//----------------------------------------------------------------------------- // Merlok - June 2011, 2012 // Gerhard de Koning Gans - May 2008 // Hagen Fritsch - June 2010 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Mifare Classic Card Simulation //----------------------------------------------------------------------------- #include "mifaresim.h" #include "iso14443a.h" #include "iso14443crc.h" #include "crapto1/crapto1.h" #include "BigBuf.h" #include "string.h" #include "mifareutil.h" #include "fpgaloader.h" #include "proxmark3.h" #include "usb_cdc.h" #include "cmd.h" #include "protocols.h" #include "apps.h" //mifare emulator states #define MFEMUL_NOFIELD 0 #define MFEMUL_IDLE 1 #define MFEMUL_SELECT1 2 #define MFEMUL_SELECT2 3 #define MFEMUL_SELECT3 4 #define MFEMUL_AUTH1 5 #define MFEMUL_AUTH2 6 #define MFEMUL_WORK 7 #define MFEMUL_WRITEBL2 8 #define MFEMUL_INTREG_INC 9 #define MFEMUL_INTREG_DEC 10 #define MFEMUL_INTREG_REST 11 #define MFEMUL_HALTED 12 #define cardSTATE_TO_IDLE() { cardSTATE = MFEMUL_IDLE; LED_B_OFF(); LED_C_OFF(); } #define AC_DATA_READ 0 #define AC_DATA_WRITE 1 #define AC_DATA_INC 2 #define AC_DATA_DEC_TRANS_REST 3 #define AC_KEYA_READ 0 #define AC_KEYA_WRITE 1 #define AC_KEYB_READ 2 #define AC_KEYB_WRITE 3 #define AC_AC_READ 4 #define AC_AC_WRITE 5 #define AUTHKEYA 0 #define AUTHKEYB 1 #define AUTHKEYNONE 0xff static bool IsTrailerAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) { uint8_t sector_trailer[16]; emlGetMem(sector_trailer, blockNo, 1); uint8_t AC = ((sector_trailer[7] >> 5) & 0x04) | ((sector_trailer[8] >> 2) & 0x02) | ((sector_trailer[8] >> 7) & 0x01); switch (action) { case AC_KEYA_READ: { return false; break; } case AC_KEYA_WRITE: { return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x01)) || (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03))); break; } case AC_KEYB_READ: { return (keytype == AUTHKEYA && (AC == 0x00 || AC == 0x02 || AC == 0x01)); break; } case AC_KEYB_WRITE: { return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x04)) || (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03))); break; } case AC_AC_READ: { return ((keytype == AUTHKEYA) || (keytype == AUTHKEYB && !(AC == 0x00 || AC == 0x02 || AC == 0x01))); break; } case AC_AC_WRITE: { return ((keytype == AUTHKEYA && (AC == 0x01)) || (keytype == AUTHKEYB && (AC == 0x03 || AC == 0x05))); break; } default: return false; } } static bool IsDataAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) { uint8_t sector_trailer[16]; emlGetMem(sector_trailer, SectorTrailer(blockNo), 1); uint8_t sector_block; if (blockNo < 32*4) { sector_block = blockNo & 0x03; } else { sector_block = (blockNo & 0x0f) / 5; } uint8_t AC; switch (sector_block) { case 0x00: { AC = ((sector_trailer[7] >> 2) & 0x04) | ((sector_trailer[8] << 1) & 0x02) | ((sector_trailer[8] >> 4) & 0x01); break; } case 0x01: { AC = ((sector_trailer[7] >> 3) & 0x04) | ((sector_trailer[8] >> 0) & 0x02) | ((sector_trailer[8] >> 5) & 0x01); break; } case 0x02: { AC = ((sector_trailer[7] >> 4) & 0x04) | ((sector_trailer[8] >> 1) & 0x02) | ((sector_trailer[8] >> 6) & 0x01); break; } default: return false; } switch (action) { case AC_DATA_READ: { return ((keytype == AUTHKEYA && !(AC == 0x03 || AC == 0x05 || AC == 0x07)) || (keytype == AUTHKEYB && !