//----------------------------------------------------------------------------- // Copyright (C) 2011,2012 Merlok // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency MIFARE commands //----------------------------------------------------------------------------- #include "cmdhfmf.h" static int CmdHelp(const char *Cmd); int CmdHF14AMifare(const char *Cmd) { uint32_t uid = 0; uint32_t nt = 0, nr = 0; uint64_t par_list = 0, ks_list = 0, r_key = 0; uint8_t isOK = 0; uint8_t keyBlock[8] = {0}; UsbCommand c = {CMD_READER_MIFARE, {true, 0, 0}}; // message printf("-------------------------------------------------------------------------\n"); printf("Executing command. Expected execution time: 25sec on average :-)\n"); printf("Press the key on the proxmark3 device to abort both proxmark3 and client.\n"); printf("-------------------------------------------------------------------------\n"); start: clearCommandBuffer(); SendCommand(&c); //flush queue while (ukbhit()) getchar(); // wait cycle while (true) { printf("."); fflush(stdout); if (ukbhit()) { getchar(); printf("\naborted via keyboard!\n"); break; } UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1000)) { isOK = resp.arg[0] & 0xff; uid = (uint32_t)bytes_to_num(resp.d.asBytes + 0, 4); nt = (uint32_t)bytes_to_num(resp.d.asBytes + 4, 4); par_list = bytes_to_num(resp.d.asBytes + 8, 8); ks_list = bytes_to_num(resp.d.asBytes + 16, 8); nr = bytes_to_num(resp.d.asBytes + 24, 4); printf("\n\n"); if (!isOK) PrintAndLog("Proxmark can't get statistic info. Execution aborted.\n"); break; } } printf("\n"); // error if (isOK != 1) return 1; // execute original function from util nonce2key if (nonce2key(uid, nt, nr, par_list, ks_list, &r_key)) { isOK = 2; PrintAndLog("Key not found (lfsr_common_prefix list is null). Nt=%08x", nt); } else { printf("------------------------------------------------------------------\n"); PrintAndLog("Key found:%012"llx" \n", r_key); num_to_bytes(r_key, 6, keyBlock); isOK = mfCheckKeys(0, 0, 1, keyBlock, &r_key); } if (!isOK) PrintAndLog("Found valid key:%012"llx, r_key); else { if (isOK != 2) PrintAndLog("Found invalid key. "); PrintAndLog("Failing is expected to happen in 25%% of all cases. Trying again with a different reader nonce..."); c.arg[0] = false; goto start; } return 0; } int CmdHF14AMfWrBl(const char *Cmd) { uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t bldata[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; char cmdp = 0x00; if (strlen(Cmd)<3) { PrintAndLog("Usage: hf mf wrbl "); PrintAndLog(" sample: hf mf wrbl 0 A FFFFFFFFFFFF 000102030405060708090A0B0C0D0E0F"); return 0; } blockNo = param_get8(Cmd, 0); cmdp = param_getchar(Cmd, 1); if (cmdp == 0x00) { PrintAndLog("Key type must be A or B"); return 1; } if (cmdp != 'A' && cmdp != 'a') keyType = 1; if (param_gethex(Cmd, 2, key, 12)) { PrintAndLog("Key must include 12 HEX symbols"); return 1; } if (param_gethex(Cmd, 3, bldata, 32)) { PrintAndLog("Block data must include 32 HEX symbols"); return 1; } PrintAndLog("--block no:%02x key type:%02x key:%s", blockNo, keyType, sprint_hex(key, 6)); PrintAndLog("--data: %s", sprint_hex(bldata, 16)); UsbCommand c = {CMD_MIFARE_WRITEBL, {blockNo, keyType, 0}}; memcpy(c.d.asBytes, key, 6); memcpy(c.d.asBytes + 10, bldata, 16); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); } return 0; } int CmdHF14AMfUWrBl(const char *Cmd) { uint8_t blockNo = 0; uint8_t bldata[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; UsbCommand resp; if (strlen(Cmd)<3) { PrintAndLog("Usage: hf mf uwrbl "); PrintAndLog(" sample: hf mf uwrbl 0 01020304"); return 0; } blockNo = param_get8(Cmd, 0); if (param_gethex(Cmd, 1, bldata, 8)) { PrintAndLog("Block data must include 8 HEX symbols"); return 1; } switch(blockNo) { case 0: PrintAndLog("Access Denied"); break; case 1: PrintAndLog("Access Denied"); break; case 2: PrintAndLog("--specialblock no:%02x", blockNo); PrintAndLog("--data: %s", sprint_hex(bldata, 4)); UsbCommand c = {CMD_MIFAREU_WRITEBL, {blockNo}}; memcpy(c.d.asBytes, bldata, 4); SendCommand(&c); if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); } break; case 3: PrintAndLog("--specialblock no:%02x", blockNo); PrintAndLog("--data: %s", sprint_hex(bldata, 4)); UsbCommand d = {CMD_MIFAREU_WRITEBL, {blockNo}}; memcpy(d.d.asBytes,bldata, 4); SendCommand(&d); if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); } break; default: PrintAndLog("--block no:%02x", blockNo); PrintAndLog("--data: %s", sprint_hex(bldata, 4)); //UsbCommand e = {CMD_MIFAREU_WRITEBL_COMPAT, {blockNo}}; //memcpy(e.d.asBytes,bldata, 16); UsbCommand e = {CMD_MIFAREU_WRITEBL, {blockNo}}; memcpy(e.d.asBytes,bldata, 4); SendCommand(&e); if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); } break; } return 0; } int CmdHF14AMfRdBl(const char *Cmd) { uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; char cmdp = 0x00; if (strlen(Cmd)<3) { PrintAndLog("Usage: hf mf rdbl "); PrintAndLog(" sample: hf mf rdbl 0 A FFFFFFFFFFFF "); return 0; } blockNo = param_get8(Cmd, 0); cmdp = param_getchar(Cmd, 1); if (cmdp == 0x00) { PrintAndLog("Key type must be A or B"); return 1; } if (cmdp != 'A' && cmdp != 'a') keyType = 1; if (param_gethex(Cmd, 2, key, 12)) { PrintAndLog("Key must include 12 HEX symbols"); return 1; } PrintAndLog("--block no:%02x key type:%02x key:%s ", blockNo, keyType, sprint_hex(key, 6)); UsbCommand c = {CMD_MIFARE_READBL, {blockNo, keyType, 0}}; memcpy(c.d.asBytes, key, 6); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; uint8_t * data = resp.d.asBytes; if (isOK) PrintAndLog("isOk:%02x data:%s", isOK, sprint_hex(data, 16)); else PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); } return 0; } int CmdHF14AMfURdBl(const char *Cmd) { uint8_t blockNo = 0; if (strlen(Cmd)<1) { PrintAndLog("Usage: hf mf urdbl "); PrintAndLog(" sample: hf mf urdbl 0"); return 0; } blockNo = param_get8(Cmd, 0); PrintAndLog("--block