//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Data and Graph commands //----------------------------------------------------------------------------- #include #include #include #include #include "proxmark3.h" #include "data.h" #include "ui.h" #include "graph.h" #include "cmdparser.h" #include "util.h" #include "cmdmain.h" #include "cmddata.h" #include "lfdemod.h" #include "usb_cmd.h" uint8_t DemodBuffer[MAX_DEMOD_BUF_LEN]; int DemodBufferLen; static int CmdHelp(const char *Cmd); //set the demod buffer with given array of binary (one bit per byte) //by marshmellow void setDemodBuf(uint8_t *buff,int size) { int i=0; for (; i < size; ++i){ DemodBuffer[i]=buff[i]; } DemodBufferLen=size; return; } //by marshmellow void printDemodBuff() { uint32_t i = 0; int bitLen = DemodBufferLen; if (bitLen<16) { PrintAndLog("no bits found in demod buffer"); return; } if (bitLen>512) bitLen=512; //max output to 512 bits if we have more - should be plenty for (i = 0; i <= (bitLen-16); i+=16) { PrintAndLog("%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i", DemodBuffer[i], DemodBuffer[i+1], DemodBuffer[i+2], DemodBuffer[i+3], DemodBuffer[i+4], DemodBuffer[i+5], DemodBuffer[i+6], DemodBuffer[i+7], DemodBuffer[i+8], DemodBuffer[i+9], DemodBuffer[i+10], DemodBuffer[i+11], DemodBuffer[i+12], DemodBuffer[i+13], DemodBuffer[i+14], DemodBuffer[i+15]); } return; } int CmdAmp(const char *Cmd) { int i, rising, falling; int max = INT_MIN, min = INT_MAX; for (i = 10; i < GraphTraceLen; ++i) { if (GraphBuffer[i] > max) max = GraphBuffer[i]; if (GraphBuffer[i] < min) min = GraphBuffer[i]; } if (max != min) { rising = falling= 0; for (i = 0; i < GraphTraceLen; ++i) { if (GraphBuffer[i + 1] < GraphBuffer[i]) { if (rising) { GraphBuffer[i] = max; rising = 0; } falling = 1; } if (GraphBuffer[i + 1] > GraphBuffer[i]) { if (falling) { GraphBuffer[i] = min; falling = 0; } rising= 1; } } } RepaintGraphWindow(); return 0; } /* * Generic command to demodulate ASK. * * Argument is convention: positive or negative (High mod means zero * or high mod means one) * * Updates the Graph trace with 0/1 values * * Arguments: * c : 0 or 1 */ //this method is dependant on all highs and lows to be the same(or clipped) this creates issues[marshmellow] it also ignores the clock int Cmdaskdemod(const char *Cmd) { int i; int c, high = 0, low = 0; // TODO: complain if we do not give 2 arguments here ! // (AL - this doesn't make sense! we're only using one argument!!!) sscanf(Cmd, "%i", &c); /* Detect high and lows and clock */ // (AL - clock???) for (i = 0; i < GraphTraceLen; ++i) { if (GraphBuffer[i] > high) high = GraphBuffer[i]; else if (GraphBuffer[i] < low) low = GraphBuffer[i]; } high=abs(high*.75); low=abs(low*.75); if (c != 0 && c != 1) { PrintAndLog("Invalid argument: %s", Cmd); return 0; } //prime loop if (GraphBuffer[0] > 0) { GraphBuffer[0] = 1-c; } else { GraphBuffer[0] = c; } for (i = 1; i < GraphTraceLen; ++i) { /* Transitions are detected at each peak * Transitions are either: * - we're low: transition if we hit a high * - we're high: transition if we hit a low * (we need to do it this way because some tags keep high or * low for long periods, others just reach the peak and go * down) */ //[marhsmellow] change == to >= for high and <= for low for fuzz if ((GraphBuffer[i] == high) && (GraphBuffer[i - 1] == c)) { GraphBuffer[i] = 1 - c; } else if ((GraphBuffer[i] == low) && (GraphBuffer[i - 1] == (1 - c))){ GraphBuffer[i] = c; } else { /* No transition */ GraphBuffer[i] = GraphBuffer[i - 1]; } } RepaintGraphWindow(); return 0; } //by marshmellow void printBitStream(uint8_t BitStream[], uint32_t bitLen) { uint32_t i = 0; if (bitLen<16) { PrintAndLog("Too few bits found: %d",bitLen); return; } if (bitLen>512) bitLen=512; for (i = 0; i <= (bitLen-16); i+=16) { PrintAndLog("%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i", BitStream[i], BitStream[i+1], BitStream[i+2], BitStream[i+3], BitStream[i+4], BitStream[i+5], BitStream[i+6], BitStream[i+7], BitStream[i+8], BitStream[i+9], BitStream[i+10], BitStream[i+11], BitStream[i+12], BitStream[i+13], BitStream[i+14], BitStream[i+15]); } return; } //by marshmellow //print EM410x ID in multiple formats void printEM410x(uint64_t id) { if (id !=0){ uint64_t iii=1; uint64_t id2lo=0; //id2hi=0, uint32_t ii=0; uint32_t i=0; for (ii=5; ii>0;ii--){ for (i=0;i<8;i++){ id2lo=(id2lo<<1LL) | ((id & (iii << (i+((ii-1)*8)))) >> (i+((ii-1)*8))); } } //output em id PrintAndLog("EM TAG ID : %010llx", id); PrintAndLog("Unique TAG ID: %010llx", id2lo); //id2hi, PrintAndLog("DEZ 8 : %08lld",id & 0xFFFFFF); PrintAndLog("DEZ 10 : %010lld",id & 0xFFFFFF); PrintAndLog("DEZ 5.5 : %05lld.%05lld",(id>>16LL) & 0xFFFF,(id & 0xFFFF)); PrintAndLog("DEZ 3.5A : %03lld.