(AC == 0x07))); break; } case AC_DATA_WRITE: { return ((keytype == AUTHKEYA && (AC == 0x00)) || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03))); break; } case AC_DATA_INC: { return ((keytype == AUTHKEYA && (AC == 0x00)) || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06))); break; } case AC_DATA_DEC_TRANS_REST: { return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x06 || AC == 0x01)) || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06 || AC == 0x01))); break; } } return false; } static bool IsAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) { if (IsSectorTrailer(blockNo)) { return IsTrailerAccessAllowed(blockNo, keytype, action); } else { return IsDataAccessAllowed(blockNo, keytype, action); } } static void MifareSimInit(uint8_t flags, uint8_t *datain, tag_response_info_t **responses, uint32_t *cuid, uint8_t *uid_len) { #define TAG_RESPONSE_COUNT 5 // number of precompiled responses static uint8_t rATQA[] = {0x04, 0x00}; // indicate Mifare classic 1k 4Byte UID static uint8_t rUIDBCC1[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level static uint8_t rUIDBCC2[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 2nd cascade level static uint8_t rSAKfinal[]= {0x08, 0xb6, 0xdd}; // mifare 1k indicated static uint8_t rSAK1[] = {0x04, 0xda, 0x17}; // indicate UID not finished *uid_len = 4; // UID can be set from emulator memory or incoming data and can be 4 or 7 bytes long if (flags & FLAG_4B_UID_IN_DATA) { // get UID from datain memcpy(rUIDBCC1, datain, 4); } else if (flags & FLAG_7B_UID_IN_DATA) { rUIDBCC1[0] = 0x88; memcpy(rUIDBCC1+1, datain, 3); memcpy(rUIDBCC2, datain+3, 4); *uid_len = 7; } else { uint8_t probable_atqa; emlGetMemBt(&probable_atqa, 7, 1); // get UID from emul memory - weak guess at length if (probable_atqa == 0x00) { // ---------- 4BUID emlGetMemBt(rUIDBCC1, 0, 4); } else { // ---------- 7BUID rUIDBCC1[0] = 0x88; emlGetMemBt(rUIDBCC1+1, 0, 3); emlGetMemBt(rUIDBCC2, 3, 4); *uid_len = 7; } } switch (*uid_len) { case 4: *cuid = bytes_to_num(rUIDBCC1, 4); rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; if (MF_DBGLEVEL >= 2) { Dbprintf("4B UID: %02x%02x%02x%02x", rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3] ); } break; case 7: rATQA[0] |= 0x40; *cuid = bytes_to_num(rUIDBCC2, 4); rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; if (MF_DBGLEVEL >= 2) { Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x", rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], rUIDBCC2[0], rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3] ); } break; default: break; } static tag_response_info_t responses_init[TAG_RESPONSE_COUNT] = { { .response = rATQA, .response_n = sizeof(rATQA) }, // Answer to request - respond with card type { .response = rUIDBCC1, .response_n = sizeof(rUIDBCC1) }, // Anticollision cascade1 - respond with first part of uid { .response = rUIDBCC2, .response_n = sizeof(rUIDBCC2) }, // Anticollision cascade2 - respond with 2nd part of uid { .response = rSAKfinal, .response_n = sizeof(rSAKfinal) }, // Acknowledge select - last cascade { .response = rSAK1, .response_n = sizeof(rSAK1) } // Acknowledge select - previous cascades }; // Prepare ("precompile") the responses of the anticollision phase. There will be not enough time to do this at the moment the reader sends its REQA or SELECT // There are 7 predefined responses with a total of 18 bytes data to transmit. Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) // 18 * 8 data bits, 18 * 1 parity bits, 5 start bits, 5 stop bits, 5 correction bits -> need 177 bytes buffer #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 177 // number of bytes required for precompiled responses uint8_t *free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE); size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE; for (size_t i = 0; i < TAG_RESPONSE_COUNT; i++) { prepare_allocated_tag_modulation(&responses_init[i], &free_buffer_pointer, &free_buffer_size); } *responses = responses_init; // indices into responses array: #define ATQA 0 #define UIDBCC1 1 #define UIDBCC2 2 #define SAKfinal 3 #define SAK1 4 } static bool HasValidCRC(uint8_t *receivedCmd, uint16_t receivedCmd_len) { uint8_t CRC_byte_1, CRC_byte_2; ComputeCrc14443(CRC_14443_A, receivedCmd, receivedCmd_len-2, &CRC_byte_1, &CRC_byte_2); return (receivedCmd[receivedCmd_len-2] == CRC_byte_1 && receivedCmd[receivedCmd_len-1] == CRC_byte_2); } /** *MIFARE 1K simulate. * *@param flags : * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK * FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that * FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that * FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section not finished * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later * FLAG_RANDOM_NONCE - means we should generate some pseudo-random nonce data (only allows moebius attack) *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ... * (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted) */ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) { tag_response_info_t *responses; uint8_t uid_len = 4; uint32_t cuid = 0; uint8_t cardWRBL = 0; uint8_t cardAUTHSC = 0; uint8_t cardAUTHKEY = AUTHKEYNONE; // no authentication uint32_t cardRr = 0; //uint32_t rn_enc = 0; uint32_t ans = 0; uint32_t cardINTREG = 0; uint8_t cardINTBLOCK = 0; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; uint32_t numReads = 0;//Counts numer of times reader reads a block uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedCmd_dec[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE]; uint16_t receivedCmd_len; uint8_t response[MAX_MIFARE_FRAME_SIZE]; uint8_t response_par[MAX_MIFARE_PARITY_SIZE]; uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04}; uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; //Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2 // This will be used in the reader-only attack. //allow collecting up to 7 sets of nonces to allow recovery of up to 7 keys #define ATTACK_KEY_COUNT 7 // keep same as define in cmdhfmf.c -> readerAttack() (Cannot be more than 7) nonces_t ar_nr_resp[ATTACK_KEY_COUNT*2]; //*2 for 2 separate attack types (nml, moebius) 36 * 7 * 2 bytes = 504 bytes memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp)); uint8_t ar_nr_collected[ATTACK_KEY_COUNT*2]; //*2 for 2nd attack type (moebius) memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected)); uint8_t nonce1_count = 0; uint8_t nonce2_count = 0; uint8_t moebius_n_count = 0; bool gettingMoebius = false; uint8_t mM = 0; //moebius_modifier for collection storage // Authenticate response - nonce uint32_t nonce; if (flags & FLAG_RANDOM_NONCE) { nonce = prand(); } else { nonce = bytes_to_num(rAUTH_NT, 4); } // free eventually allocated BigBuf memory but keep Emulator Memory BigBuf_free_keep_EM(); MifareSimInit(flags, datain, &responses, &cuid, &uid_len); // We need to listen to the high-frequency, peak-detected path. iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); // clear trace clear_trace(); set_tracing(true); ResetSspClk(); bool finished = false; bool button_pushed = BUTTON_PRESS(); int cardSTATE = MFEMUL_NOFIELD; while (!button_pushed && !finished && !usb_poll_validate_length()) { WDT_HIT(); // find reader field if (cardSTATE == MFEMUL_NOFIELD) { int vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; if (vHf > MF_MINFIELDV) { LED_A_ON(); cardSTATE_TO_IDLE(); } button_pushed = BUTTON_PRESS(); continue; } //Now, get data int res = EmGetCmd(receivedCmd, &receivedCmd_len, receivedCmd_par); if (res == 2) { //Field is off! LEDsoff(); cardSTATE = MFEMUL_NOFIELD; continue; } else if (res == 1) { // button pressed button_pushed = true; break; } // WUPA in HALTED state or REQA or WUPA in any other state if (receivedCmd_len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) { EmSendPrecompiledCmd(&responses[ATQA]); // init crypto block crypto1_destroy(pcs); cardAUTHKEY = AUTHKEYNONE; if (flags & FLAG_RANDOM_NONCE) { nonce = prand(); } LED_B_OFF(); LED_C_OFF(); cardSTATE = MFEMUL_SELECT1; continue; } switch (cardSTATE) { case MFEMUL_NOFIELD: case MFEMUL_HALTED: case