v = 0; int i; int p = 0; // We're using this mode just so that I can test it out; the simulated // tag mode would work just as well and be simpler. FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); // We need to listen to the high-frequency, peak-detected path. SetAdcMuxFor(GPIO_MUXSEL_HIPKD); FpgaSetupSsc(); i = 0; for(;;) { if(SSC_STATUS & (SSC_STATUS_TX_READY)) { SSC_TRANSMIT_HOLDING = 0xff; } if(SSC_STATUS & (SSC_STATUS_RX_READY)) { BYTE r = (BYTE)SSC_RECEIVE_HOLDING; v <<= 1; if(r & 1) { v |= 1; } p++; if(p >= 8) { dest[i] = v; v = 0; p = 0; i++; if(i >= n) { break; } } } } DbpString("simulate tag (now type bitsamples)"); } void UsbPacketReceived(BYTE *packet, int len) { UsbCommand *c = (UsbCommand *)packet; switch(c->cmd) { case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: AcquireRawAdcSamples125k(c->ext1); break; case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: ModThenAcquireRawAdcSamples125k(c->ext1,c->ext2,c->ext3,c->d.asBytes); break; case CMD_ACQUIRE_RAW_BITS_TI_TYPE: AcquireRawBitsTI(); break; case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: AcquireRawAdcSamplesIso15693(); break; case CMD_BUFF_CLEAR: BufferClear(); break; case CMD_READER_ISO_15693: ReaderIso15693(c->ext1); break; case CMD_SIMTAG_ISO_15693: SimTagIso15693(c->ext1); break; case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443: AcquireRawAdcSamplesIso14443(c->ext1); break; case CMD_READ_SRI512_TAG: ReadSRI512Iso14443(c->ext1); break; case CMD_READER_ISO_14443a: ReaderIso14443a(c->ext1); break; case CMD_SNOOP_ISO_14443: SnoopIso14443(); break; case CMD_SNOOP_ISO_14443a: SnoopIso14443a(); break; case CMD_SIMULATE_TAG_HF_LISTEN: SimulateTagHfListen(); break; case CMD_SIMULATE_TAG_ISO_14443: SimulateIso14443Tag(); break; case CMD_SIMULATE_TAG_ISO_14443a: SimulateIso14443aTag(c->ext1, c->ext2); // ## Simulate iso14443a tag - pass tag type & UID break; case CMD_MEASURE_ANTENNA_TUNING: MeasureAntennaTuning(); break; case CMD_LISTEN_READER_FIELD: ListenReaderField(c->ext1); break; case CMD_HID_DEMOD_FSK: CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag break; case CMD_HID_SIM_TAG: CmdHIDsimTAG(c->ext1, c->ext2, 1); // Simulate HID tag by ID break; case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(200); LED_D_OFF(); // LED D indicates field ON or OFF break; case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: { UsbCommand n; if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) { n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K; } else { n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE; } n.ext1 = c->ext1; memcpy(n.d.asDwords, BigBuf+c->ext1, 12*sizeof(DWORD)); UsbSendPacket((BYTE *)&n, sizeof(n)); break; } case CMD_DOWNLOADED_SIM_SAMPLES_125K: { BYTE *b = (BYTE *)BigBuf; memcpy(b+c->ext1, c->d.asBytes, 48); break; } case CMD_SIMULATE_TAG_125K: LED_A_ON(); SimulateTagLowFrequency(c->ext1, 1); LED_A_OFF(); break; #ifdef WITH_LCD case CMD_LCD_RESET: LCDReset(); break; #endif case CMD_READ_MEM: ReadMem(c->ext1); break; case CMD_SET_LF_DIVISOR: FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1); break; #ifdef WITH_LCD case CMD_LCD: LCDSend(c->ext1); break; #endif case CMD_SETUP_WRITE: case CMD_FINISH_WRITE: case CMD_HARDWARE_RESET: USB_D_PLUS_PULLUP_OFF(); SpinDelay(1000); SpinDelay(1000); RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET; for(;;) { // We're going to reset, and the bootrom will take control. } break; default: DbpString("unknown command"); break; } } void ReadMem(int addr) { const DWORD *data = ((DWORD *)addr); int i; DbpString("Reading memory at address"); DbpIntegers(0, 0, addr); for (i = 0; i < 8; i+= 2) DbpIntegers(0, data[i], data[i+1]); } void AppMain(void) { memset(BigBuf,0,sizeof(BigBuf)); SpinDelay(100); LED_D_OFF(); LED_C_OFF(); LED_B_OFF(); LED_A_OFF(); UsbStart(); // The FPGA gets its clock from us from PCK0 output, so set that up. PIO_PERIPHERAL_B_SEL = (1 << GPIO_PCK0); PIO_DISABLE = (1 << GPIO_PCK0); PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROGRAMMABLE_CLK_0; // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz PMC_PROGRAMMABLE_CLK_0 = PMC_CLK_SELECTION_PLL_CLOCK | PMC_CLK_PRESCALE_DIV_4; PIO_OUTPUT_ENABLE = (1 << GPIO_PCK0); // Reset SPI SPI_CONTROL = SPI_CONTROL_RESET; // Reset SSC SSC_CONTROL = SSC_CONTROL_RESET; // Load the FPGA image, which we have stored in our flash. FpgaDownloadAndGo(); #ifdef WITH_LCD LCDInit(); // test text on different colored backgrounds LCDString(" The quick brown fox ", &FONT6x8,1,1+8*0,WHITE ,BLACK ); LCDString(" jumped over the ", &FONT6x8,1,1+8*1,BLACK ,WHITE ); LCDString(" lazy dog. ", &FONT6x8,1,1+8*2,YELLOW ,RED ); LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8,1,1+8*3,RED ,GREEN ); LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8,1,1+8*4,MAGENTA,BLUE ); LCDString("UuVvWwXxYyZz0123456789", &FONT6x8,1,1+8*5,BLUE ,YELLOW); LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8,1,1+8*6,BLACK ,CYAN ); LCDString(" _+{}|:\\\"<>? ",&FONT6x8,1,1+8*7,BLUE ,MAGENTA); // color bands LCDFill(0, 1+8* 8, 132, 8, BLACK); LCDFill(0, 1+8* 9, 132, 8, WHITE); LCDFill(0, 1+8*10, 132, 8, RED); LCDFill(0, 1+8*11, 132, 8, GREEN); LCDFill(0, 1+8*12, 132, 8, BLUE); LCDFill(0, 1+8*13, 132, 8, YELLOW); LCDFill(0, 1+8*14, 132, 8, CYAN); LCDFill(0, 1+8*15, 132, 8, MAGENTA); #endif for(;;) { usbattached = UsbPoll(FALSE); WDT_HIT(); if (BUTTON_HELD(1000) > 0) SamyRun(); } } // samy's sniff and repeat routine void SamyRun() { DbpString("Stand-alone mode! No PC necessary."); // 3 possible options? no just 2 for now #define OPTS 2 int high[OPTS], low[OPTS]; // Oooh pretty -- notify user we're in elite samy mode now LED(LED_RED, 200); LED(LED_ORANGE, 200); LED(LED_GREEN, 200); LED(LED_ORANGE, 200); LED(LED_RED, 200); LED(LED_ORANGE, 200); LED(LED_GREEN, 200); LED(LED_ORANGE, 200); LED(LED_RED, 200); int selected = 0; int playing = 0; // Turn on selected LED LED(selected + 1, 0); for (;;) { usbattached = UsbPoll(FALSE); WDT_HIT(); // Was our button held down or pressed? int button_pressed = BUTTON_HELD(1000); SpinDelay(300); // Button was held for a second, begin recording if (button_pressed > 0) { LEDsoff(); LED(selected + 1, 0); LED(LED_RED2, 0); // record DbpString("Starting recording"); // wait for button to be released while(BUTTON_PRESS()) WDT_HIT(); /* need this delay to prevent catching some weird data */ SpinDelay(500); CmdHIDdemodFSK(1, &high[selected], &low[selected], 0); DbpString("Recorded"); DbpIntegers(selected, high[selected], low[selected]); LEDsoff(); LED(selected + 1, 0); // Finished recording // If we were previously playing, set playing off // so next button push begins playing what we recorded playing = 0; } // Change where to record (or begin playing) else if (button_pressed) { // Next option if we were previously playing if (playing) selected = (selected + 1) % OPTS; playing = !playing; LEDsoff(); LED(selected + 1, 0); // Begin transmitting if (playing) { LED(LED_GREEN, 0); DbpString("Playing"); // wait for button to be released while(BUTTON_PRESS()) WDT_HIT(); DbpIntegers(selected, high[selected], low[selected]); CmdHIDsimTAG(high[selected], low[selected], 0); DbpString("Done playing"); if (BUTTON_HELD(1000) > 0) { DbpString("Exiting"); LEDsoff(); return; } /* We pressed a button so ignore it here with a delay */ SpinDelay(300); // when done, we're done playing, move to next option selected = (selected + 1) % OPTS; playing = !playing; LEDsoff(); LED(selected + 1, 0); } else while(BUTTON_PRESS()) WDT_HIT(); } } } /* OBJECTIVE Listen and detect an external reader. Determine the best location for the antenna. INSTRUCTIONS: Inside the ListenReaderField() function, there is two mode. By default, when you call the function, you will enter mode 1. If you press the PM3 button one time, you will enter mode 2. If you press the PM3 button a second time, you will exit the function. DESCRIPTION OF MODE 1: This mode just listens for an external reader field and lights up green for HF and/or red for LF. This is the original mode of the detectreader function. DESCRIPTION OF MODE 2: This mode will visually represent, using the LEDs, the actual strength of the current compared to the maximum current detected. Basically, once you know what kind of external reader is present, it will help you spot the best location to place your antenna. You will probably not get some good results if there is a LF and a HF reader at the same place! :-) LIGHT SCHEME USED: Light scheme | Descriptiong ---------------------------------------------------- ---- | No field detected X--- | 14% of maximum current detected -X-- | 29% of maximum current detected --X- | 43% of maximum current detected ---X | 57% of maximum current detected --XX | 71% of maximum current detected -XXX | 86% of maximum current detected XXXX | 100% of maximum current detected TODO: Add the LF part for MODE 2 */ void ListenReaderField(int limit) { int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0; int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max; int mode=1; #define LF_ONLY 1 #define HF_ONLY 2 LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); lf_av= ReadAdc(ADC_CHAN_LF); if(limit != HF_ONLY) { DbpString("LF 125/134 Baseline:"); DbpIntegers(lf_av,0,0); lf_baseline= lf_av; } hf_av=hf_max=ReadAdc(ADC_CHAN_HF); if (limit != LF_ONLY) { DbpString("HF 13.56 Baseline:"); DbpIntegers(hf_av,0,0); hf_baseline= hf_av; } for(;;) { if (BUTTON_PRESS()) { SpinDelay(500); switch (mode) { case 1: mode=2; DbpString("Signal Strength Mode"); break; case 2: default: DbpString("Stopped"); LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); return; break; } } WDT_HIT(); if (limit != HF_ONLY) { if (abs(lf_av - lf_baseline) > 10) LED_D_ON(); else LED_D_OFF(); ++lf_count; lf_av_new= ReadAdc(ADC_CHAN_LF); // see if there's a significant change if(abs(lf_av - lf_av_new) > 10) { DbpString("LF 125/134 Field Change:"); DbpIntegers(lf_av,lf_av_new,lf_count); lf_av= lf_av_new; lf_count= 0; } } if (limit != LF_ONLY) { if (abs(hf_av - hf_baseline) > 10) { if (mode == 1) LED_B_ON(); if (mode == 2) { if ( hf_av>(hf_max/7)*6) { LED_A_ON(); LED_B_ON(); LED_C_ON(); LED_D_ON(); } if ( (hf_av>(hf_max/7)*5) && (hf_av<=(hf_max/7)*6) ) { LED_A_ON(); LED_B_ON(); LED_C_OFF(); LED_D_ON(); } if ( (hf_av>(hf_max/7)*4) && (hf_av<=(hf_max/7)*5) ) { LED_A_OFF(); LED_B_ON(); LED_C_OFF(); LED_D_ON(); } if ( (hf_av>(hf_max/7)*3) && (hf_av<=(hf_max/7)*4) ) { LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_ON(); } if ( (hf_av>(hf_max/7)*2) && (hf_av<=(hf_max/7)*3) ) { LED_A_OFF(); LED_B_ON(); LED_C_OFF(); LED_D_OFF(); } if ( (hf_av>(hf_max/7)*1) && (hf_av<=(hf_max/7)*2) ) { LED_A_ON(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); } if ( (hf_av>(hf_max/7)*0) && (hf_av<=(hf_max/7)*1) ) { LED_A_OFF(); LED_B_OFF(); LED_C_ON(); LED_D_OFF(); } } } else { if (mode == 1) { LED_B_OFF(); } if (mode == 2) { LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); } } ++hf_count; hf_av_new= ReadAdc(ADC_CHAN_HF); // see if there's a significant change if(abs(hf_av - hf_av_new) > 10) { DbpString("HF 13.56 Field Change:"); DbpIntegers(hf_av,hf_av_new,hf_count); hf_av= hf_av_new; if (hf_av > hf_max) hf_max = hf_av; hf_count= 0; } } } }