%05lld",(id>>32ll),(id & 0xFFFF)); PrintAndLog("DEZ 14/IK2 : %014lld",id); PrintAndLog("DEZ 15/IK3 : %015lld",id2lo); PrintAndLog("Other : %05lld_%03lld_%08lld",(id&0xFFFF),((id>>16LL) & 0xFF),(id & 0xFFFFFF)); } return; } //by marshmellow //take binary from demod buffer and see if we can find an EM410x ID int CmdEm410xDecode(const char *Cmd) { uint64_t id=0; // uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; // uint32_t i=0; // i=getFromGraphBuf(BitStream); id = Em410xDecode(DemodBuffer,DemodBufferLen); printEM410x(id); if (id>0) return 1; return 0; } //by marshmellow //takes 2 arguments - clock and invert both as integers //attempts to demodulate ask while decoding manchester //prints binary found and saves in graphbuffer for further commands int Cmdaskmandemod(const char *Cmd) { int invert=0; int clk=0; uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; sscanf(Cmd, "%i %i", &clk, &invert); if (invert != 0 && invert != 1) { PrintAndLog("Invalid argument: %s", Cmd); return 0; } size_t BitLen = getFromGraphBuf(BitStream); // PrintAndLog("DEBUG: Bitlen from grphbuff: %d",BitLen); int errCnt=0; errCnt = askmandemod(BitStream, &BitLen,&clk,&invert); if (errCnt<0||BitLen<16){ //if fatal error (or -1) // PrintAndLog("no data found %d, errors:%d, bitlen:%d, clock:%d",errCnt,invert,BitLen,clk); return 0; } PrintAndLog("\nUsing Clock: %d - Invert: %d - Bits Found: %d",clk,invert,BitLen); //output if (errCnt>0){ PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt); } PrintAndLog("ASK/Manchester decoded bitstream:"); // Now output the bitstream to the scrollback by line of 16 bits setDemodBuf(BitStream,BitLen); printDemodBuff(); uint64_t lo =0; lo = Em410xDecode(BitStream,BitLen); if (lo>0){ //set GraphBuffer for clone or sim command PrintAndLog("EM410x pattern found: "); printEM410x(lo); return 1; } //if (BitLen>16) return 1; return 0; } //by marshmellow //manchester decode //stricktly take 10 and 01 and convert to 0 and 1 int Cmdmandecoderaw(const char *Cmd) { int i =0; int errCnt=0; size_t size=0; uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; int high=0,low=0; for (;ihigh) high=DemodBuffer[i]; else if(DemodBuffer[i]1 || low <0 ){ PrintAndLog("Error: please raw demod the wave first then mancheseter raw decode"); return 0; } size=i; errCnt=manrawdecode(BitStream, &size); if (errCnt>=20){ PrintAndLog("Too many errors: %d",errCnt); return 0; } PrintAndLog("Manchester Decoded - # errors:%d - data:",errCnt); printBitStream(BitStream, size); if (errCnt==0){ uint64_t id = 0; id = Em410xDecode(BitStream, size); if (id>0) setDemodBuf(BitStream, size); printEM410x(id); } return 1; } //by marshmellow //biphase decode //take 01 or 10 = 0 and 11 or 00 = 1 //takes 1 argument "offset" default = 0 if 1 it will shift the decode by one bit // since it is not like manchester and doesn't have an incorrect bit pattern we // cannot determine if our decode is correct or if it should be shifted by one bit // the argument offset allows us to manually shift if the output is incorrect // (better would be to demod and decode at the same time so we can distinguish large // width waves vs small width waves to help the decode positioning) or askbiphdemod int CmdBiphaseDecodeRaw(const char *Cmd) { int i = 0; int errCnt=0; size_t size=0; int offset=0; int high=0, low=0; sscanf(Cmd, "%i", &offset); uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; //get graphbuffer & high and low for (;ihigh)high=DemodBuffer[i]; else if(DemodBuffer[i]1 || low <0){ PrintAndLog("Error: please raw demod the wave first then decode"); return 0; } size=i; errCnt=BiphaseRawDecode(BitStream, &size, offset); if (errCnt>=20){ PrintAndLog("Too many errors attempting to decode: %d",errCnt); return 0; } PrintAndLog("Biphase Decoded using offset: %d - # errors:%d - data:",offset,errCnt); printBitStream(BitStream, size); PrintAndLog("\nif bitstream does not look right try offset=1"); return 1; } //by marshmellow //takes 2 arguments - clock and invert both as integers //attempts to demodulate ask only //prints binary found and saves in graphbuffer for further commands int Cmdaskrawdemod(const char *Cmd) { int invert=0; int clk=0; uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; sscanf(Cmd, "%i %i", &clk, &invert); if (invert != 0 && invert != 1) { PrintAndLog("Invalid argument: %s", Cmd); return 0; } size_t BitLen = getFromGraphBuf(BitStream); int errCnt=0; errCnt = askrawdemod(BitStream, &BitLen,&clk,&invert); if (errCnt==-1||BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first) PrintAndLog("no data found"); return 0; } PrintAndLog("Using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen); //PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum); //move BitStream back to DemodBuffer setDemodBuf(BitStream,BitLen); //output if (errCnt>0){ PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt); } PrintAndLog("ASK demoded bitstream:"); // Now output the bitstream to the scrollback by line of 16 bits printBitStream(BitStream,BitLen); return 1; } int CmdAutoCorr(const char *Cmd) { static int CorrelBuffer[MAX_GRAPH_TRACE_LEN]; int window = atoi(Cmd); if (window == 0) { PrintAndLog("needs a window"); return 0; } if (window >= GraphTraceLen) { PrintAndLog("window must be smaller than trace (%d samples)", GraphTraceLen); return 0; } PrintAndLog("performing %d correlations", GraphTraceLen - window); for (int i = 0; i < GraphTraceLen - window; ++i) { int sum = 0; for (int j = 0; j < window; ++j) { sum += (GraphBuffer[j]*GraphBuffer[i + j]) / 256; } CorrelBuffer[i] = sum; } GraphTraceLen = GraphTraceLen - window; memcpy(GraphBuffer, CorrelBuffer, GraphTraceLen * sizeof (int)); RepaintGraphWindow(); return 0; } int