MFEMUL_IDLE:{ break; } case MFEMUL_SELECT1:{ // select all - 0x93 0x20 if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) { if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL CL1 received"); EmSendPrecompiledCmd(&responses[UIDBCC1]); break; } // select card - 0x93 0x70 ... if (receivedCmd_len == 9 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC1].response, 4) == 0)) { if (MF_DBGLEVEL >= 4) Dbprintf("SELECT CL1 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]); if (uid_len == 4) { EmSendPrecompiledCmd(&responses[SAKfinal]); LED_B_ON(); cardSTATE = MFEMUL_WORK; break; } else if (uid_len == 7) { EmSendPrecompiledCmd(&responses[SAK1]); cardSTATE = MFEMUL_SELECT2; break; } } cardSTATE_TO_IDLE(); break; } case MFEMUL_SELECT2:{ // select all cl2 - 0x95 0x20 if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) { if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL CL2 received"); EmSendPrecompiledCmd(&responses[UIDBCC2]); break; } // select cl2 card - 0x95 0x70 xxxxxxxxxxxx if (receivedCmd_len == 9 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC2].response, 4) == 0)) { if (uid_len == 7) { if (MF_DBGLEVEL >= 4) Dbprintf("SELECT CL2 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]); EmSendPrecompiledCmd(&responses[SAKfinal]); LED_B_ON(); cardSTATE = MFEMUL_WORK; break; } } cardSTATE_TO_IDLE(); break; } case MFEMUL_WORK:{ if (receivedCmd_len != 4) { // all commands must have exactly 4 bytes break; } bool encrypted_data = (cardAUTHKEY != AUTHKEYNONE) ; if (encrypted_data) { // decrypt seqence mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec); } else { memcpy(receivedCmd_dec, receivedCmd, receivedCmd_len); } if (!HasValidCRC(receivedCmd_dec, receivedCmd_len)) { // all commands must have a valid CRC EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); break; } if (receivedCmd_dec[0] == MIFARE_AUTH_KEYA || receivedCmd_dec[0] == MIFARE_AUTH_KEYB) { // if authenticating to a block that shouldn't exist - as long as we are not doing the reader attack if (receivedCmd_dec[1] >= 16 * 4 && !(flags & FLAG_NR_AR_ATTACK)) { //is this the correct response to an auth on a out of range block? marshmellow EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],receivedCmd_dec[1]); break; } cardAUTHSC = receivedCmd_dec[1] / 4; // received block num cardAUTHKEY = receivedCmd_dec[0] & 0x01; crypto1_destroy(pcs);//Added by martin crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); if (!encrypted_data) { // first authentication if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY); crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce } else { // nested authentication if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d", receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY); ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); num_to_bytes(ans, 4, rAUTH_AT); } EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); cardSTATE = MFEMUL_AUTH1; break; } if (!encrypted_data) { // all other commands must be encrypted (authenticated) break; } if(receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK || receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK || receivedCmd_dec[0] == MIFARE_CMD_INC || receivedCmd_dec[0] == MIFARE_CMD_DEC || receivedCmd_dec[0] == MIFARE_CMD_RESTORE || receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) { if (receivedCmd_dec[1] >= 16 * 4) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],receivedCmd_dec[1]); break; } if (receivedCmd_dec[1] / 4 != cardAUTHSC) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],cardAUTHSC); break; } } if (receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK) { uint8_t blockNo = receivedCmd_dec[1]; if (MF_DBGLEVEL >= 4) { Dbprintf("Reader reading block %d (0x%02x)", blockNo, blockNo); } emlGetMem(response, blockNo, 1); if (IsSectorTrailer(blockNo)) { memset(response, 0x00, 6); // keyA can never be read if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_KEYB_READ)) { memset(response+10, 0x00, 6); // keyB cannot be read } if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_AC_READ)) { memset(response+6, 0x00, 4); // AC bits cannot be read } } else { if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_DATA_READ)) { memset(response, 0x00, 16); // datablock cannot be read } } AppendCrc14443a(response, 16); mf_crypto1_encrypt(pcs, response, 18, response_par); EmSendCmdPar(response, 18, response_par); numReads++; if(exitAfterNReads > 0 && numReads == exitAfterNReads) { Dbprintf("%d reads done, exiting", numReads); finished = true; } break; } if (receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK) { uint8_t blockNo = receivedCmd_dec[1]; if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)", blockNo, blockNo); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); cardWRBL = blockNo; cardSTATE = MFEMUL_WRITEBL2; break; } if (receivedCmd_dec[0] == MIFARE_CMD_INC || receivedCmd_dec[0] == MIFARE_CMD_DEC || receivedCmd_dec[0] == MIFARE_CMD_RESTORE) { uint8_t blockNo = receivedCmd_dec[1]; if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo); if (emlCheckValBl(blockNo)) { if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking"); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); break; } EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); cardWRBL = blockNo; if (receivedCmd_dec[0] == MIFARE_CMD_INC) cardSTATE = MFEMUL_INTREG_INC; if (receivedCmd_dec[0] == MIFARE_CMD_DEC) cardSTATE = MFEMUL_INTREG_DEC; if (receivedCmd_dec[0] == MIFARE_CMD_RESTORE) cardSTATE = MFEMUL_INTREG_REST; break; } if (receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) { uint8_t blockNo = receivedCmd_dec[1]; if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo); if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd_dec[1])) EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); else EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); break; } // halt if (receivedCmd_dec[0] == ISO14443A_CMD_HALT && receivedCmd_dec[1] == 0x00) { if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED."); LED_B_OFF(); LED_C_OFF(); cardSTATE = MFEMUL_HALTED; break; } // command not allowed if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking"); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); break; } case MFEMUL_AUTH1:{ if (receivedCmd_len != 8) { cardSTATE_TO_IDLE(); break; } uint32_t nr = bytes_to_num(receivedCmd, 4); uint32_t ar = bytes_to_num(&receivedCmd[4], 4); // Collect AR/NR per keytype & sector if(flags & FLAG_NR_AR_ATTACK) { for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) { if ( ar_nr_collected[i+mM]==0 || ((cardAUTHSC == ar_nr_resp[i+mM].sector) && (cardAUTHKEY == ar_nr_resp[i+mM].keytype) && (ar_nr_collected[i+mM] > 0)) ) { // if first auth for sector, or matches sector and keytype of previous auth if (ar_nr_collected[i+mM] < 2) { // if we haven't already collected 2 nonces for this sector if (ar_nr_resp[ar_nr_collected[i+mM]].ar != ar) { // Avoid duplicates... probably not necessary, ar should vary. if (ar_nr_collected[i+mM]==0) { // first nonce collect ar_nr_resp[i+mM].cuid = cuid; ar_nr_resp[i+mM].sector = cardAUTHSC; ar_nr_resp[i+mM].keytype = cardAUTHKEY; ar_nr_resp[i+mM].nonce = nonce; ar_nr_resp[i+mM].nr = nr; ar_nr_resp[i+mM].ar = ar; nonce1_count++; // add this nonce to first moebius nonce ar_nr_resp[i+ATTACK_KEY_COUNT].cuid = cuid; ar_nr_resp[i+ATTACK_KEY_COUNT].sector = cardAUTHSC; ar_nr_resp[i+ATTACK_KEY_COUNT].keytype = cardAUTHKEY; ar_nr_resp[i+ATTACK_KEY_COUNT].nonce = nonce; ar_nr_resp[i+ATTACK_KEY_COUNT].nr = nr; ar_nr_resp[i+ATTACK_KEY_COUNT].ar = ar; ar_nr_collected[i+ATTACK_KEY_COUNT]++; } else { // second nonce collect (std and moebius) ar_nr_resp[i+mM].nonce2 = nonce; ar_nr_resp[i+mM].nr2 = nr; ar_nr_resp[i+mM].ar2 = ar; if (!gettingMoebius) { nonce2_count++; // check if this was the last second nonce we need for std attack if ( nonce2_count == nonce1_count ) { // done collecting std test switch to moebius // first finish incrementing last sample ar_nr_collected[i+mM]++; // switch to moebius collection gettingMoebius = true; mM = ATTACK_KEY_COUNT; if (flags & FLAG_RANDOM_NONCE) { nonce = prand(); } else { nonce = nonce*7; } break; } } else { moebius_n_count++; // if we've collected all the nonces we need - finish. if (nonce1_count == moebius_n_count) finished = true; } } ar_nr_collected[i+mM]++; } } // we found right spot for this nonce stop looking break; } } } // --- crypto crypto1_word(pcs, nr , 1); cardRr = ar ^ crypto1_word(pcs, 0, 0); // test if auth OK if (cardRr != prng_successor(nonce, 64)){ if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x", cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B', cardRr, prng_successor(nonce, 64)); // Shouldn't we respond anything here? // Right now, we don't nack or anything, which causes the // reader to do a WUPA after a while. /Martin // -- which is the correct response. /piwi cardAUTHKEY = AUTHKEYNONE; // not authenticated cardSTATE_TO_IDLE(); break; } ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0); num_to_bytes(ans, 4, rAUTH_AT); EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c.", cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B'); LED_C_ON(); cardSTATE = MFEMUL_WORK; break; } case MFEMUL_WRITEBL2:{ if (receivedCmd_len == 18) { mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec); if (HasValidCRC(receivedCmd_dec, receivedCmd_len)) { if (IsSectorTrailer(cardWRBL)) { emlGetMem(response, cardWRBL, 1); if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYA_WRITE)) { memcpy(receivedCmd_dec, response, 6); // don't change KeyA } if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYB_WRITE)) { memcpy(receivedCmd_dec+10, response+10, 6); // don't change KeyA } if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_AC_WRITE)) { memcpy(receivedCmd_dec+6, response+6, 4); // don't change AC bits } } else { if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_DATA_WRITE)) { memcpy(receivedCmd_dec, response, 16); // don't change anything } } emlSetMem(receivedCmd_dec, cardWRBL, 1); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); // always ACK? cardSTATE = MFEMUL_WORK; break; } } cardSTATE_TO_IDLE(); break; } case MFEMUL_INTREG_INC:{ if (receivedCmd_len == 6) { mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans); if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); cardSTATE_TO_IDLE(); break; } cardINTREG = cardINTREG + ans; } cardSTATE = MFEMUL_WORK; break; } case MFEMUL_INTREG_DEC:{ if (receivedCmd_len == 6) { mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans); if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); cardSTATE_TO_IDLE(); break; } } cardINTREG = cardINTREG - ans; cardSTATE = MFEMUL_WORK; break; } case MFEMUL_INTREG_REST:{ mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans); if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); cardSTATE_TO_IDLE(); break; } cardSTATE = MFEMUL_WORK; break; } } button_pushed = BUTTON_PRESS(); } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1) { for ( uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) { if (ar_nr_collected[i] == 2) { Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", get_tracing(), BigBuf_get_traceLen()); if(flags & FLAG_INTERACTIVE) { // Interactive mode flag, means we need to send ACK //Send the collected ar_nr in the response cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,button_pushed,0,&ar_nr_resp,sizeof(ar_nr_resp)); } }