no:%02x", blockNo); UsbCommand c = {CMD_MIFAREU_READBL, {blockNo}}; SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; uint8_t * data = resp.d.asBytes; if (isOK) PrintAndLog("isOk:%02x data:%s", isOK, sprint_hex(data, 4)); else PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); } return 0; } int CmdHF14AMfURdCard(const char *Cmd) { int i; uint8_t sectorNo = 0; uint8_t *lockbytes_t=NULL; uint8_t lockbytes[2]={0,0}; bool bit[16]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; uint8_t isOK = 0; uint8_t * data = NULL; if (sectorNo > 15) { PrintAndLog("Sector number must be less than 16"); return 1; } PrintAndLog("Attempting to Read Ultralight... "); UsbCommand c = {CMD_MIFAREU_READCARD, {sectorNo}}; SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { isOK = resp.arg[0] & 0xff; data = resp.d.asBytes; PrintAndLog("isOk:%02x", isOK); if (isOK) for (i = 0; i < 16; i++) { switch(i){ case 2: //process lock bytes lockbytes_t=data+(i*4); lockbytes[0]=lockbytes_t[2]; lockbytes[1]=lockbytes_t[3]; for(int j=0; j<16; j++){ bit[j]=lockbytes[j/8] & ( 1 <<(7-j%8)); } //PrintAndLog("LB %02x %02x", lockbytes[0],lockbytes[1]); //PrintAndLog("LB2b %02x %02x %02x %02x %02x %02x %02x %02x",bit[8],bit[9],bit[10],bit[11],bit[12],bit[13],bit[14],bit[15]); PrintAndLog("Block %02x:%s ", i,sprint_hex(data + i * 4, 4)); break; case 3: PrintAndLog("Block %02x:%s [%d]", i,sprint_hex(data + i * 4, 4),bit[4]); break; case 4: PrintAndLog("Block %02x:%s [%d]", i,sprint_hex(data + i * 4, 4),bit[3]); break; case 5: PrintAndLog("Block %02x:%s [%d]", i,sprint_hex(data + i * 4, 4),bit[2]); break; case 6: PrintAndLog("Block %02x:%s [%d]", i,sprint_hex(data + i * 4, 4),bit[1]); break; case 7: PrintAndLog("Block %02x:%s [%d]", i,sprint_hex(data + i * 4, 4),bit[0]); break; case 8: PrintAndLog("Block %02x:%s [%d]", i,sprint_hex(data + i * 4, 4),bit[15]); break; case 9: PrintAndLog("Block %02x:%s [%d]", i,sprint_hex(data + i * 4, 4),bit[14]); break; case 10: PrintAndLog("Block %02x:%s [%d]", i,sprint_hex(data + i * 4, 4),bit[13]); break; case 11: PrintAndLog("Block %02x:%s [%d]", i,sprint_hex(data + i * 4, 4),bit[12]); break; case 12: PrintAndLog("Block %02x:%s [%d]", i,sprint_hex(data + i * 4, 4),bit[11]); break; case 13: PrintAndLog("Block %02x:%s [%d]", i,sprint_hex(data + i * 4, 4),bit[10]); break; case 14: PrintAndLog("Block %02x:%s [%d]", i,sprint_hex(data + i * 4, 4),bit[9]); break; case 15: PrintAndLog("Block %02x:%s [%d]", i,sprint_hex(data + i * 4, 4),bit[8]); break; default: PrintAndLog("Block %02x:%s ", i,sprint_hex(data + i * 4, 4)); break; } } } else { PrintAndLog("Command1 execute timeout"); } return 0; } int CmdHF14AMfRdSc(const char *Cmd) { int i; uint8_t sectorNo = 0; uint8_t keyType = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t isOK = 0; uint8_t * data = NULL; char cmdp = 0x00; if (strlen(Cmd)<3) { PrintAndLog("Usage: hf mf rdsc "); PrintAndLog(" sample: hf mf rdsc 0 A FFFFFFFFFFFF "); return 0; } sectorNo = param_get8(Cmd, 0); if (sectorNo > 63) { PrintAndLog("Sector number must be less than 64"); return 1; } cmdp = param_getchar(Cmd, 1); if (cmdp == 0x00) { PrintAndLog("Key type must be A or B"); return 1; } if (cmdp != 'A' && cmdp != 'a') keyType = 1; if (param_gethex(Cmd, 2, key, 12)) { PrintAndLog("Key must include 12 HEX symbols"); return 1; } PrintAndLog("--sector no:%02x key type:%02x key:%s ", sectorNo, keyType, sprint_hex(key, 6)); UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}}; memcpy(c.d.asBytes, key, 6); SendCommand(&c); PrintAndLog(" "); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { isOK = resp.arg[0] & 0xff; data = resp.d.asBytes; PrintAndLog("isOk:%02x", isOK); if (isOK) for (i = 0; i < 2; i++) { PrintAndLog("data:%s", sprint_hex(data + i * 16, 16)); } } else { PrintAndLog("Command1 execute timeout"); } // response2 PrintAndLog(" "); if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { isOK = resp.arg[0] & 0xff; data = resp.d.asBytes; if (isOK) for (i = 0; i < 2; i++) { PrintAndLog("data:%s", sprint_hex(data + i * 16, 16)); } } else { PrintAndLog("Command2 execute timeout"); } return 0; } int CmdHF14AMfDump(const char *Cmd) { int i, j; uint8_t keyA[40][6]; uint8_t keyB[40][6]; uint8_t rights[40][4]; FILE *fin; FILE *fout; UsbCommand resp; if ((fin = fopen("dumpkeys.bin","rb")) == NULL) { PrintAndLog("Could not find file dumpkeys.bin"); return 1; } if ((fout = fopen("dumpdata.bin","wb")) == NULL) { PrintAndLog("Could not create file name dumpdata.bin"); return 1; } // Read key file for (i=0 ; i<16 ; i++) { if (fread( keyA[i], 1, 6, fin ) == 0) { PrintAndLog("File reading error."); return 2; } } for (i=0 ; i<16 ; i++) { if (fread( keyB[i], 1, 6, fin ) == 0) { PrintAndLog("File reading error."); return 2; } } // Read access rights to sectors PrintAndLog("|-----------------------------------------|"); PrintAndLog("|------ Reading sector access bits...-----|"); PrintAndLog("|-----------------------------------------|"); for (i = 0 ; i < 16 ; i++) { UsbCommand c = {CMD_MIFARE_READBL, {4*i + 3, 0, 0}}; memcpy(c.d.asBytes, keyA[i], 6); SendCommand(&c); if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; uint8_t *data = resp.d.asBytes; if (isOK){ rights[i][0] = ((data[7] & 0x10)>>4) | ((data[8] & 0x1)<<1) | ((data[8] & 0x10)>>2); rights[i][1] = ((data[7] & 0x20)>>5) | ((data[8] & 0x2)<<0) | ((data[8] & 0x20)>>3); rights[i][2] = ((data[7] & 0x40)>>6) | ((data[8] & 0x4)>>1) | ((data[8] & 0x40)>>4); rights[i][3] = ((data[7] & 0x80)>>7) | ((data[8] & 0x8)>>2) | ((data[8] & 0x80)>>5); } else{ PrintAndLog("Could not get access rights for block %d", i); } } else { PrintAndLog("Command execute timeout"); } } // Read blocks and print to file PrintAndLog("|-----------------------------------------|"); PrintAndLog("|----- Dumping all blocks to file... -----|"); PrintAndLog("|-----------------------------------------|"); for (i=0 ; i<16 ; i++) { for (j=0 ; j<4 ; j++) { bool received = false; if (j == 3){ UsbCommand c = {CMD_MIFARE_READBL, {i*4 + j, 0, 0}}; memcpy(c.d.asBytes, keyA[i], 6); SendCommand(&c); received = WaitForResponseTimeout(CMD_ACK,&resp,1500); } else{ if ((rights[i][j] == 6) | (rights[i][j] == 5)) { UsbCommand c = {CMD_MIFARE_READBL, {i*4+j, 1, 0}}; memcpy(c.d.asBytes, keyB[i], 6); SendCommand(&c); received = WaitForResponseTimeout(CMD_ACK,&resp,1500); } else if (rights[i][j] == 7) { PrintAndLog("Access rights do not allow reading of sector %d block %d",i,j); } else { UsbCommand c = {CMD_MIFARE_READBL, {i*4+j, 0, 0}}; memcpy(c.d.asBytes, keyA[i], 6); SendCommand(&c); received = WaitForResponseTimeout(CMD_ACK,&resp,1500); } } if (received) { uint8_t isOK = resp.arg[0] & 0xff; uint8_t *data = resp.d.asBytes; if (j == 3) { data[0] = (keyA[i][0]); data[1] = (keyA[i][1]); data[2] = (keyA[i][2]); data[3] = (keyA[i][3]); data[4] = (keyA[i][4]); data[5] = (keyA[i][5]); data[10] = (keyB[i][0]); data[11] = (keyB[i][1]); data[12] = (keyB[i][2]); data[13] = (keyB[i][3]); data[14] = (keyB[i][4]); data[15] = (keyB[i][5]); } if (isOK) { fwrite ( data, 1, 16, fout ); PrintAndLog("Dumped card data into 'dumpdata.bin'"); } else { PrintAndLog("Could not get access rights for block %d", i); } } else { PrintAndLog("Command execute timeout"); } } } fclose(fin); fclose(fout); return 0; } int CmdHF14AMfRestore(const char *Cmd) { int i,j; uint8_t keyType = 0; uint8_t key[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; uint8_t bldata[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; uint8_t keyA[16][6]; uint8_t keyB[16][6]; FILE *fdump; FILE *fkeys; if ((fdump = fopen("dumpdata.bin","rb")) == NULL) { PrintAndLog("Could not find file dumpdata.bin"); return 1; } if ((fkeys = fopen("dumpkeys.bin","rb")) == NULL) { PrintAndLog("Could not find file dumpkeys.bin"); return 1; } for (i=0 ; i<16 ; i++) { if (fread(keyA[i], 1, 6, fkeys) == 0) { PrintAndLog("File reading error."); return 2; } } for (i=0 ; i<16 ; i++) { if (fread(keyB[i], 1, 6, fkeys) == 0) { PrintAndLog("File reading error."); return 2; } } PrintAndLog("Restoring dumpdata.bin to card"); for (i=0 ; i<16 ; i++) { for( j=0 ; j<4 ; j++) { UsbCommand c = {CMD_MIFARE_WRITEBL, {i*4 + j, keyType, 0}}; memcpy(c.d.asBytes, key, 6); if (fread(bldata, 1, 16, fdump) == 0) { PrintAndLog("File reading error."); return 2; } if (j == 3) { bldata[0] = (keyA[i][0]); bldata[1] = (keyA[i][1]); bldata[2] = (keyA[i][2]); bldata[3] = (keyA[i][3]); bldata[4] = (keyA[i][4]); bldata[5] = (keyA[i][5]); bldata[10] = (keyB[i][0]); bldata[11] = (keyB[i][1]); bldata[12] = (keyB[i][2]); bldata[13] = (keyB[i][3]); bldata[14] = (keyB[i][4]); bldata[15] = (keyB[i][5]); } PrintAndLog("Writing to block %2d: %s", i*4+j, sprint_hex(bldata, 16)); /* PrintAndLog("Writing to block %2d: %s Confirm? [Y,N]", i*4+j, sprint_hex(bldata, 16)); scanf("%c",&ch); if ((ch != 'y') && (ch != 'Y')){ PrintAndLog("Aborting !"); return 1; } */ memcpy(c.d.asBytes + 10, bldata, 16); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); } } } fclose(fdump); fclose(fkeys); return 0; } int CmdHF14AMfNested(const char *Cmd) { int i, j, res, iterations; sector * e_sector = NULL; uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t trgBlockNo = 0; uint8_t trgKeyType = 0; uint8_t blDiff = 0; int SectorsCnt = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t keyBlock[6*6]; uint64_t key64 = 0; int transferToEml = 0; int createDumpFile = 0; FILE *fkeys; uint8_t standart[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; uint8_t tempkey[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; char cmdp, ctmp; if (strlen(Cmd)<3) { PrintAndLog("Usage:"); PrintAndLog(" all sectors: hf mf nested [t,d]"); PrintAndLog(" one sector: hf mf nested o "); PrintAndLog(" [t]"); PrintAndLog("card memory - 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, - 1K"); PrintAndLog("t - transfer keys into emulator memory"); PrintAndLog("d - write keys to binary file"); PrintAndLog(" "); PrintAndLog(" sample1: hf mf nested 1 0 A FFFFFFFFFFFF "); PrintAndLog(" sample1: hf mf nested 1 0 A FFFFFFFFFFFF t "); PrintAndLog(" sample1: hf mf nested 1 0 A FFFFFFFFFFFF d "); PrintAndLog(" sample2: hf mf nested o 0 A FFFFFFFFFFFF 4 A"); return 0; } cmdp = param_getchar(Cmd, 0); blockNo = param_get8(Cmd, 1); ctmp = param_getchar(Cmd, 2); if (ctmp == 0x00) { PrintAndLog("Key type must be A or B"); return 1; } if (ctmp != 'A' && ctmp != 'a') keyType = 1; if (param_gethex(Cmd, 3, key, 12)) { PrintAndLog("Key must include 12 HEX symbols"); return 1; } if (cmdp == 'o' || cmdp == 'O') { cmdp = 'o'; trgBlockNo = param_get8(Cmd, 4); ctmp = param_getchar(Cmd, 5); if (ctmp == 0x00) { PrintAndLog("Target key type must be A or B"); return 1; } if (ctmp != 'A' && ctmp != 'a') trgKeyType = 1; } else { switch (cmdp) { case '0': SectorsCnt = 05; break; case '1': SectorsCnt = 16; break; case '2': SectorsCnt = 32; break; case '4': SectorsCnt = 64; break; default: SectorsCnt = 16; } } ctmp = param_getchar(Cmd, 4); if (ctmp == 't' || ctmp == 'T') transferToEml = 1; else if (ctmp == 'd' || ctmp == 'D') createDumpFile = 1; ctmp = param_getchar(Cmd, 6); transferToEml |= (ctmp == 't' || ctmp == 'T'); transferToEml |= (ctmp == 'd' || ctmp == 'D'); PrintAndLog("--block no:%02x key type:%02x key:%s etrans:%d", blockNo, keyType, sprint_hex(key, 6), transferToEml); if (cmdp == 'o') PrintAndLog("--target block no:%02x target key type:%02x ", trgBlockNo, trgKeyType); if (cmdp == 'o') { if (mfnested(blockNo, keyType, key, trgBlockNo, trgKeyType, keyBlock, true)) { PrintAndLog("Nested error."); return 2; } key64 = bytes_to_num(keyBlock, 6); if (key64) { PrintAndLog("Found valid key:%012"llx, key64); // transfer key to the emulator if (transferToEml) { mfEmlGetMem(keyBlock, (trgBlockNo / 4) * 4 + 3, 1); if (!trgKeyType) num_to_bytes(key64, 6, keyBlock); else num_to_bytes(key64, 6, &keyBlock[10]); mfEmlSetMem(keyBlock, (trgBlockNo / 4) * 4 + 3, 1); } } else { PrintAndLog("No valid key found"); } } else { // ------------------------------------ multiple sectors working clock_t time1; time1 = clock(); blDiff = blockNo % 4; PrintAndLog("Block shift=%d", blDiff); e_sector = calloc(SectorsCnt, sizeof(sector)); if (e_sector == NULL) return 1; //test current key 4 sectors memcpy(keyBlock, key, 6); num_to_bytes(0xffffffffffff, 6, (uint8_t*)(keyBlock + 1 * 6)); num_to_bytes(0x000000000000, 6, (uint8_t*)(keyBlock + 2 * 6)); num_to_bytes(0xa0a1a2a3a4a5, 6, (uint8_t*)(keyBlock + 3 * 6)); num_to_bytes(0xb0b1b2b3b4b5, 6, (uint8_t*)(keyBlock + 4 * 6)); num_to_bytes(0xaabbccddeeff, 6, (uint8_t*)(keyBlock + 5 * 6)); PrintAndLog("Testing known keys. Sector count=%d", SectorsCnt); for (i = 0; i < SectorsCnt; i++) { for (j = 0; j < 2; j++) { if (e_sector[i].foundKey[j]) continue; res = mfCheckKeys(i * 4 + blDiff, j, 6, keyBlock, &key64); if (!res) { e_sector[i].Key[j] = key64; e_sector[i].foundKey[j] = 1; } } } // nested sectors iterations = 0; PrintAndLog("nested..."); bool calibrate = true; for (i = 0; i < NESTED_SECTOR_RETRY; i++) { for (trgBlockNo = blDiff; trgBlockNo < SectorsCnt * 4; trgBlockNo = trgBlockNo + 4) { for (trgKeyType = 0; trgKeyType < 2; trgKeyType++) { if (e_sector[trgBlockNo / 4].foundKey[trgKeyType]) continue; PrintAndLog("-----------------------------------------------"); if(mfnested(blockNo, keyType, key, trgBlockNo, trgKeyType, keyBlock, calibrate)) { PrintAndLog("Nested error.\n"); return 2; } else { calibrate = false; } iterations++; key64 = bytes_to_num(keyBlock, 6); if (key64) { PrintAndLog("Found valid key:%012"llx, key64); e_sector[trgBlockNo / 4].foundKey[trgKeyType] = 1; e_sector[trgBlockNo / 4].Key[trgKeyType] = key64; } } } } printf("Time in nested: %1.3f (%1.3f sec per key)\n\n", ((float)clock() - time1)/CLOCKS_PER_SEC, ((float)clock() - time1)/iterations/CLOCKS_PER_SEC); PrintAndLog("-----------------------------------------------\nIterations count: %d\n\n", iterations); //print them PrintAndLog("|---|----------------|---|----------------|---|"); PrintAndLog("|sec|key A |res|key B |res|"); PrintAndLog("|---|----------------|---|----------------|---|"); for (i = 0; i < SectorsCnt; i++) { PrintAndLog("|%03d| %012"llx" | %d | %012"llx" | %d |", i, e_sector[i].Key[0], e_sector[i].foundKey[0], e_sector[i].Key[1], e_sector[i].foundKey[1]); } PrintAndLog("|---|----------------|---|----------------|---|"); // transfer them to the emulator if (transferToEml) { for (i = 0; i < SectorsCnt; i++) { mfEmlGetMem(keyBlock, i * 4 + 3, 1); if (e_sector[i].foundKey[0]) num_to_bytes(e_sector[i].Key[0], 6, keyBlock); if (e_sector[i].foundKey[1]) num_to_bytes(e_sector[i].Key[1], 6, &keyBlock[10]); mfEmlSetMem(keyBlock, i * 4 + 3, 1); } } // Create dump file if (createDumpFile) { if ((fkeys = fopen("dumpkeys.bin","wb")) == NULL) { PrintAndLog("Could not create file dumpkeys.bin"); free(e_sector); return 1; } PrintAndLog("Printing keys to bynary file dumpkeys.bin..."); for(i=0; i<16; i++) { if (e_sector[i].foundKey[0]){ num_to_bytes(e_sector[i].Key[0], 6, tempkey); fwrite ( tempkey, 1, 6, fkeys ); } else{ fwrite ( &standart, 1, 6, fkeys ); } } for(i=0; i<16; i++) { if (e_sector[i].foundKey[1]){ num_to_bytes(e_sector[i].Key[1], 6, tempkey); fwrite ( tempkey, 1, 6, fkeys ); } else{ fwrite ( &standart, 1, 6, fkeys ); } } fclose(fkeys); } free(e_sector); } return 0; } static uint32_t get_trailer_block (uint32_t uiBlock) { // Test if we are in the small or big sectors uint32_t trailer_block = 0; if (uiBlock < 128) { trailer_block = uiBlock + (3 - (uiBlock % 4)); } else { trailer_block = uiBlock + (15 - (uiBlock % 16)); } return trailer_block; } int CmdHF14AMfChk(const char *Cmd) { FILE * f; char filename[256]={0}; char buf[13]; uint8_t *keyBlock = NULL, *p; uint8_t stKeyBlock = 20; int i, res; int keycnt = 0; char ctmp = 0x00; uint8_t blockNo = 0; uint8_t SectorsCnt = 1; uint8_t keyType = 0; uint64_t key64 = 0; int transferToEml = 0; int createDumpFile = 0; keyBlock = calloc(stKeyBlock, 6); if (keyBlock == NULL) return 1; num_to_bytes(0xffffffffffff, 6, (uint8_t*)(keyBlock + 0 * 6)); // Default key (first key used by program if no user defined key) num_to_bytes(0x000000000000, 6, (uint8_t*)(keyBlock + 1 * 6)); // Blank key num_to_bytes(0xa0a1a2a3a4a5, 6, (uint8_t*)(keyBlock + 2 * 6)); // NFCForum MAD key num_to_bytes(0xb0b1b2b3b4b5, 6, (uint8_t*)(keyBlock + 3 * 6)); num_to_bytes(0xaabbccddeeff, 6, (uint8_t*)(keyBlock + 4 * 6)); num_to_bytes(0x4d3a99c351dd, 6, (uint8_t*)(keyBlock + 5 * 6)); num_to_bytes(0x1a982c7e459a, 6, (uint8_t*)(keyBlock + 6 * 6)); num_to_bytes(0xd3f7d3f7d3f7, 6, (uint8_t*)(keyBlock + 7 * 6)); num_to_bytes(0x714c5c886e97, 6, (uint8_t*)(keyBlock + 8 * 6)); num_to_bytes(0x587ee5f9350f, 6, (uint8_t*)(keyBlock + 9 * 6)); num_to_bytes(0xa0478cc39091, 6, (uint8_t*)(keyBlock + 10 * 6)); num_to_bytes(0x533cb6c723f6, 6, (uint8_t*)(keyBlock + 11 * 6)); num_to_bytes(0x8fd0a4f256e9, 6, (uint8_t*)(keyBlock + 12 * 6)); if (strlen(Cmd)<3) { PrintAndLog("Usage: hf mf chk /<*card memory> [t] [] []"); PrintAndLog(" * - all sectors"); PrintAndLog("card memory - 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, - 1K"); // PrintAndLog("d - write keys to binary file\n"); PrintAndLog(" sample: hf mf chk 0 A 1234567890ab keys.dic"); PrintAndLog(" hf mf chk *1 ? t"); return 0; } if (param_getchar(Cmd, 0)=='*') { blockNo = 3; switch(param_getchar(Cmd+1, 0)) { case '0': SectorsCnt = 5; break; case '1': SectorsCnt = 16; break; case '2': SectorsCnt = 32; break; case '4': SectorsCnt = 40; break; default: SectorsCnt = 16; } } else blockNo = param_get8(Cmd, 0); ctmp = param_getchar(Cmd, 1); switch (ctmp) { case 'a': case 'A': keyType = !0; break; case 'b': case 'B': keyType = !1; break; case '?': keyType = 2; break; default: PrintAndLog("Key type must be A , B or ?"); return 1; }; ctmp = param_getchar(Cmd, 2); if (ctmp == 't' || ctmp == 'T') transferToEml = 1; else if (ctmp == 'd' || ctmp == 'D') createDumpFile = 1; for (i = transferToEml || createDumpFile; param_getchar(Cmd, 2 + i); i++) { if (!param_gethex(Cmd, 2 + i, keyBlock + 6 * keycnt, 12)) { if ( stKeyBlock - keycnt < 2) { p = realloc(keyBlock, 6*(stKeyBlock+=10)); if (!p) { PrintAndLog("Cannot allocate memory for Keys"); free(keyBlock); return 2; } keyBlock = p; } PrintAndLog("chk key[%d] %02x%02x%02x%02x%02x%02x", keycnt, (keyBlock + 6*keycnt)[0],(keyBlock + 6*keycnt)[1], (keyBlock + 6*keycnt)[2], (keyBlock + 6*keycnt)[3], (keyBlock + 6*keycnt)[4], (keyBlock + 6*keycnt)[5], 6); keycnt++; } else { // May be a dic file if ( param_getstr(Cmd, 2 + i,filename) > 255 ) { PrintAndLog("File name too long"); free(keyBlock); return 2; } if ( (f = fopen( filename , "r")) ) { while( !feof(f) ){ memset(buf, 0, sizeof(buf)); if (fgets(buf, sizeof(buf), f) == NULL) { PrintAndLog("File reading error."); return 2; } if (strlen(buf) < 12 || buf[11] == '\n') continue; while (fgetc(f) != '\n' && !feof(f)) ; //goto next line if( buf[0]=='#' ) continue; //The line start with # is comment, skip if (!isxdigit(buf[0])){ PrintAndLog("File content error. '%s' must include 12 HEX symbols",buf); continue; } buf[12] = 0; if ( stKeyBlock - keycnt < 2) { p = realloc(keyBlock, 6*(stKeyBlock+=10)); if (!p) { PrintAndLog("Cannot allocate memory for defKeys"); free(keyBlock); return 2; } keyBlock = p; } memset(keyBlock + 6 * keycnt, 0, 6); num_to_bytes(strtoll(buf, NULL, 16), 6, keyBlock + 6*keycnt); PrintAndLog("chk custom key[%d] %012"llx, keycnt, bytes_to_num(keyBlock + 6*keycnt, 6)); keycnt++; } } else { PrintAndLog("File: %s: not found or locked.", filename); free(keyBlock); return 1; fclose(f); } } } if (keycnt == 0) { PrintAndLog("No key specified,try default keys"); for (;keycnt <=12; keycnt++) PrintAndLog("chk default key[%d] %02x%02x%02x%02x%02x%02x", keycnt, (keyBlock + 6*keycnt)[0],(keyBlock + 6*keycnt)[1], (keyBlock + 6*keycnt)[2], (keyBlock + 6*keycnt)[3], (keyBlock + 6*keycnt)[4], (keyBlock + 6*keycnt)[5], 6); } for ( int t = !keyType ; t < 2 ; keyType==2?(t++):(t=2) ) { int b=blockNo; for (int i=0; iUSB_CMD_DATA_SIZE/6?USB_CMD_DATA_SIZE/6:keycnt; for (uint32_t c = 0; c < keycnt; c+=max_keys) { uint32_t size = keycnt-c>max_keys?max_keys:keycnt-c; res = mfCheckKeys(b, t, size, &keyBlock[6*c], &key64); if (res !=1) { if (!res) { PrintAndLog("Found valid key:[%012"llx"]",key64); if (transferToEml) { uint8_t block[16]; mfEmlGetMem(block, get_trailer_block(b), 1); num_to_bytes(key64, 6, block + t*10); mfEmlSetMem(block, get_trailer_block(b), 1); } } } else { PrintAndLog("Command execute timeout"); } } b<127?(b+=4):(b+=16); } } free(keyBlock); /* // Create dump file if (createDumpFile) { if ((fkeys = fopen("dumpkeys.bin","wb")) == NULL) { PrintAndLog("Could not create file dumpkeys.bin"); free(e_sector); return 1; } PrintAndLog("Printing keys to bynary file dumpkeys.bin..."); for(i=0; i<16; i++) { if (e_sector[i].foundKey[0]){ num_to_bytes(e_sector[i].Key[0], 6, tempkey); fwrite ( tempkey, 1, 6, fkeys ); } else{ fwrite ( &standart, 1, 6, fkeys ); } } for(i=0; i<16; i++) { if (e_sector[i].foundKey[1]){ num_to_bytes(e_sector[i].Key[1], 6, tempkey); fwrite ( tempkey, 1, 6, fkeys ); } else{ fwrite ( &standart, 1, 6, fkeys ); } } fclose(fkeys); } */ return 0; } int CmdHF14AMf1kSim(const char *Cmd) { uint8_t uid[7] = {0, 0, 0, 0,0,0,0}; uint8_t exitAfterNReads = 0; uint8_t flags = 0; if (param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf sim u n i x"); PrintAndLog(" u (Optional) UID. If not specified, the UID from emulator memory will be used"); PrintAndLog(" n (Optional) Automatically exit simulation after blocks have been read by reader. 0 = infinite"); PrintAndLog(" i (Optional) Interactive, means that console will not be returned until simulation finishes or is aborted"); PrintAndLog(" x (Optional) Crack, performs the 'reader attack', nr/ar attack against a legitimate reader, fishes out the key(s)"); PrintAndLog(" sample: hf mf sim 0a0a0a0a "); return 0; } uint8_t pnr = 0; if (param_getchar(Cmd, pnr) == 'u') { if(param_gethex(Cmd, pnr+1, uid, 8) == 0) { flags |=FLAG_4B_UID_IN_DATA; // UID from packet }else if(param_gethex(Cmd,pnr+1,uid,14) == 0) { flags |= FLAG_7B_UID_IN_DATA;// UID from packet }else { PrintAndLog("UID, if specified, must include 8 or 14 HEX symbols"); return 1; } pnr +=2; } if (param_getchar(Cmd, pnr) == 'n') { exitAfterNReads = param_get8(Cmd,pnr+1); pnr += 2; } if (param_getchar(Cmd, pnr) == 'i' ) { //Using a flag to signal interactiveness, least significant bit flags |= FLAG_INTERACTIVE; pnr++; } if (param_getchar(Cmd, pnr) == 'x' ) { //Using a flag to signal interactiveness, least significant bit flags |= FLAG_NR_AR_ATTACK; } PrintAndLog(" uid:%s, numreads:%d, flags:%d (0x%02x) ", flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4): flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): "N/A" , exitAfterNReads, flags,flags); UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads,0}}; memcpy(c.d.asBytes, uid, sizeof(uid)); SendCommand(&c); if(flags & 1) { UsbCommand resp; PrintAndLog("Press pm3-button to abort simulation"); while(! WaitForResponseTimeout(CMD_ACK,&resp,1500)) { //We're waiting only 1.5 s at a time, otherwise we get the // annoying message about "Waiting for a response... " } } return 0; } int CmdHF14AMfDbg(const char *Cmd) { int dbgMode = param_get32ex(Cmd, 0, 0, 10); if (dbgMode > 4) { PrintAndLog("Max debud mode parameter is 4 \n"); } if (strlen(Cmd) < 1 || !param_getchar(Cmd, 0) || dbgMode > 4) { PrintAndLog("Usage: hf mf dbg "); PrintAndLog(" 0 - no debug messages"); PrintAndLog(" 1 - error messages"); PrintAndLog(" 2 - all messages"); PrintAndLog(" 4 - extended debug mode"); return 0; } UsbCommand c = {CMD_MIFARE_SET_DBGMODE, {dbgMode, 0, 0}}; SendCommand(&c); return 0; } int CmdHF14AMfEGet(const char *Cmd) { uint8_t blockNo = 0; uint8_t data[3 * 16]; int i; if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf eget "); PrintAndLog(" sample: hf mf eget 0 "); return 0; } blockNo = param_get8(Cmd, 0); PrintAndLog(" "); if (!mfEmlGetMem(data, blockNo, 3)) { for (i = 0; i < 3; i++) { PrintAndLog("data[%d]:%s", blockNo + i, sprint_hex(data + i * 16, 16)); } } else { PrintAndLog("Command execute timeout"); } return 0; } int CmdHF14AMfEClear(const char *Cmd) { if (param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf eclr"); PrintAndLog("It set card emulator memory to empty data blocks and key A/B FFFFFFFFFFFF \n"); return 0; } UsbCommand c = {CMD_MIFARE_EML_MEMCLR, {0, 0, 0}}; SendCommand(&c); return 0; } int CmdHF14AMfESet(const char *Cmd) { uint8_t memBlock[16]; uint8_t blockNo = 0; memset(memBlock, 0x00, sizeof(memBlock)); if (strlen(Cmd) < 3 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf eset "); PrintAndLog(" sample: hf mf eset 1 000102030405060708090a0b0c0d0e0f "); return 0; } blockNo = param_get8(Cmd, 0); if (param_gethex(Cmd, 1, memBlock, 32)) { PrintAndLog("block data must include 32 HEX symbols"); return 1; } // 1 - blocks count UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNo, 1, 0}}; memcpy(c.d.asBytes, memBlock, 16); SendCommand(&c); return 0; } int CmdHF14AMfELoad(const char *Cmd) { FILE * f; char filename[20]; char * fnameptr = filename; char buf[64]; uint8_t buf8[64]; int i, len, blockNum; memset(filename, 0, sizeof(filename)); memset(buf, 0, sizeof(buf)); if (param_getchar(Cmd, 0) == 'h' || param_getchar(Cmd, 0)== 0x00) { PrintAndLog("It loads emul dump from the file `filename.eml`"); PrintAndLog("Usage: hf mf eload "); PrintAndLog(" sample: hf mf eload filename"); return 0; } len = strlen(Cmd); if (len > 14) len = 14; memcpy(filename, Cmd, len); fnameptr += len; sprintf(fnameptr, ".eml"); // open file f = fopen(filename, "r"); if (f == NULL) { PrintAndLog("File not found or locked."); return 1; } blockNum = 0; while(!feof(f)){ memset(buf, 0, sizeof(buf)); if (fgets(buf, sizeof(buf), f) == NULL) { if(blockNum == 16 * 4) { break; } PrintAndLog("File reading error."); return 2; } if (strlen(buf) < 32){ if(strlen(buf) && feof(f)) break; PrintAndLog("File content error. Block data must include 32 HEX symbols"); return 2; } for (i = 0; i < 32; i += 2) sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]); // PrintAndLog("data[%02d]:%s", blockNum, sprint_hex(buf8, 16)); if (mfEmlSetMem(buf8, blockNum, 1)) { PrintAndLog("Cant set emul block: %d", blockNum); return 3; } blockNum++; if (blockNum >= 32 * 4 + 8 * 16) break; } fclose(f); if (blockNum != 16 * 4 && blockNum != 32 * 4 + 8 * 16){ PrintAndLog("File content error. There must be 64 blocks"); return 4; } PrintAndLog("Loaded %d blocks from file: %s", blockNum, filename); return 0; } int CmdHF14AMfESave(const char *Cmd) { FILE * f; char filename[20]; char * fnameptr = filename; uint8_t buf[64]; int i, j, len; memset(filename, 0, sizeof(filename)); memset(buf, 0, sizeof(buf)); if (param_getchar(Cmd, 0) == 'h') { PrintAndLog("It saves emul dump into the file `filename.eml` or `cardID.eml`"); PrintAndLog("Usage: hf mf esave [file name w/o `.eml`]"); PrintAndLog(" sample: hf mf esave "); PrintAndLog(" hf mf esave filename"); return 0; } len = strlen(Cmd); if (len > 14) len = 14; if (len < 1) { // get filename if (mfEmlGetMem(buf, 0, 1)) { PrintAndLog("Cant get block: %d", 0); return 1; } for (j = 0; j < 7; j++, fnameptr += 2) sprintf(fnameptr, "%02x", buf[j]); } else { memcpy(filename, Cmd, len); fnameptr += len; } sprintf(fnameptr, ".eml"); // open file f = fopen(filename, "w+"); // put hex for (i = 0; i < 32 * 4 + 8 * 16; i++) { if (mfEmlGetMem(buf, i, 1)) { PrintAndLog("Cant get block: %d", i); break; } for (j = 0; j < 16; j++) fprintf(f, "%02x", buf[j]); fprintf(f,"\n"); } fclose(f); PrintAndLog("Saved to file: %s", filename); return 0; } int CmdHF14AMfECFill(const char *Cmd) { uint8_t keyType = 0; if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf efill "); PrintAndLog("sample: hf mf efill A"); PrintAndLog("Card data blocks transfers to card emulator memory."); PrintAndLog("Keys must be laid in the simulator memory. \n"); return 0; } char ctmp = param_getchar(Cmd, 0); if (ctmp == 0x00) { PrintAndLog("Key type must be A or B"); return 1; } if (ctmp != 'A' && ctmp != 'a') keyType = 1; UsbCommand c = {CMD_MIFARE_EML_CARDLOAD, {0, keyType, 0}}; SendCommand(&c); return 0; } int CmdHF14AMfEKeyPrn(const char *Cmd) { int i,b=-1; uint8_t data[16]; uint64_t keyA, keyB; PrintAndLog("|---|----------------|----------------|"); PrintAndLog("|sec|key A |key B |"); PrintAndLog("|---|----------------|----------------|"); for (i = 0; i < 40; i++) { b<127?(b+=4):(b+=16); if (mfEmlGetMem(data, b, 1)) { PrintAndLog("error get block %d", b); break; } keyA = bytes_to_num(data, 6); keyB = bytes_to_num(data + 10, 6); PrintAndLog("|%03d| %012"llx" | %012"llx" |", i, keyA, keyB); } PrintAndLog("|---|----------------|----------------|"); return 0; } int CmdHF14AMfCSetUID(const char *Cmd) { uint8_t wipeCard = 0; uint8_t uid[8]; uint8_t oldUid[8]; int res; if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf csetuid "); PrintAndLog("sample: hf mf csetuid 01020304 w"); PrintAndLog("Set UID for magic Chinese card (only works with!!!)"); PrintAndLog("If you want wipe card then add 'w' into command line. \n"); return 0; } if (param_getchar(Cmd, 0) && param_gethex(Cmd, 0, uid, 8)) { PrintAndLog("UID must include 8 HEX symbols"); return 1; } char ctmp = param_getchar(Cmd, 1); if (ctmp == 'w' || ctmp == 'W') wipeCard = 1; PrintAndLog("--wipe card:%02x uid:%s", wipeCard, sprint_hex(uid, 4)); res = mfCSetUID(uid, oldUid, wipeCard); if (res) { PrintAndLog("Can't set UID. error=%d", res); return 1; } PrintAndLog("old UID:%s", sprint_hex(oldUid, 4)); return 0; } int CmdHF14AMfCSetBlk(const char *Cmd) { uint8_t uid[8]; uint8_t