CmdBitsamples(const char *Cmd) { int cnt = 0; uint8_t got[12288]; GetFromBigBuf(got,sizeof(got),0); WaitForResponse(CMD_ACK,NULL); for (int j = 0; j < sizeof(got); j++) { for (int k = 0; k < 8; k++) { if(got[j] & (1 << (7 - k))) { GraphBuffer[cnt++] = 1; } else { GraphBuffer[cnt++] = 0; } } } GraphTraceLen = cnt; RepaintGraphWindow(); return 0; } /* * Convert to a bitstream */ int CmdBitstream(const char *Cmd) { int i, j; int bit; int gtl; int clock; int low = 0; int high = 0; int hithigh, hitlow, first; /* Detect high and lows and clock */ for (i = 0; i < GraphTraceLen; ++i) { if (GraphBuffer[i] > high) high = GraphBuffer[i]; else if (GraphBuffer[i] < low) low = GraphBuffer[i]; } /* Get our clock */ clock = GetClock(Cmd, high, 1); gtl = ClearGraph(0); bit = 0; for (i = 0; i < (int)(gtl / clock); ++i) { hithigh = 0; hitlow = 0; first = 1; /* Find out if we hit both high and low peaks */ for (j = 0; j < clock; ++j) { if (GraphBuffer[(i * clock) + j] == high) hithigh = 1; else if (GraphBuffer[(i * clock) + j] == low) hitlow = 1; /* it doesn't count if it's the first part of our read because it's really just trailing from the last sequence */ if (first && (hithigh || hitlow)) hithigh = hitlow = 0; else first = 0; if (hithigh && hitlow) break; } /* If we didn't hit both high and low peaks, we had a bit transition */ if (!hithigh || !hitlow) bit ^= 1; AppendGraph(0, clock, bit); // for (j = 0; j < (int)(clock/2); j++) // GraphBuffer[(i * clock) + j] = bit ^ 1; // for (j = (int)(clock/2); j < clock; j++) // GraphBuffer[(i * clock) + j] = bit; } RepaintGraphWindow(); return 0; } int CmdBuffClear(const char *Cmd) { UsbCommand c = {CMD_BUFF_CLEAR}; SendCommand(&c); ClearGraph(true); return 0; } int CmdDec(const char *Cmd) { for (int i = 0; i < (GraphTraceLen / 2); ++i) GraphBuffer[i] = GraphBuffer[i * 2]; GraphTraceLen /= 2; PrintAndLog("decimated by 2"); RepaintGraphWindow(); return 0; } /* Print our clock rate */ // uses data from graphbuffer int CmdDetectClockRate(const char *Cmd) { GetClock("",0,0); //int clock = DetectASKClock(0); //PrintAndLog("Auto-detected clock rate: %d", clock); return 0; } //by marshmellow //fsk raw demod and print binary //takes 4 arguments - Clock, invert, rchigh, rclow //defaults: clock = 50, invert=0, rchigh=10, rclow=8 (RF/10 RF/8 (fsk2a)) int CmdFSKrawdemod(const char *Cmd) { //raw fsk demod no manchester decoding no start bit finding just get binary from wave //set defaults int rfLen = 50; int invert=0; int fchigh=10; int fclow=8; //set options from parameters entered with the command sscanf(Cmd, "%i %i %i %i", &rfLen, &invert, &fchigh, &fclow); if (strlen(Cmd)>0 && strlen(Cmd)<=2) { //rfLen=param_get8(Cmd, 0); //if rfLen option only is used if (rfLen==1){ invert=1; //if invert option only is used rfLen = 50; } else if(rfLen==0) rfLen=50; } PrintAndLog("Args invert: %d - Clock:%d - fchigh:%d - fclow: %d",invert,rfLen,fchigh, fclow); uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; size_t BitLen = getFromGraphBuf(BitStream); int size = fskdemod(BitStream,BitLen,(uint8_t)rfLen,(uint8_t)invert,(uint8_t)fchigh,(uint8_t)fclow); if (size>0){ PrintAndLog("FSK decoded bitstream:"); setDemodBuf(BitStream,size); // Now output the bitstream to the scrollback by line of 16 bits if(size > (8*32)+2) size = (8*32)+2; //only output a max of 8 blocks of 32 bits most tags will have full bit stream inside that sample size printBitStream(BitStream,size); } else{ PrintAndLog("no FSK data found"); } return 0; } //by marshmellow (based on existing demod + holiman's refactor) //HID Prox demod - FSK RF/50 with preamble of 00011101 (then manchester encoded) //print full HID Prox ID and some bit format details if found int CmdFSKdemodHID(const char *Cmd) { //raw fsk demod no manchester decoding no start bit finding just get binary from wave uint32_t hi2=0, hi=0, lo=0; uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; size_t BitLen = getFromGraphBuf(BitStream); //get binary from fsk wave size_t size = HIDdemodFSK(BitStream,BitLen,&hi2,&hi,&lo); if (size<0){ PrintAndLog("Error demoding fsk"); return 0; } if (hi2==0 && hi==0 && lo==0) return 0; if (hi2 != 0){ //extra large HID tags PrintAndLog("HID Prox TAG ID: %x%08x%08x (%d)", (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); setDemodBuf(BitStream,BitLen); return 1; } else { //standard HID tags <38 bits //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd uint8_t fmtLen = 0; uint32_t fc = 0; uint32_t cardnum = 0; if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used uint32_t lo2=0; lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit uint8_t idx3 = 1; while(lo2>1){ //find last bit set to 1 (format len bit) lo2=lo2>>1; idx3++; } fmtLen =idx3+19; fc =0; cardnum=0; if(fmtLen==26){ cardnum = (lo>>1)&0xFFFF; fc = (lo>>17)&0xFF; } if(fmtLen==34){ cardnum = (lo>>1)&0xFFFF; fc= ((hi&1)<<15)|(lo>>17); } if(fmtLen==35){ cardnum = (lo>>1)&0xFFFFF; fc = ((hi&1)<<11)|(lo>>21); } } else { //if bit 38 is not set then 37 bit format is used fmtLen = 37; fc = 0; cardnum = 0; if(fmtLen == 37){ cardnum = (lo>>1)&0x7FFFF; fc = ((hi&0xF)<<12)|(lo>>20); } } PrintAndLog("HID Prox TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, (unsigned int) fmtLen, (unsigned int) fc, (unsigned int) cardnum); setDemodBuf(BitStream,BitLen); return 1; } return 0; } //by marshmellow //IO-Prox demod - FSK RF/64 with preamble of 000000001 //print ioprox ID and some format details int CmdFSKdemodIO(const char *Cmd) { //raw fsk demod no manchester decoding no start bit finding just get binary from wave //set defaults int idx=0; //something in graphbuffer if (GraphTraceLen < 65) return 0; uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; size_t BitLen = getFromGraphBuf(BitStream); //get binary from fsk wave // PrintAndLog("DEBUG: got buff"); idx = IOdemodFSK(BitStream,BitLen); if (idx<0){ //PrintAndLog("Error demoding fsk"); return 0; } // PrintAndLog("DEBUG: Got IOdemodFSK"); if (idx==0){ //PrintAndLog("IO Prox Data not found - FSK Data:"); //if (BitLen > 92) printBitStream(BitStream,92); return 0; } //Index map //0 10 20 30 40 50 60 //| | | | | | | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 //----------------------------------------------------------------------------- //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 // //XSF(version)facility:codeone+codetwo (raw) //Handle the data if (idx+64>BitLen) return 0; PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx], BitStream[idx+1], BitStream[idx+2], BitStream[idx+3], BitStream[idx+4], BitStream[idx+5], BitStream[idx+6], BitStream[idx+7], BitStream[idx+8]); PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx+9], BitStream[idx+10], BitStream[idx+11],BitStream[idx+12],BitStream[idx+13],BitStream[idx+14],BitStream[idx+15],BitStream[idx+16],BitStream[idx+17]); PrintAndLog("%d%d%d%d%d%d%d%d %d facility",BitStream[idx+18], BitStream[idx+19], BitStream[idx+20],BitStream[idx+21],BitStream[idx+22],BitStream[idx+23],BitStream[idx+24],BitStream[idx+25],BitStream[idx+26]); PrintAndLog("%d%d%d%d%d%d%d%d %d version",BitStream[idx+27], BitStream[idx+28], BitStream[idx+29],BitStream[idx+30],BitStream[idx+31],BitStream[idx+32],BitStream[idx+33],BitStream[idx+34],BitStream[idx+35]); PrintAndLog("%d%d%d%d%d%d%d%d %d code1",BitStream[idx+36], BitStream[idx+37], BitStream[idx+38],BitStream[idx+39],BitStream[idx+40],BitStream[idx+41],BitStream[idx+42],BitStream[idx+43],BitStream[idx+44]); PrintAndLog("%d%d%d%d%d%d%d%d %d code2",BitStream[idx+45], BitStream[idx+46], BitStream[idx+47],BitStream[idx+48],BitStream[idx+49],BitStream[idx+50],BitStream[idx+51],BitStream[idx+52],BitStream[idx+53]); PrintAndLog("%d%d%d%d%d%d%d%d %d%d checksum",BitStream[idx+54],BitStream[idx+55],BitStream[idx+56],BitStream[idx+57],BitStream[idx+58],BitStream[idx+59],BitStream[idx+60],BitStream[idx+61],BitStream[idx+62],BitStream[idx+63]); uint32_t code = bytebits_to_byte(BitStream+idx,32); uint32_t code2 = bytebits_to_byte(BitStream+idx+32,32); uint8_t version = bytebits_to_byte(BitStream+idx+27,8); //14,4 uint8_t facilitycode = bytebits_to_byte(BitStream+idx+18,8) ; uint16_t number = (bytebits_to_byte(BitStream+idx+36,8)<<8)|(bytebits_to_byte(BitStream+idx+45,8)); //36,9 PrintAndLog("IO Prox XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2); int i; for (i=0;i<64;++i) DemodBuffer[i]=BitStream[idx++]; DemodBufferLen=64; return 1; } int CmdFSKdemod(const char *Cmd) //old CmdFSKdemod needs updating { static const int LowTone[] = { 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1 }; static const int HighTone[] = { 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, }; int lowLen = sizeof (LowTone) / sizeof (int); int highLen = sizeof (HighTone) / sizeof (int); int convLen = (highLen > lowLen) ? highLen : lowLen; uint32_t hi = 0, lo = 0; int i, j; int minMark = 0, maxMark = 0; for (i = 0; i < GraphTraceLen - convLen; ++i) { int lowSum = 0, highSum = 0; for (j = 0; j < lowLen; ++j) { lowSum += LowTone[j]*GraphBuffer[i+j]; } for (j = 0; j < highLen; ++j) { highSum += HighTone[j] * GraphBuffer[i + j]; } lowSum = abs(100 * lowSum / lowLen); highSum = abs(100 * highSum / highLen); GraphBuffer[i] = (highSum << 16) | lowSum; } for(i = 0; i < GraphTraceLen - convLen - 16; ++i) { int lowTot = 0, highTot = 0; // 10 and 8 are f_s divided by f_l and f_h, rounded for (j = 0; j < 10; ++j) { lowTot += (GraphBuffer[i+j] & 0xffff); } for (j = 0; j < 8; j++) { highTot += (GraphBuffer[i + j] >> 16); } GraphBuffer[i] = lowTot - highTot; if (GraphBuffer[i] > maxMark) maxMark = GraphBuffer[i]; if (GraphBuffer[i] < minMark) minMark = GraphBuffer[i]; } GraphTraceLen -= (convLen + 16); RepaintGraphWindow(); // Find bit-sync (3 lo followed by 3 high) (HID ONLY) int max = 0, maxPos = 0; for (i = 0; i < 6000; ++i) { int dec = 0; for (j = 0; j < 3 * lowLen; ++j) { dec -= GraphBuffer[i + j]; } for (; j < 3 * (lowLen + highLen ); ++j) { dec += GraphBuffer[i + j]; } if (dec > max) { max = dec; maxPos = i; } } // place start of bit sync marker in graph GraphBuffer[maxPos] = maxMark; GraphBuffer[maxPos + 1] = minMark; maxPos += j; // place end of bit sync marker in graph GraphBuffer[maxPos] = maxMark; GraphBuffer[maxPos+1] = minMark; PrintAndLog("actual data bits start at sample %d", maxPos); PrintAndLog("length %d/%d", highLen, lowLen); uint8_t bits[46]; bits[sizeof(bits)-1] = '\0'; // find bit pairs and manchester decode them for (i = 0; i < arraylen(bits) - 1; ++i) { int dec = 0; for (j = 0; j < lowLen; ++j) { dec -= GraphBuffer[maxPos + j]; } for (; j < lowLen + highLen; ++j) { dec += GraphBuffer[maxPos + j]; } maxPos += j; // place inter bit marker in graph GraphBuffer[maxPos] = maxMark; GraphBuffer[maxPos + 1] = minMark; // hi and lo form a 64 bit pair hi = (hi << 1) | (lo >> 31); lo = (lo << 1); // store decoded bit as binary (in hi/lo) and text (in bits[]) if(dec < 0) { bits[i] = '1'; lo |= 1; } else { bits[i] = '0'; } } PrintAndLog("bits: '%s'", bits); PrintAndLog("hex: %08x %08x", hi, lo); return 0; } int CmdDetectNRZpskClockRate(const char *Cmd) { GetNRZpskClock("",0,0); return 0; } int PSKnrzDemod(const char *Cmd){ int invert=0; int clk=0; sscanf(Cmd, "%i %i", &clk, &invert); if (invert != 0 && invert != 1) { PrintAndLog("Invalid argument: %s", Cmd); return -1; } uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; size_t BitLen = getFromGraphBuf(BitStream); int errCnt=0; errCnt = pskNRZrawDemod(BitStream, &BitLen,&clk,&invert); if (errCnt<0|| BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first) //PrintAndLog("no data found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt); return -1; } PrintAndLog("Tried PSK/NRZ Demod using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen); //prime demod buffer for output setDemodBuf(BitStream,BitLen); return errCnt; } // Indala 26 bit decode // by marshmellow // optional arguments - same as CmdpskNRZrawDemod (clock & invert) int CmdIndalaDecode(const char *Cmd) { uint8_t verbose = 1; int ans; if (strlen(Cmd)>0){ if (Cmd[0]=='0'){ verbose=0; ans = PSKnrzDemod("32"); }else{ ans = PSKnrzDemod(Cmd); } } else{ //default to RF/32 ans = PSKnrzDemod("32"); } if (ans < 0){ if (verbose) PrintAndLog("Error1: %d",ans); return 0; } uint8_t invert=0; ans = indala26decode(DemodBuffer,(size_t *) &DemodBufferLen, &invert); if (ans < 1) { if (verbose) PrintAndLog("Error2: %d",ans); return -1; } char showbits[251]; if (invert) if (verbose) PrintAndLog("Had to invert bits"); //convert UID to HEX uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7; int idx; uid1=0; uid2=0; PrintAndLog("BitLen: %d",DemodBufferLen); if (DemodBufferLen==64){ for( idx=0; idx<64; idx++) { uid1=(uid1<<1)|(uid2>>31); if (DemodBuffer[idx] == 0) { uid2=(uid2<<1)|0; showbits[idx]='0'; } else { uid2=(uid2<<1)|1; showbits[idx]='1'; } } showbits[idx]='\0'; PrintAndLog("Indala UID=%s (%x%08x)", showbits, uid1, uid2); } else { uid3=0; uid4=0; uid5=0; uid6=0; uid7=0; for( idx=0; idx>31); uid2=(uid2<<1)|(uid3>>31); uid3=(uid3<<1)|(uid4>>31); uid4=(uid4<<1)|(uid5>>31); uid5=(uid5<<1)|(uid6>>31); uid6=(uid6<<1)|(uid7>>31); if (DemodBuffer[idx] == 0) { uid7=(uid7<<1)|0; showbits[idx]='0'; } else { uid7=(uid7<<1)|1; showbits[idx]='1'; } } showbits[idx]='\0'; PrintAndLog("Indala UID=%s (%x%08x%08x%08x%08x%08x%08x)", showbits, uid1, uid2, uid3, uid4, uid5, uid6, uid7); } return 1; } int CmdPskClean(const char *Cmd) { uint8_t bitStream[MAX_GRAPH_TRACE_LEN]={0}; size_t bitLen = getFromGraphBuf(bitStream); pskCleanWave(bitStream, bitLen); setGraphBuf(bitStream, bitLen); return 0; } //by marshmellow //takes 2 arguments - clock and invert both as integers //attempts to demodulate ask only //prints binary found and saves in graphbuffer for further commands int CmdpskNRZrawDemod(const char *Cmd) { uint8_t verbose = 1; int errCnt; if (strlen(Cmd)>0){ if (Cmd[0]=='0') verbose=0; } errCnt = PSKnrzDemod(Cmd); //output if (errCnt<0) return 0; if (errCnt>0){ if (verbose) PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt); } PrintAndLog("PSK or NRZ demoded bitstream:"); // Now output the bitstream to the scrollback by line of 16 bits printDemodBuff(); return 1; } int CmdGrid(const char *Cmd) { sscanf(Cmd, "%i %i", &PlotGridX, &PlotGridY); PlotGridXdefault= PlotGridX; PlotGridYdefault= PlotGridY; RepaintGraphWindow(); return 0; } int CmdHexsamples(const char *Cmd) { int i, j; int requested = 0; int offset = 0; char string_buf[25]; char* string_ptr = string_buf; uint8_t got[40000]; sscanf(Cmd, "%i %i", &requested, &offset); /* if no args send something */ if (requested == 0) { requested = 8; } if (offset + requested > sizeof(got)) { PrintAndLog("Tried to read past end of buffer, + > 40000"); return 0; } GetFromBigBuf(got,requested,offset); WaitForResponse(CMD_ACK,NULL); i = 0; for (j = 0; j < requested; j++) { i++; string_ptr += sprintf(string_ptr, "%02x ", got[j]); if (i == 8) { *(string_ptr - 1) = '\0'; // remove the trailing space PrintAndLog("%s", string_buf); string_buf[0] = '\0'; string_ptr = string_buf; i = 0; } if (j == requested - 1 && string_buf[0] != '\0') { // print any remaining bytes *(string_ptr - 1) = '\0'; PrintAndLog("%s", string_buf); string_buf[0] = '\0'; } } return 0; } int CmdHide(const char *Cmd) { HideGraphWindow(); return 0; } int CmdHpf(const char *Cmd) { int i; int accum = 0; for (i = 10; i < GraphTraceLen; ++i) accum += GraphBuffer[i]; accum /= (GraphTraceLen - 10); for (i = 0; i < GraphTraceLen; ++i) GraphBuffer[i] -= accum; RepaintGraphWindow(); return 0; } typedef struct { uint8_t * buffer; uint32_t numbits; uint32_t position; }BitstreamOut; bool _headBit( BitstreamOut *stream) { int bytepos = stream->position >> 3; // divide by 8 int bitpos = (stream->position++) & 7; // mask out 00000111 return (*(stream->buffer + bytepos) >> (7-bitpos)) & 1; } uint8_t getByte(uint8_t bits_per_sample, BitstreamOut* b) { int i; uint8_t val = 0; for(i =0 ; i < bits_per_sample; i++) { val |= (_headBit(b) << (7-i)); } return val; } int CmdSamples(const char *Cmd) { //If we get all but the last byte in bigbuf, // we don't have to worry about remaining trash // in the last byte in case the bits-per-sample // does not line up on byte boundaries uint8_t got[40000-1]; int n = strtol(Cmd, NULL, 0); if (n == 0) n = sizeof(got); if (n > sizeof(got)) n = sizeof(got); PrintAndLog("Reading %d bytes from device memory\n", n); GetFromBigBuf(got,n,0); PrintAndLog("Data fetched"); UsbCommand response; WaitForResponse(CMD_ACK, &response); uint8_t bits_per_sample = 8; //Old devices without this feature would send 0 at arg[0] if(response.arg[0] > 0) { sample_config *sc = (sample_config *) response.d.asBytes; PrintAndLog("Samples @ %d bits/smpl, decimation 1:%d ", sc->bits_per_sample , sc->decimation); bits_per_sample = sc->bits_per_sample; } if(bits_per_sample < 8) { PrintAndLog("Unpacking..."); BitstreamOut bout = { got, bits_per_sample * n, 0}; int j =0; for (j = 0; j * bits_per_sample < n * 8 && j < sizeof(GraphBuffer); j++) { uint8_t sample = getByte(bits_per_sample, &bout); GraphBuffer[j] = ((int) sample )- 128; } GraphTraceLen = j; PrintAndLog("Unpacked %d samples" , j ); }else { for (int j = 0; j < n; j++) { GraphBuffer[j] = ((int)got[j]) - 128; } GraphTraceLen = n; } RepaintGraphWindow(); return 0; } int CmdTuneSamples(const char *Cmd) { int timeout = 0; printf("\nMeasuring antenna characteristics, please wait..."); UsbCommand c = {CMD_MEASURE_ANTENNA_TUNING}; SendCommand(&c); UsbCommand resp; while(!WaitForResponseTimeout(CMD_MEASURED_ANTENNA_TUNING,&resp,1000)) { timeout++; printf("."); if (timeout > 7) { PrintAndLog("\nNo response from Proxmark. Aborting..."); return 1; } } int peakv, peakf; int vLf125, vLf134, vHf; vLf125 = resp.arg[0] & 0xffff; vLf134 = resp.arg[0] >> 16; vHf = resp.arg[1] & 0xffff;; peakf = resp.arg[2] & 0xffff; peakv = resp.arg[2] >> 16; PrintAndLog(""); PrintAndLog("# LF antenna: %5.2f V @ 125.00 kHz", vLf125/1000.0); PrintAndLog("# LF antenna: %5.2f V @ 134.00 kHz", vLf134/1000.0); PrintAndLog("# LF optimal: %5.2f V @%9.2f kHz", peakv/1000.0, 12000.0/(peakf+1)); PrintAndLog("# HF antenna: %5.2f V @ 13.56 MHz", vHf/1000.0); if (peakv<2000) PrintAndLog("# Your LF antenna is unusable."); else if (peakv<10000) PrintAndLog("# Your LF antenna is marginal."); if (vHf<2000) PrintAndLog("# Your HF antenna is unusable."); else if (vHf<5000) PrintAndLog("# Your HF antenna is marginal."); for (int i = 0; i < 256; i++) { GraphBuffer[i] = resp.d.asBytes[i] - 128; } PrintAndLog("Done! Divisor 89 is 134khz, 95 is 125khz.\n"); PrintAndLog("\n"); GraphTraceLen = 256; ShowGraphWindow(); return 0; } int CmdLoad(const char *Cmd) { char filename[FILE_PATH_SIZE] = {0x00}; int len = 0; len = strlen(Cmd); if (len > FILE_PATH_SIZE) len = FILE_PATH_SIZE; memcpy(filename, Cmd, len); FILE *f = fopen(filename, "r"); if (!f) { PrintAndLog("couldn't open '%s'", filename); return 0; } GraphTraceLen = 0; char line[80]; while (fgets(line, sizeof (line), f)) { GraphBuffer[GraphTraceLen] = atoi(line); GraphTraceLen++; } fclose(f); PrintAndLog("loaded %d samples", GraphTraceLen); RepaintGraphWindow(); return 0; } int CmdLtrim(const char *Cmd) { int ds = atoi(Cmd); for (int i = ds; i < GraphTraceLen; ++i) GraphBuffer[i-ds] = GraphBuffer[i]; GraphTraceLen -= ds; RepaintGraphWindow(); return 0; } int CmdRtrim(const char *Cmd) { int ds = atoi(Cmd); GraphTraceLen = ds; RepaintGraphWindow(); return 0; } /* * Manchester demodulate a bitstream. The bitstream needs to be already in * the GraphBuffer as 0 and 1 values * * Give the clock rate as argument in order to help the sync - the algorithm * resyncs at each pulse anyway. * * Not optimized by any means, this is the 1st time I'm writing this type of * routine, feel free to improve... * * 1st argument: clock rate (as number of samples per clock rate) * Typical values can be 64, 32, 128... */ int CmdManchesterDemod(const char *Cmd) { int i, j, invert= 0; int bit; int clock; int lastval = 0; int low = 0; int high = 0; int hithigh, hitlow, first; int lc = 0; int bitidx = 0; int bit2idx = 0; int warnings = 0; /* check if we're inverting output */ if (*Cmd == 'i') { PrintAndLog("Inverting output"); invert = 1; ++Cmd; do ++Cmd; while(*Cmd == ' '); // in case a 2nd argument was given } /* Holds the decoded bitstream: each clock period contains 2 bits */ /* later simplified to 1 bit after manchester decoding. */ /* Add 10 bits to allow for noisy / uncertain traces without aborting */ /* int BitStream[GraphTraceLen*2/clock+10]; */ /* But it does not work if compiling on WIndows: therefore we just allocate a */ /* large array */ uint8_t BitStream[MAX_GRAPH_TRACE_LEN] = {0}; /* Detect high and lows */ for (i = 0; i < GraphTraceLen; i++) { if (GraphBuffer[i] > high) high = GraphBuffer[i]; else if (GraphBuffer[i] < low) low = GraphBuffer[i]; } /* Get our clock */ clock = GetClock(Cmd, high, 1); int tolerance = clock/4; /* Detect first transition */ /* Lo-Hi (arbitrary) */ /* skip to the first high */ for (i= 0; i < GraphTraceLen; i++) if (GraphBuffer[i] == high) break; /* now look for the first low */ for (; i < GraphTraceLen; i++) { if (GraphBuffer[i] == low) { lastval = i; break; } } /* If we're not working with 1/0s, demod based off clock */ if (high != 1) { bit = 0; /* We assume the 1st bit is zero, it may not be * the case: this routine (I think) has an init problem. * Ed. */ for (; i < (int)(GraphTraceLen / clock); i++) { hithigh = 0; hitlow = 0; first = 1; /* Find out if we hit both high and low peaks */ for (j = 0; j < clock; j++) { if (GraphBuffer[(i * clock) + j] == high) hithigh = 1; else if (GraphBuffer[(i * clock) + j] == low) hitlow = 1; /* it doesn't count if it's the first part of our read because it's really just trailing from the last sequence */ if (first && (hithigh || hitlow)) hithigh = hitlow = 0; else first = 0; if (hithigh && hitlow) break; } /* If we didn't hit both high and low peaks, we had a bit transition */ if (!hithigh || !hitlow) bit ^= 1; BitStream[bit2idx++] = bit ^ invert; } } /* standard 1/0 bitstream */ else { /* Then detect duration between 2 successive transitions */ for (bitidx = 1; i < GraphTraceLen; i++) { if (GraphBuffer[i-1] != GraphBuffer[i]) { lc = i-lastval; lastval = i; // Error check: if bitidx becomes too large, we do not // have a Manchester encoded bitstream or the clock is really // wrong! if (bitidx > (GraphTraceLen*2/clock+8) ) { PrintAndLog("Error: the clock you gave is probably wrong, aborting."); return 0; } // Then switch depending on lc length: // Tolerance is 1/4 of clock rate (arbitrary) if (abs(lc-clock/2) < tolerance) { // Short pulse : either "1" or "0" BitStream[bitidx++]=GraphBuffer[i-1]; } else if (abs(lc-clock) < tolerance) { // Long pulse: either "11" or "00" BitStream[bitidx++]=GraphBuffer[i-1]; BitStream[bitidx++]=GraphBuffer[i-1]; } else { // Error warnings++; PrintAndLog("Warning: Manchester decode error for pulse width detection."); PrintAndLog("(too many of those messages mean either the stream is not Manchester encoded, or clock is wrong)"); if (warnings > 10) { PrintAndLog("Error: too many detection errors, aborting."); return 0; } } } } // At this stage, we now have a bitstream of "01" ("1") or "10" ("0"), parse it into final decoded bitstream // Actually, we overwrite BitStream with the new decoded bitstream, we just need to be careful // to stop output at the final bitidx2 value, not bitidx for (i = 0; i < bitidx; i += 2) { if ((BitStream[i] == 0) && (BitStream[i+1] == 1)) { BitStream[bit2idx++] = 1 ^ invert; } else if ((BitStream[i] == 1) && (BitStream[i+1] == 0)) { BitStream[bit2idx++] = 0 ^ invert; } else { // We cannot end up in this state, this means we are unsynchronized, // move up 1 bit: i++; warnings++; PrintAndLog("Unsynchronized, resync..."); PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)"); if (warnings > 10) { PrintAndLog("Error: too many decode errors, aborting."); return 0; } } } } PrintAndLog("Manchester decoded bitstream"); // Now output the bitstream to the scrollback by line of 16 bits for (i = 0; i < (bit2idx-16); i+=16) { PrintAndLog("%i %i %i %i %i %i %i %i %i %i %i %i %i %i %i %i", BitStream[i], BitStream[i+1], BitStream[i+2], BitStream[i+3], BitStream[i+4], BitStream[i+5], BitStream[i+6], BitStream[i+7], BitStream[i+8], BitStream[i+9], BitStream[i+10], BitStream[i+11], BitStream[i+12], BitStream[i+13], BitStream[i+14], BitStream[i+15]); } return 0; } /* Modulate our data into manchester */ int CmdManchesterMod(const char *Cmd) { int i, j; int clock; int bit, lastbit, wave; /* Get our clock */ clock = GetClock(Cmd, 0, 1); wave = 0; lastbit = 1; for (i = 0; i < (int)(GraphTraceLen / clock); i++) { bit = GraphBuffer[i * clock] ^ 1; for (j = 0; j < (int)(clock/2); j++) GraphBuffer[(i * clock) + j] = bit ^ lastbit ^ wave; for (j = (int)(clock/2); j < clock; j++) GraphBuffer[(i * clock) + j] = bit ^ lastbit ^ wave ^ 1; /* Keep track of how we start our wave and if we changed or not this time */ wave ^= bit ^ lastbit; lastbit = bit; } RepaintGraphWindow(); return 0; } int CmdNorm(const char *Cmd) { int i; int max = INT_MIN, min = INT_MAX; for (i = 10; i < GraphTraceLen; ++i) { if (GraphBuffer[i] > max) max = GraphBuffer[i]; if (GraphBuffer[i] < min) min = GraphBuffer[i]; } if (max != min) { for (i = 0; i < GraphTraceLen; ++i) { GraphBuffer[i] = (GraphBuffer[i] - ((max + min) / 2)) * 256 / (max - min); //marshmelow: adjusted *1000 to *256 to make +/- 128 so demod commands still work } } RepaintGraphWindow(); return 0; } int CmdPlot(const char *Cmd) { ShowGraphWindow(); return 0; } int CmdSave(const char *Cmd) { char filename[FILE_PATH_SIZE] = {0x00}; int len = 0; len = strlen(Cmd); if (len > FILE_PATH_SIZE) len = FILE_PATH_SIZE; memcpy(filename, Cmd, len); FILE *f = fopen(filename, "w"); if(!f) { PrintAndLog("couldn't open '%s'", filename); return 0; } int i; for (i = 0; i < GraphTraceLen; i++) { fprintf(f, "%d\n", GraphBuffer[i]); } fclose(f); PrintAndLog("saved to '%s'", Cmd); return 0; } int CmdScale(const char *Cmd) { CursorScaleFactor = atoi(Cmd); if (CursorScaleFactor == 0) { PrintAndLog("bad, can't have zero scale"); CursorScaleFactor = 1; } RepaintGraphWindow(); return 0; } int CmdThreshold(const char *Cmd) { int threshold = atoi(Cmd); for (int i = 0; i < GraphTraceLen; ++i) { if (GraphBuffer[i] >= threshold) GraphBuffer[i] = 1; else GraphBuffer[i] = -1; } RepaintGraphWindow(); return 0; } int CmdDirectionalThreshold(const char *Cmd) { int8_t upThres = param_get8(Cmd, 0); int8_t downThres = param_get8(Cmd, 1); printf("Applying Up Threshold: %d, Down Threshold: %d\n", upThres, downThres); int lastValue = GraphBuffer[0]; GraphBuffer[0] = 0; // Will be changed at the end, but init 0 as we adjust to last samples value if no threshold kicks in. for (int i = 1; i < GraphTraceLen; ++i) { // Apply first threshold to samples heading up if (GraphBuffer[i] >= upThres && GraphBuffer[i] > lastValue) { lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it. GraphBuffer[i] = 1; } // Apply second threshold to samples heading down else if (GraphBuffer[i] <= downThres && GraphBuffer[i] < lastValue) { lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it. GraphBuffer[i] = -1; } else { lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it. GraphBuffer[i] = GraphBuffer[i-1]; } } GraphBuffer[0] = GraphBuffer[1]; // Aline with first edited sample. RepaintGraphWindow(); return 0; } int CmdZerocrossings(const char *Cmd) { // Zero-crossings aren't meaningful unless the signal is zero-mean. CmdHpf(""); int sign = 1; int zc = 0; int lastZc = 0; for (int i = 0; i < GraphTraceLen; ++i) { if (GraphBuffer[i] * sign >= 0) { // No change in sign, reproduce the previous sample count. zc++; GraphBuffer[i] = lastZc; } else { // Change in sign, reset the sample count. sign = -sign; GraphBuffer[i] = lastZc; if (sign > 0) { lastZc = zc; zc = 0; } } } RepaintGraphWindow(); return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"amp", CmdAmp, 1, "Amplify peaks"}, {"askdemod", Cmdaskdemod, 1, "<0 or 1> -- Attempt to demodulate simple ASK tags"}, {"askmandemod", Cmdaskmandemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate ASK/Manchester tags and output binary (args optional[clock will try Auto-detect])"}, {"askrawdemod", Cmdaskrawdemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate ASK tags and output binary (args optional[clock will try Auto-detect])"}, {"autocorr", CmdAutoCorr, 1, " -- Autocorrelation over window"}, {"biphaserawdecode",CmdBiphaseDecodeRaw,1,"[offset] Biphase decode binary stream already in graph buffer (offset = bit to start decode from)"}, {"bitsamples", CmdBitsamples, 0, "Get raw samples as bitstring"}, {"bitstream", CmdBitstream, 1, "[clock rate] -- Convert waveform into a bitstream"}, {"buffclear", CmdBuffClear, 1, "Clear sample buffer and graph window"}, {"dec", CmdDec, 1, "Decimate samples"}, {"detectclock", CmdDetectClockRate, 1, "Detect ASK clock rate"}, {"fskdemod", CmdFSKdemod, 1, "Demodulate graph window as a HID FSK"}, {"fskhiddemod", CmdFSKdemodHID, 1, "Demodulate graph window as a HID FSK using raw"}, {"fskiodemod", CmdFSKdemodIO, 1, "Demodulate graph window as an IO Prox FSK using raw"}, {"fskrawdemod", CmdFSKrawdemod, 1, "[clock rate] [invert] [rchigh] [rclow] Demodulate graph window from FSK to binary (clock = 50)(invert = 1|0)(rchigh = 10)(rclow=8)"}, {"grid", CmdGrid, 1, " -- overlay grid on graph window, use zero value to turn off either"}, {"hexsamples", CmdHexsamples, 0, " [] -- Dump big buffer as hex bytes"}, {"hide", CmdHide, 1, "Hide graph window"}, {"hpf", CmdHpf, 1, "Remove DC offset from trace"}, {"load", CmdLoad, 1, " -- Load trace (to graph window"}, {"ltrim", CmdLtrim, 1, " -- Trim samples from left of trace"}, {"rtrim", CmdRtrim, 1, " -- Trim samples from right of trace"}, {"mandemod", CmdManchesterDemod, 1, "[i] [clock rate] -- Manchester demodulate binary stream (option 'i' to invert output)"}, {"manrawdecode", Cmdmandecoderaw, 1, "Manchester decode binary stream already in graph buffer"}, {"manmod", CmdManchesterMod, 1, "[clock rate] -- Manchester modulate a binary stream"}, {"norm", CmdNorm, 1, "Normalize max/min to +/-128"}, {"plot", CmdPlot, 1, "Show graph window (hit 'h' in window for keystroke help)"}, {"pskclean", CmdPskClean, 1, "Attempt to clean psk wave"}, {"pskdetectclock",CmdDetectNRZpskClockRate, 1, "Detect ASK, PSK, or NRZ clock rate"}, {"pskindalademod",CmdIndalaDecode, 1, "[clock] [invert<0|1>] -- Attempt to demodulate psk indala tags and output ID binary & hex (args optional[clock will try Auto-detect])"}, {"psknrzrawdemod",CmdpskNRZrawDemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate psk or nrz tags and output binary (args optional[clock will try Auto-detect])"}, {"samples", CmdSamples, 0, "[512 - 40000] -- Get raw samples for graph window"}, {"save", CmdSave, 1, " -- Save trace (from graph window)"}, {"scale", CmdScale, 1, " -- Set cursor display scale"}, {"threshold", CmdThreshold, 1, " -- Maximize/minimize every value in the graph window depending on threshold"}, {"dirthreshold", CmdDirectionalThreshold, 1, " -- Max rising higher up-thres/ Min falling lower down-thres, keep rest as prev."}, {"tune", CmdTuneSamples, 0, "Get hw tune samples for graph window"}, {"zerocrossings", CmdZerocrossings, 1, "Count time between zero-crossings"}, {NULL, NULL, 0, NULL} }; int CmdData(const char *Cmd) { CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }