//----------------------------------------------------------------------------- // Routines to support ISO 15693. This includes both the reader software and // the `fake tag' modes, but at the moment I've implemented only the reader // stuff, and that barely. // Jonathan Westhues, split Nov 2006 // Modified by Greg Jones, Jan 2009 to perform modulation onboard in arm rather than on PC // Also added additional reader commands (SELECT, READ etc.) //----------------------------------------------------------------------------- #include #include "apps.h" #include #include // FROM winsrc\prox.h ////////////////////////////////// #define arraylen(x) (sizeof(x)/sizeof((x)[0])) //----------------------------------------------------------------------------- // Map a sequence of octets (~layer 2 command) into the set of bits to feed // to the FPGA, to transmit that command to the tag. //----------------------------------------------------------------------------- // The sampling rate is 106.353 ksps/s, for T = 18.8 us // SOF defined as // 1) Unmodulated time of 56.64us // 2) 24 pulses of 423.75khz // 3) logic '1' (unmodulated for 18.88us followed by 8 pulses of 423.75khz) static const int FrameSOF[] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1 }; static const int Logic0[] = { 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1 }; static const int Logic1[] = { -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1 }; // EOF defined as // 1) logic '0' (8 pulses of 423.75khz followed by unmodulated for 18.88us) // 2) 24 pulses of 423.75khz // 3) Unmodulated time of 56.64us static const int FrameEOF[] = { 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; static void CodeIso15693AsReader(BYTE *cmd, int n) { int i, j; ToSendReset(); // Give it a bit of slack at the beginning for(i = 0; i < 24; i++) { ToSendStuffBit(1); } ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); for(i = 0; i < n; i++) { for(j = 0; j < 8; j += 2) { int these = (cmd[i] >> j) & 3; switch(these) { case 0: ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); break; case 1: ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); break; case 2: ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); break; case 3: ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); break; } } } ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); // And slack at the end, too. for(i = 0; i < 24; i++) { ToSendStuffBit(1); } } //----------------------------------------------------------------------------- // The CRC used by ISO 15693. //----------------------------------------------------------------------------- static WORD Crc(BYTE *v, int n) { DWORD reg; int i, j; reg = 0xffff; for(i = 0; i < n; i++) { reg = reg ^ ((DWORD)v[i]); for (j = 0; j < 8; j++) { if (reg & 0x0001) { reg = (reg >> 1) ^ 0x8408; } else { reg = (reg >> 1); } } } return ~reg; } char *strcat(char *dest, const char *src) { size_t dest_len = strlen(dest); size_t i; for (i = 0 ; src[i] != '\0' ; i++) dest[dest_len + i] = src[i]; dest[dest_len + i] = '\0'; return dest; } ////////////////////////////////////////// code to do 'itoa' /* reverse: reverse string s in place */ void reverse(char s[]) { int c, i, j; for (i = 0, j = strlen(s)-1; i 0); /* delete it */ if (sign < 0) s[i++] = '-'; s[i] = '\0'; reverse(s); } //////////////////////////////////////// END 'itoa' CODE //----------------------------------------------------------------------------- // Encode (into the ToSend buffers) an identify request, which is the first // thing that you must send to a tag to get a response. //----------------------------------------------------------------------------- static void BuildIdentifyRequest(void) { BYTE cmd[5]; WORD crc; // one sub-carrier, inventory, 1 slot, fast rate // AFI is at bit 5 (1<<4) when doing an INVENTORY cmd[0] = (1 << 2) | (1 << 5) | (1 << 1); // inventory command code cmd[1] = 0x01; // no mask cmd[2] = 0x00; //Now the CRC crc = Crc(cmd, 3); cmd[3] = crc & 0xff; cmd[4] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } static void BuildSysInfoRequest(BYTE *uid) { BYTE cmd[12]; WORD crc; // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block // followed by teh block data // one sub-carrier, inventory, 1 slot, fast rate cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit // System Information command code cmd[1] = 0x2B; // UID may be optionally specified here // 64-bit UID cmd[2] = 0x32; cmd[3]= 0x4b; cmd[4] = 0x03; cmd[5] = 0x01; cmd[6] = 0x00; cmd[7] = 0x10; cmd[8] = 0x05; cmd[9]= 0xe0; // always e0 (not exactly unique) //Now the CRC crc = Crc(cmd, 10); // the crc needs to be calculated over 2 bytes cmd[10] = crc & 0xff; cmd[11] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } static void BuildSelectRequest( BYTE uid[]) { // uid[6]=0x31; // this is getting ignored - the uid array is not happening... BYTE cmd[12]; WORD crc; // one sub-carrier, inventory, 1 slot, fast rate //cmd[0] = (1 << 2) | (1 << 5) | (1 << 1); // INVENTROY FLAGS cmd[0] = (1 << 4) | (1 << 5) | (1 << 1); // Select and addressed FLAGS // SELECT command code cmd[1] = 0x25; // 64-bit UID // cmd[2] = uid[0];//0x32; // cmd[3]= uid[1];//0x4b; // cmd[4] = uid[2];//0x03; // cmd[5] = uid[3];//0x01; // cmd[6] = uid[4];//0x00; // cmd[7] = uid[5];//0x10; // cmd[8] = uid[6];//0x05; cmd[2] = 0x32;// cmd[3] = 0x4b; cmd[4] = 0x03; cmd[5] = 0x01; cmd[6] = 0x00; cmd[7] = 0x10; cmd[8] = 0x05; // infineon? cmd[9]= 0xe0; // always e0 (not exactly unique) // DbpIntegers(cmd[8],cmd[7],cmd[6]); // Now the CRC crc = Crc(cmd, 10); // the crc needs to be calculated over 10 bytes cmd[10] = crc & 0xff; cmd[11] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } static void BuildReadBlockRequest(BYTE *uid, BYTE blockNumber ) { BYTE cmd[13]; WORD crc; // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block // followed by teh block data // one sub-carrier, inventory, 1 slot, fast rate cmd[0] = (1 << 6)| (1 << 5) | (1 << 1); // no SELECT bit // READ BLOCK command code cmd[1] = 0x20; // UID may be optionally specified here // 64-bit UID cmd[2] = 0x32; cmd[3]= 0x4b; cmd[4] = 0x03; cmd[5] = 0x01; cmd[6] = 0x00; cmd[7] = 0x10; cmd[8] = 0x05; cmd[9]= 0xe0; // always e0 (not exactly unique) // Block number to read cmd[10] = blockNumber;//0x00; //Now the CRC crc = Crc(cmd, 11); // the crc needs to be calculated over 2 bytes cmd[11] = crc & 0xff; cmd[12] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } static void BuildReadMultiBlockRequest(BYTE *uid) { BYTE cmd[14]; WORD crc; // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block // followed by teh block data // one sub-carrier, inventory, 1 slot, fast rate cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit // READ Multi BLOCK command code cmd[1] = 0x23; // UID may be optionally specified here // 64-bit UID cmd[2] = 0x32; cmd[3]= 0x4b; cmd[4] = 0x03; cmd[5] = 0x01; cmd[6] = 0x00; cmd[7] = 0x10; cmd[8] = 0x05; cmd[9]= 0xe0; // always e0 (not exactly unique) // First Block number to read cmd[10] = 0x00; // Number of Blocks to read cmd[11] = 0x2f; // read quite a few //Now the CRC crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes cmd[12] = crc & 0xff; cmd[13] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } static void BuildArbitraryRequest(BYTE *uid,BYTE CmdCode) { BYTE cmd[14]; WORD crc; // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block // followed by teh block data // one sub-carrier, inventory, 1 slot, fast rate cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit // READ BLOCK command code cmd[1] = CmdCode; // UID may be optionally specified here // 64-bit UID cmd[2] = 0x32; cmd[3]= 0x4b; cmd[4] = 0x03; cmd[5] = 0x01; cmd[6] = 0x00; cmd[7] = 0x10; cmd[8] = 0x05; cmd[9]= 0xe0; // always e0 (not exactly unique) // Parameter cmd[10] = 0x00; cmd[11] = 0x0a; // cmd[12] = 0x00; // cmd[13] = 0x00; //Now the CRC crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes cmd[12] = crc & 0xff; cmd[13] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } static void BuildArbitraryCustomRequest(BYTE uid[], BYTE CmdCode) { BYTE cmd[14]; WORD crc; // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block // followed by teh block data // one sub-carrier, inventory, 1 slot, fast rate cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit // READ BLOCK command code cmd[1] = CmdCode; // UID may be optionally specified here // 64-bit UID cmd[2] = 0x32; cmd[3]= 0x4b; cmd[4] = 0x03; cmd[5] = 0x01; cmd[6] = 0x00; cmd[7] = 0x10; cmd[8] = 0x05; cmd[9]= 0xe0; // always e0 (not exactly unique) // Parameter cmd[10] = 0x05; // for custom codes this must be manufcturer code cmd[11] = 0x00; // cmd[12] = 0x00; // cmd[13] = 0x00; //Now the CRC crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes cmd[12] = crc & 0xff; cmd[13] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } ///////////////////////////////////////////////////////////////////////// // Now the VICC>VCD responses when we are simulating a tag //////////////////////////////////////////////////////////////////// static void BuildInventoryResponse(void) { BYTE cmd[12]; WORD crc; // one sub-carrier, inventory, 1 slot, fast rate // AFI is at bit 5 (1<<4) when doing an INVENTORY cmd[0] = 0; //(1 << 2) | (1 << 5) | (1 << 1); cmd[1] = 0; // 64-bit UID cmd[2] = 0x32; cmd[3]= 0x4b; cmd[4] = 0x03; cmd[5] = 0x01; cmd[6] = 0x00; cmd[7] = 0x10; cmd[8] = 0x05; cmd[9]= 0xe0; //Now the CRC crc = Crc(cmd, 10); cmd[10] = crc & 0xff; cmd[11] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } //----------------------------------------------------------------------------- // Transmit the command (to the tag) that was placed in ToSend[]. //----------------------------------------------------------------------------- static void TransmitTo15693Tag(const BYTE *cmd, int len, int *samples, int *wait) { int c; // FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); if(*wait < 10) { *wait = 10; } // for(c = 0; c < *wait;) { // if(SSC_STATUS & (SSC_STATUS_TX_READY)) { // SSC_TRANSMIT_HOLDING = 0x00; // For exact timing! // c++; // } // if(SSC_STATUS & (SSC_STATUS_RX_READY)) { // volatile DWORD r = SSC_RECEIVE_HOLDING; // (void)r; // } // WDT_HIT(); // } c = 0; for(;;) { if(SSC_STATUS & (SSC_STATUS_TX_READY)) { SSC_TRANSMIT_HOLDING = cmd[c]; c++; if(c >= len) { break; } } if(SSC_STATUS & (SSC_STATUS_RX_READY)) { volatile DWORD r = SSC_RECEIVE_HOLDING; (void)r; } WDT_HIT(); } *samples = (c + *wait) << 3; } //----------------------------------------------------------------------------- // Transmit the command (to the reader) that was placed in ToSend[]. //----------------------------------------------------------------------------- static void TransmitTo15693Reader(const BYTE *cmd, int len, int *samples, int *wait) { int c; // FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR); // No requirement to energise my coils if(*wait < 10) { *wait = 10; } c = 0; for(;;) { if(SSC_STATUS & (SSC_STATUS_TX_READY)) { SSC_TRANSMIT_HOLDING = cmd[c]; c++; if(c >= len) { break; } } if(SSC_STATUS & (SSC_STATUS_RX_READY)) { volatile DWORD r = SSC_RECEIVE_HOLDING; (void)r; } WDT_HIT(); } *samples = (c + *wait) << 3; } static int GetIso15693AnswerFromTag(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed) { int c = 0; BYTE *dest = (BYTE *)BigBuf; int getNext = 0; SBYTE prev = 0; // NOW READ RESPONSE FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); //spindelay(60); // greg - experiment to get rid of some of the 0 byte/failed reads c = 0; getNext = FALSE; for(;;) { if(SSC_STATUS & (SSC_STATUS_TX_READY)) { SSC_TRANSMIT_HOLDING = 0x43; } if(SSC_STATUS & (SSC_STATUS_RX_READY)) { SBYTE b; b = (SBYTE)SSC_RECEIVE_HOLDING; // The samples are correlations against I and Q versions of the // tone that the tag AM-modulates, so every other sample is I, // every other is Q. We just want power, so abs(I) + abs(Q) is // close to what we want. if(getNext) { SBYTE r; if(b < 0) { r = -b; } else { r = b; } if(prev < 0) { r -= prev; } else { r += prev; } dest[c++] = (BYTE)r; if(c >= 2000) { break; } } else { prev = b; } getNext = !getNext; } } ////////////////////////////////////////// /////////// DEMODULATE /////////////////// ////////////////////////////////////////// int i, j; int max = 0, maxPos=0; int skip = 4; // if(GraphTraceLen < 1000) return; // THIS CHECKS FOR A BUFFER TO SMALL // First, correlate for SOF for(i = 0; i < 100; i++) { int corr = 0; for(j = 0; j < arraylen(FrameSOF); j += skip) { corr += FrameSOF[j]*dest[i+(j/skip)]; } if(corr > max) { max = corr; maxPos = i; } } // DbpString("SOF at %d, correlation %d", maxPos,max/(arraylen(FrameSOF)/skip)); int k = 0; // this will be our return value // greg - If correlation is less than 1 then there's little point in continuing if ((max/(arraylen(FrameSOF)/skip)) >= 1) { i = maxPos + arraylen(FrameSOF)/skip; BYTE outBuf[20]; memset(outBuf, 0, sizeof(outBuf)); BYTE mask = 0x01; for(;;) { int corr0 = 0, corr1 = 0, corrEOF = 0; for(j = 0; j < arraylen(Logic0); j += skip) { corr0 += Logic0[j]*dest[i+(j/skip)]; } for(j = 0; j < arraylen(Logic1); j += skip) { corr1 += Logic1[j]*dest[i+(j/skip)]; } for(j = 0; j < arraylen(FrameEOF); j += skip) { corrEOF += FrameEOF[j]*dest[i+(j/skip)]; } // Even things out by the length of the target waveform. corr0 *= 4; corr1 *= 4; if(corrEOF > corr1 && corrEOF > corr0) { // DbpString("EOF at %d", i); break; } else if(corr1 > corr0) { i += arraylen(Logic1)/skip; outBuf[k] |= mask; } else { i += arraylen(Logic0)/skip; } mask <<= 1; if(mask == 0) { k++; mask = 0x01; } if((i+(int)arraylen(FrameEOF)) >= 2000) { DbpString("ran off end!"); break; } } if(mask != 0x01) { DbpString("error, uneven octet! (discard extra bits!)"); /// DbpString(" mask=%02x", mask); } // BYTE str1 [8]; // itoa(k,str1); // strcat(str1," octets read"); // DbpString( str1); // DbpString("%d octets", k); // for(i = 0; i < k; i+=3) { // //DbpString("# %2d: %02x ", i, outBuf[i]); // DbpIntegers(outBuf[i],outBuf[i+1],outBuf[i+2]); // } for(i = 0; i < k; i++) { receivedResponse[i] = outBuf[i]; } } // "end if correlation > 0" (max/(arraylen(FrameSOF)/skip)) return k; // return the number of bytes demodulated /// DbpString("CRC=%04x", Iso15693Crc(outBuf, k-2)); } // Now the GetISO15693 message from sniffing command static int GetIso15693AnswerFromSniff(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed) { int c = 0; BYTE *dest = (BYTE *)BigBuf; int getNext = 0; SBYTE prev = 0; // NOW READ RESPONSE FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); //spindelay(60); // greg - experiment to get rid of some of the 0 byte/failed reads c = 0; getNext = FALSE; for(;;) { if(SSC_STATUS & (SSC_STATUS_TX_READY)) { SSC_TRANSMIT_HOLDING = 0x43; } if(SSC_STATUS & (SSC_STATUS_RX_READY)) { SBYTE b; b = (SBYTE)SSC_RECEIVE_HOLDING; // The samples are correlations against I and Q versions of the // tone that the tag AM-modulates, so every other sample is I, // every other is Q. We just want power, so abs(I) + abs(Q) is // close to what we want. if(getNext) { SBYTE r; if(b < 0) { r = -b; } else { r = b; } if(prev < 0) { r -= prev; } else { r += prev; } dest[c++] = (BYTE)r; if(c >= 20000) { break; } } else { prev = b; } getNext = !getNext; } } ////////////////////////////////////////// /////////// DEMODULATE /////////////////// ////////////////////////////////////////// int i, j; int max = 0, maxPos=0; int skip = 4; // if(GraphTraceLen < 1000) return; // THIS CHECKS FOR A BUFFER TO SMALL // First, correlate for SOF for(i = 0; i < 19000; i++) { int corr = 0; for(j = 0; j < arraylen(FrameSOF); j += skip) { corr += FrameSOF[j]*dest[i+(j/skip)]; } if(corr > max) { max = corr; maxPos = i; } } // DbpString("SOF at %d, correlation %d", maxPos,max/(arraylen(FrameSOF)/skip)); int k = 0; // this will be our return value // greg - If correlation is less than 1 then there's little point in continuing if ((max/(arraylen(FrameSOF)/skip)) >= 1) // THIS SHOULD BE 1 { i = maxPos + arraylen(FrameSOF)/skip; BYTE outBuf[20]; memset(outBuf, 0, sizeof(outBuf)); BYTE mask = 0x01; for(;;) { int corr0 = 0, corr1 = 0, corrEOF = 0; for(j = 0; j < arraylen(Logic0); j += skip) { corr0 += Logic0[j]*dest[i+(j/skip)]; } for(j = 0; j < arraylen(Logic1); j += skip) { corr1 += Logic1[j]*dest[i+(j/skip)]; } for(j = 0; j < arraylen(FrameEOF); j += skip) { corrEOF += FrameEOF[j]*dest[i+(j/skip)]; } // Even things out by the length of the target waveform. corr0 *= 4; corr1 *= 4; if(corrEOF > corr1 && corrEOF > corr0) { // DbpString("EOF at %d", i); break; } else if(corr1 > corr0) { i += arraylen(Logic1)/skip; outBuf[k] |= mask; } else { i += arraylen(Logic0)/skip; } mask <<= 1; if(mask == 0) { k++; mask = 0x01; } if((i+(int)arraylen(FrameEOF)) >= 2000) { DbpString("ran off end!"); break; } } if(mask != 0x01) { DbpString("error, uneven octet! (discard extra bits!)"); /// DbpString(" mask=%02x", mask); } // BYTE str1 [8]; // itoa(k,str1); // strcat(str1," octets read"); // DbpString( str1); // DbpString("%d octets", k); // for(i = 0; i < k; i+=3) { // //DbpString("# %2d: %02x ", i, outBuf[i]); // DbpIntegers(outBuf[i],outBuf[i+1],outBuf[i+2]); // } for(i = 0; i < k; i++) { receivedResponse[i] = outBuf[i]; } } // "end if correlation > 0" (max/(arraylen(FrameSOF)/skip)) return k; // return the number of bytes demodulated /// DbpString("CRC=%04x", Iso15693Crc(outBuf, k-2)); } //----------------------------------------------------------------------------- // Start to read an ISO 15693 tag. We send an identify request, then wait // for the response. The response is not demodulated, just left in the buffer // so that it can be downloaded to a PC and processed there. //----------------------------------------------------------------------------- void AcquireRawAdcSamplesIso15693(void) { int c = 0; BYTE *dest = (BYTE *)BigBuf; int getNext = 0; SBYTE prev = 0; BuildIdentifyRequest(); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); // Give the tags time to energize FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); SpinDelay(100); // Now send the command FpgaSetupSsc(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); c = 0; for(;;) { if(SSC_STATUS & (SSC_STATUS_TX_READY)) { SSC_TRANSMIT_HOLDING = ToSend[c]; c++; if(c == ToSendMax+3) { break; } } if(SSC_STATUS & (SSC_STATUS_RX_READY)) { volatile DWORD r = SSC_RECEIVE_HOLDING; (void)r; } WDT_HIT(); } FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); c = 0; getNext = FALSE; for(;;) { if(SSC_STATUS & (SSC_STATUS_TX_READY)) { SSC_TRANSMIT_HOLDING = 0x43; } if(SSC_STATUS & (SSC_STATUS_RX_READY)) { SBYTE b; b = (SBYTE)SSC_RECEIVE_HOLDING; // The samples are correlations against I and Q versions of the // tone that the tag AM-modulates, so every other sample is I, // every other is Q. We just want power, so abs(I) + abs(Q) is // close to what we want. if(getNext) { SBYTE r; if(b < 0) { r = -b; } else { r = b; } if(prev < 0) { r -= prev; } else { r += prev; } dest[c++] = (BYTE)r; if(c >= 2000) { break; } } else { prev = b; } getNext = !getNext; } } } //----------------------------------------------------------------------------- // Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector // all demodulation performed in arm rather than host. - greg //----------------------------------------------------------------------------- void ReaderIso15693(DWORD parameter) { LED_A_ON(); LED_B_ON(); LED_C_OFF(); LED_D_OFF(); //DbpString(parameter); BYTE *receivedAnswer0 = (((BYTE *)BigBuf) + 3560); // allow 100 bytes per reponse (way too much) BYTE *receivedAnswer1 = (((BYTE *)BigBuf) + 3660); // BYTE *receivedAnswer2 = (((BYTE *)BigBuf) + 3760); BYTE *receivedAnswer3 = (((BYTE *)BigBuf) + 3860); //BYTE *TagUID= (((BYTE *)BigBuf) + 3960); // where we hold the uid for hi15reader // int responseLen0 = 0; int responseLen1 = 0; int responseLen2 = 0; int responseLen3 = 0; // Blank arrays int j; for(j = 0; j < 100; j++) { receivedAnswer3[j] = 0; receivedAnswer2[j] =0; receivedAnswer1[j] = 0; receivedAnswer0[j] = 0; } // Setup SSC FpgaSetupSsc(); // Start from off (no field generated) FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(200); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); FpgaSetupSsc(); // Give the tags time to energize FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); SpinDelay(200); LED_A_ON(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); int samples = 0; int tsamples = 0; int wait = 0; int elapsed = 0; // FIRST WE RUN AN INVENTORY TO GET THE TAG UID // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME BYTE TagUID[7]; // where we hold the uid for hi15reader // BuildIdentifyRequest(); // //TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait); // TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3 // // Now wait for a response // responseLen0 = GetIso15693AnswerFromTag(receivedAnswer0, 100, &samples, &elapsed) ; // if (responseLen0 >=12) // we should do a better check than this // { // // really we should check it is a valid mesg // // but for now just grab what we think is the uid // TagUID[0] = receivedAnswer0[2]; // TagUID[1] = receivedAnswer0[3]; // TagUID[2] = receivedAnswer0[4]; // TagUID[3] = receivedAnswer0[5]; // TagUID[4] = receivedAnswer0[6]; // TagUID[5] = receivedAnswer0[7]; // TagUID[6] = receivedAnswer0[8]; // IC Manufacturer code // DbpIntegers(TagUID[6],TagUID[5],TagUID[4]); //} // Now send the IDENTIFY command BuildIdentifyRequest(); //TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait); TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3 // Now wait for a response responseLen1 = GetIso15693AnswerFromTag(receivedAnswer1, 100, &samples, &elapsed) ; if (responseLen1 >=12) // we should do a better check than this { TagUID[0] = receivedAnswer1[2]; TagUID[1] = receivedAnswer1[3]; TagUID[2] = receivedAnswer1[4]; TagUID[3] = receivedAnswer1[5]; TagUID[4] = receivedAnswer1[6]; TagUID[5] = receivedAnswer1[7]; TagUID[6] = receivedAnswer1[8]; // IC Manufacturer code // Now send the SELECT command BuildSelectRequest(TagUID); TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3 // Now wait for a response responseLen2 = GetIso15693AnswerFromTag(receivedAnswer2, 100, &samples, &elapsed); // Now send the MULTI READ command // BuildArbitraryRequest(*TagUID,parameter); BuildArbitraryCustomRequest(TagUID,parameter); // BuildReadBlockRequest(*TagUID,parameter); // BuildSysInfoRequest(*TagUID); //TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait); TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3 // Now wait for a response responseLen3 = GetIso15693AnswerFromTag(receivedAnswer3, 100, &samples, &elapsed) ; } char str1 [4]; //char str2 [200]; int i; itoa(responseLen1,str1); strcat(str1," octets read from IDENTIFY request"); DbpString(str1); for(i = 0; i < responseLen1; i+=3) { DbpIntegers(receivedAnswer1[i],receivedAnswer1[i+1],receivedAnswer1[i+2]); } itoa(responseLen2,str1); strcat(str1," octets read from SELECT request"); DbpString(str1); for(i = 0; i < responseLen2; i+=3) { DbpIntegers(receivedAnswer2[i],receivedAnswer2[i+1],receivedAnswer2[i+2]); } itoa(responseLen3,str1); strcat(str1," octets read from XXX request"); DbpString(str1); for(i = 0; i < responseLen3; i+=3) { DbpIntegers(receivedAnswer3[i],receivedAnswer3[i+1],receivedAnswer3[i+2]); } // str2[0]=0; // for(i = 0; i < responseLen3; i++) { // itoa(str1,receivedAnswer3[i]); // strcat(str2,str1); // } // DbpString(str2); LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); } //----------------------------------------------------------------------------- // Simulate an ISO15693 TAG, perform anti-collision and then print any reader commands // all demodulation performed in arm rather than host. - greg //----------------------------------------------------------------------------- void SimTagIso15693(DWORD parameter) { LED_A_ON(); LED_B_ON(); LED_C_OFF(); LED_D_OFF(); //DbpString(parameter); BYTE *receivedAnswer0 = (((BYTE *)BigBuf) + 3560); // allow 100 bytes per reponse (way too much) BYTE *receivedAnswer1 = (((BYTE *)BigBuf) + 3660); // BYTE *receivedAnswer2 = (((BYTE *)BigBuf) + 3760); BYTE *receivedAnswer3 = (((BYTE *)BigBuf) + 3860); //BYTE *TagUID= (((BYTE *)BigBuf) + 3960); // where we hold the uid for hi15reader // int responseLen0 = 0; int responseLen1 = 0; // int responseLen2 = 0; // int responseLen3 = 0; // Blank arrays int j; for(j = 0; j < 100; j++) { receivedAnswer3[j] = 0; receivedAnswer2[j] =0; receivedAnswer1[j] = 0; receivedAnswer0[j] = 0; } // Setup SSC FpgaSetupSsc(); // Start from off (no field generated) FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(200); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); FpgaSetupSsc(); // Give the tags time to energize // FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); // NO GOOD FOR SIM TAG!!!! SpinDelay(200); LED_A_OFF(); LED_B_OFF(); LED_C_ON(); LED_D_OFF(); int samples = 0; int tsamples = 0; int wait = 0; int elapsed = 0; // FIRST WE RUN AN INVENTORY TO GET THE TAG UID // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME // BYTE TagUID[7]; // where we hold the uid for hi15reader // Now send the IDENTIFY command // BuildIdentifyRequest(); // TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3 // Now wait for a command from the reader responseLen1=0; // while(responseLen1=0) { // if(BUTTON_PRESS()) break; responseLen1 = GetIso15693AnswerFromSniff(receivedAnswer1, 100, &samples, &elapsed) ; // } if (responseLen1 >=1) // we should do a better check than this { // Build a suitable reponse to the reader INVENTORY cocmmand BuildInventoryResponse(); TransmitTo15693Reader(ToSend,ToSendMax,&tsamples, &wait); // Now wait for a command from the reader // responseLen2 = GetIso15693AnswerFromTag(receivedAnswer2, 100, &samples, &elapsed); // Now wait for a command from the reader // responseLen3 = GetIso15693AnswerFromTag(receivedAnswer3, 100, &samples, &elapsed) ; } char str1 [4]; //char str2 [200]; int i; itoa(responseLen1,str1); strcat(str1," octets read from reader command"); DbpString(str1); for(i = 0; i < responseLen1; i+=3) { DbpIntegers(receivedAnswer1[i],receivedAnswer1[i+1],receivedAnswer1[i+2]); } // itoa(responseLen2,str1); // strcat(str1," octets read from SELECT request"); // DbpString(str1); // for(i = 0; i < responseLen2; i+=3) { // DbpIntegers(receivedAnswer2[i],receivedAnswer2[i+1],receivedAnswer2[i+2]); // } // // itoa(responseLen3,str1); // strcat(str1," octets read from XXX request"); // DbpString(str1); // for(i = 0; i < responseLen3; i+=3) { // DbpIntegers(receivedAnswer3[i],receivedAnswer3[i+1],receivedAnswer3[i+2]); // } // str2[0]=0; // for(i = 0; i < responseLen3; i++) { // itoa(str1,receivedAnswer3[i]); // strcat(str2,str1); // } // DbpString(str2); LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); }