memBlock[16]; uint8_t blockNo = 0; int res; memset(memBlock, 0x00, sizeof(memBlock)); if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf csetblk "); PrintAndLog("sample: hf mf csetblk 1 01020304050607080910111213141516"); PrintAndLog("Set block data for magic Chinese card (only works with!!!)"); PrintAndLog("If you want wipe card then add 'w' into command line. \n"); return 0; } blockNo = param_get8(Cmd, 0); if (param_gethex(Cmd, 1, memBlock, 32)) { PrintAndLog("block data must include 32 HEX symbols"); return 1; } PrintAndLog("--block number:%02x data:%s", blockNo, sprint_hex(memBlock, 16)); res = mfCSetBlock(blockNo, memBlock, uid, 0, CSETBLOCK_SINGLE_OPER); if (res) { PrintAndLog("Can't write block. error=%d", res); return 1; } PrintAndLog("UID:%s", sprint_hex(uid, 4)); return 0; } int CmdHF14AMfCLoad(const char *Cmd) { FILE * f; char filename[20]; char * fnameptr = filename; char buf[64]; uint8_t buf8[64]; uint8_t fillFromEmulator = 0; int i, len, blockNum, flags; memset(filename, 0, sizeof(filename)); memset(buf, 0, sizeof(buf)); if (param_getchar(Cmd, 0) == 'h' || param_getchar(Cmd, 0)== 0x00) { PrintAndLog("It loads magic Chinese card (only works with!!!) from the file `filename.eml`"); PrintAndLog("or from emulator memory (option `e`)"); PrintAndLog("Usage: hf mf cload "); PrintAndLog(" or: hf mf cload e "); PrintAndLog(" sample: hf mf cload filename"); return 0; } char ctmp = param_getchar(Cmd, 0); if (ctmp == 'e' || ctmp == 'E') fillFromEmulator = 1; if (fillFromEmulator) { flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; for (blockNum = 0; blockNum < 16 * 4; blockNum += 1) { if (mfEmlGetMem(buf8, blockNum, 1)) { PrintAndLog("Cant get block: %d", blockNum); return 2; } if (blockNum == 2) flags = 0; if (blockNum == 16 * 4 - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; if (mfCSetBlock(blockNum, buf8, NULL, 0, flags)) { PrintAndLog("Cant set magic card block: %d", blockNum); return 3; } } return 0; } else { len = strlen(Cmd); if (len > 14) len = 14; memcpy(filename, Cmd, len); fnameptr += len; sprintf(fnameptr, ".eml"); // open file f = fopen(filename, "r"); if (f == NULL) { PrintAndLog("File not found or locked."); return 1; } blockNum = 0; flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; while(!feof(f)){ memset(buf, 0, sizeof(buf)); if (fgets(buf, sizeof(buf), f) == NULL) { PrintAndLog("File reading error."); return 2; } if (strlen(buf) < 32){ if(strlen(buf) && feof(f)) break; PrintAndLog("File content error. Block data must include 32 HEX symbols"); return 2; } for (i = 0; i < 32; i += 2) sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]); if (blockNum == 2) flags = 0; if (blockNum == 16 * 4 - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; if (mfCSetBlock(blockNum, buf8, NULL, 0, flags)) { PrintAndLog("Cant set magic card block: %d", blockNum); return 3; } blockNum++; if (blockNum >= 16 * 4) break; // magic card type - mifare 1K } fclose(f); if (blockNum != 16 * 4 && blockNum != 32 * 4 + 8 * 16){ PrintAndLog("File content error. There must be 64 blocks"); return 4; } PrintAndLog("Loaded from file: %s", filename); return 0; } } int CmdHF14AMfCGetBlk(const char *Cmd) { uint8_t memBlock[16]; uint8_t blockNo = 0; int res; memset(memBlock, 0x00, sizeof(memBlock)); if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf cgetblk "); PrintAndLog("sample: hf mf cgetblk 1"); PrintAndLog("Get block data from magic Chinese card (only works with!!!)\n"); return 0; } blockNo = param_get8(Cmd, 0); PrintAndLog("--block number:%02x ", blockNo); res = mfCGetBlock(blockNo, memBlock, CSETBLOCK_SINGLE_OPER); if (res) { PrintAndLog("Can't read block. error=%d", res); return 1; } PrintAndLog("block data:%s", sprint_hex(memBlock, 16)); return 0; } int CmdHF14AMfCGetSc(const char *Cmd) { uint8_t memBlock[16]; uint8_t sectorNo = 0; int i, res, flags; memset(memBlock, 0x00, sizeof(memBlock)); if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf cgetsc "); PrintAndLog("sample: hf mf cgetsc 0"); PrintAndLog("Get sector data from magic Chinese card (only works with!!!)\n"); return 0; } sectorNo = param_get8(Cmd, 0); if (sectorNo > 15) { PrintAndLog("Sector number must be in [0..15] as in MIFARE classic."); return 1; } PrintAndLog("--sector number:%02x ", sectorNo); flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; for (i = 0; i < 4; i++) { if (i == 1) flags = 0; if (i == 3) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; res = mfCGetBlock(sectorNo * 4 + i, memBlock, flags); if (res) { PrintAndLog("Can't read block. %02x error=%d", sectorNo * 4 + i, res); return 1; } PrintAndLog("block %02x data:%s", sectorNo * 4 + i, sprint_hex(memBlock, 16)); } return 0; } int CmdHF14AMfCSave(const char *Cmd) { FILE * f; char filename[20]; char * fnameptr = filename; uint8_t fillFromEmulator = 0; uint8_t buf[64]; int i, j, len, flags; memset(filename, 0, sizeof(filename)); memset(buf, 0, sizeof(buf)); if (param_getchar(Cmd, 0) == 'h') { PrintAndLog("It saves `magic Chinese` card dump into the file `filename.eml` or `cardID.eml`"); PrintAndLog("or into emulator memory (option `e`)"); PrintAndLog("Usage: hf mf esave [file name w/o `.eml`][e]"); PrintAndLog(" sample: hf mf esave "); PrintAndLog(" hf mf esave filename"); PrintAndLog(" hf mf esave e \n"); return 0; } char ctmp = param_getchar(Cmd, 0); if (ctmp == 'e' || ctmp == 'E') fillFromEmulator = 1; if (fillFromEmulator) { // put into emulator flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; for (i = 0; i < 16 * 4; i++) { if (i == 1) flags = 0; if (i == 16 * 4 - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; if (mfCGetBlock(i, buf, flags)) { PrintAndLog("Cant get block: %d", i); break; } if (mfEmlSetMem(buf, i, 1)) { PrintAndLog("Cant set emul block: %d", i); return 3; } } return 0; } else { len = strlen(Cmd); if (len > 14) len = 14; if (len < 1) { // get filename if (mfCGetBlock(0, buf, CSETBLOCK_SINGLE_OPER)) { PrintAndLog("Cant get block: %d", 0); return 1; } for (j = 0; j < 7; j++, fnameptr += 2) sprintf(fnameptr, "%02x", buf[j]); } else { memcpy(filename, Cmd, len); fnameptr += len; } sprintf(fnameptr, ".eml"); // open file f = fopen(filename, "w+"); // put hex flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; for (i = 0; i < 16 * 4; i++) { if (i == 1) flags = 0; if (i == 16 * 4 - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; if (mfCGetBlock(i, buf, flags)) { PrintAndLog("Cant get block: %d", i); break; } for (j = 0; j < 16; j++) fprintf(f, "%02x", buf[j]); fprintf(f,"\n"); } fclose(f); PrintAndLog("Saved to file: %s", filename); return 0; } } int CmdHF14AMfSniff(const char *Cmd){ // params bool wantLogToFile = 0; bool wantDecrypt = 0; //bool wantSaveToEml = 0; TODO bool wantSaveToEmlFile = 0; //var int res = 0; int len = 0; int blockLen = 0; int num = 0; int pckNum = 0; uint8_t uid[8]; uint8_t atqa[2]; uint8_t sak; bool isTag; uint32_t parity; uint8_t buf[3000]; uint8_t * bufPtr = buf; memset(buf, 0x00, 3000); if (param_getchar(Cmd, 0) == 'h') { PrintAndLog("It continuously get data from the field and saves it to: log, emulator, emulator file."); PrintAndLog("You can specify:"); PrintAndLog(" l - save encrypted sequence to logfile `uid.log`"); PrintAndLog(" d - decrypt sequence and put it to log file `uid.log`"); PrintAndLog(" n/a e - decrypt sequence, collect read and write commands and save the result of the sequence to emulator memory"); PrintAndLog(" r - decrypt sequence, collect read and write commands and save the result of the sequence to emulator dump file `uid.eml`"); PrintAndLog("Usage: hf mf sniff [l][d][e][r]"); PrintAndLog(" sample: hf mf sniff l d e"); return 0; } for (int i = 0; i < 4; i++) { char ctmp = param_getchar(Cmd, i); if (ctmp == 'l' || ctmp == 'L') wantLogToFile = true; if (ctmp == 'd' || ctmp == 'D') wantDecrypt = true; //if (ctmp == 'e' || ctmp == 'E') wantSaveToEml = true; TODO if (ctmp == 'f' || ctmp == 'F') wantSaveToEmlFile = true; } printf("-------------------------------------------------------------------------\n"); printf("Executing command. \n"); printf("Press the key on the proxmark3 device to abort both proxmark3 and client.\n"); printf("Press the key on pc keyboard to abort the client.\n"); printf("-------------------------------------------------------------------------\n"); UsbCommand c = {CMD_MIFARE_SNIFFER, {0, 0, 0}}; SendCommand(&c); // wait cycle while (true) { printf("."); fflush(stdout); if (ukbhit()) { getchar(); printf("\naborted via keyboard!\n"); break; } UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,2000)) { res = resp.arg[0] & 0xff; len = resp.arg[1]; num = resp.arg[2]; if (res == 0) return 0; if (res == 1) { if (num ==0) { bufPtr = buf; memset(buf, 0x00, 3000); } memcpy(bufPtr, resp.d.asBytes, len); bufPtr += len; pckNum++; } if (res == 2) { blockLen = bufPtr - buf; bufPtr = buf; printf(">\n"); PrintAndLog("received trace len: %d packages: %d", blockLen, pckNum); num = 0; while (bufPtr - buf + 9 < blockLen) { isTag = bufPtr[3] & 0x80 ? true:false; bufPtr += 4; parity = *((uint32_t *)(bufPtr)); bufPtr += 4; len = bufPtr[0]; bufPtr++; if ((len == 14) && (bufPtr[0] = 0xff) && (bufPtr[1] = 0xff)) { memcpy(uid, bufPtr + 2, 7); memcpy(atqa, bufPtr + 2 + 7, 2); sak = bufPtr[11]; PrintAndLog("tag select uid:%s atqa:%02x %02x sak:0x%02x", sprint_hex(uid, 7), atqa[0], atqa[1], sak); if (wantLogToFile) { FillFileNameByUID(logHexFileName, uid, ".log", 7); AddLogCurrentDT(logHexFileName); } if (wantDecrypt) mfTraceInit(uid, atqa, sak, wantSaveToEmlFile); } else { PrintAndLog("%s(%d):%s", isTag ? "TAG":"RDR", num, sprint_hex(bufPtr, len)); if (wantLogToFile) AddLogHex(logHexFileName, isTag ? "TAG: ":"RDR: ", bufPtr, len); if (wantDecrypt) mfTraceDecode(bufPtr, len, parity, wantSaveToEmlFile); } bufPtr += len; num++; } } } // resp not NILL } // while (true) return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"dbg", CmdHF14AMfDbg, 0, "Set default debug mode"}, {"rdbl", CmdHF14AMfRdBl, 0, "Read MIFARE classic block"}, {"urdbl", CmdHF14AMfURdBl, 0, "Read MIFARE Ultralight block"}, {"urdcard", CmdHF14AMfURdCard, 0,"Read MIFARE Ultralight Card"}, {"uwrbl", CmdHF14AMfUWrBl, 0,"Write MIFARE Ultralight block"}, {"rdsc", CmdHF14AMfRdSc, 0, "Read MIFARE classic sector"}, {"dump", CmdHF14AMfDump, 0, "Dump MIFARE classic tag to binary file"}, {"restore", CmdHF14AMfRestore, 0, "Restore MIFARE classic binary file to BLANK tag"}, {"wrbl", CmdHF14AMfWrBl, 0, "Write MIFARE classic block"}, {"chk", CmdHF14AMfChk, 0, "Test block keys"}, {"mifare", CmdHF14AMifare, 0, "Read parity error messages. param - "}, {"nested", CmdHF14AMfNested, 0, "Test nested authentication"}, {"sniff", CmdHF14AMfSniff, 0, "Sniff card-reader communication"}, {"sim", CmdHF14AMf1kSim, 0, "Simulate MIFARE card"}, {"eclr", CmdHF14AMfEClear, 0, "Clear simulator memory block"}, {"eget", CmdHF14AMfEGet, 0, "Get simulator memory block"}, {"eset", CmdHF14AMfESet, 0, "Set simulator memory block"}, {"eload", CmdHF14AMfELoad, 0, "Load from file emul dump"}, {"esave", CmdHF14AMfESave, 0, "Save to file emul dump"}, {"ecfill", CmdHF14AMfECFill, 0, "Fill simulator memory with help of keys from simulator"}, {"ekeyprn", CmdHF14AMfEKeyPrn, 0, "Print keys from simulator memory"}, {"csetuid", CmdHF14AMfCSetUID, 0, "Set UID for magic Chinese card"}, {"csetblk", CmdHF14AMfCSetBlk, 0, "Write block into magic Chinese card"}, {"cgetblk", CmdHF14AMfCGetBlk, 0, "Read block from magic Chinese card"}, {"cgetsc", CmdHF14AMfCGetSc, 0, "Read sector from magic Chinese card"}, {"cload", CmdHF14AMfCLoad, 0, "Load dump into magic Chinese card"}, {"csave", CmdHF14AMfCSave, 0, "Save dump from magic Chinese card into file or emulator"}, {NULL, NULL, 0, NULL} }; int CmdHFMF(const char *Cmd) { // flush WaitForResponseTimeout(CMD_ACK,NULL,100); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }