//----------------------------------------------------------------------------- // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Miscellaneous routines for low frequency sampling. //----------------------------------------------------------------------------- #include "proxmark3.h" #include "apps.h" #include "util.h" #include "string.h" #include "lfsampling.h" sample_config config = { 1, 8, 1, 95, 0 } ; void printConfig() { Dbprintf("Sampling config: "); Dbprintf(" [q] divisor: %d ", config.divisor); Dbprintf(" [b] bps: %d ", config.bits_per_sample); Dbprintf(" [d] decimation: %d ", config.decimation); Dbprintf(" [a] averaging: %d ", config.averaging); Dbprintf(" [t] trigger threshold: %d ", config.trigger_threshold); } /** * Called from the USB-handler to set the sampling configuration * The sampling config is used for std reading and snooping. * * Other functions may read samples and ignore the sampling config, * such as functions to read the UID from a prox tag or similar. * * Values set to '0' implies no change (except for averaging) * @brief setSamplingConfig * @param sc */ void setSamplingConfig(sample_config *sc) { if(sc->divisor != 0) config.divisor = sc->divisor; if(sc->bits_per_sample!= 0) config.bits_per_sample= sc->bits_per_sample; if(sc->decimation!= 0) config.decimation= sc->decimation; if(sc->trigger_threshold != -1) config.trigger_threshold= sc->trigger_threshold; config.averaging= sc->averaging; if(config.bits_per_sample > 8) config.bits_per_sample = 8; if(config.decimation < 1) config.decimation = 1; printConfig(); } sample_config* getSamplingConfig() { return &config; } typedef struct { uint8_t * buffer; uint32_t numbits; uint32_t position; } BitstreamOut; /** * @brief Pushes bit onto the stream * @param stream * @param bit */ void pushBit( BitstreamOut* stream, uint8_t bit) { int bytepos = stream->position >> 3; // divide by 8 int bitpos = stream->position & 7; *(stream->buffer+bytepos) |= (bit > 0) << (7 - bitpos); stream->position++; stream->numbits++; } /** * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream * if not already loaded, sets divisor and starts up the antenna. * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz * 0 or 95 ==> 125 KHz * **/ void LFSetupFPGAForADC(int divisor, bool lf_field) { FpgaDownloadAndGo(FPGA_BITSTREAM_LF); if ( (divisor == 1) || (divisor < 0) || (divisor > 255) ) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz else if (divisor == 0) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz else FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0)); // Connect the A/D to the peak-detected low-frequency path. SetAdcMuxFor(GPIO_MUXSEL_LOPKD); // Give it a bit of time for the resonant antenna to settle. SpinDelay(50); // Now set up the SSC to get the ADC samples that are now streaming at us. FpgaSetupSsc(); } /** * Does the sample acquisition. If threshold is specified, the actual sampling * is not commenced until the threshold has been reached. * This method implements decimation and quantization in order to * be able to provide longer sample traces. * Uses the following global settings: * @param decimation - how much should the signal be decimated. A decimation of N means we keep 1 in N samples, etc. * @param bits_per_sample - bits per sample. Max 8, min 1 bit per sample. * @param averaging If set to true, decimation will use averaging, so that if e.g. decimation is 3, the sample * value that will be used is the average value of the three samples. * @param trigger_threshold - a threshold. The sampling won't commence until this threshold has been reached. Set * to -1 to ignore threshold. * @param silent - is true, now outputs are made. If false, dbprints the status * @return the number of bits occupied by the samples. */ uint32_t DoAcquisition(uint8_t decimation, uint32_t bits_per_sample, bool averaging, int trigger_threshold, bool silent) { //. uint8_t *dest = BigBuf_get_addr(); int bufsize = BigBuf_max_traceLen(); memset(dest, 0, bufsize); if(bits_per_sample < 1) bits_per_sample = 1; if(bits_per_sample > 8) bits_per_sample = 8; if(decimation < 1) decimation = 1; // Use a bit stream to handle the output BitstreamOut data = { dest , 0, 0}; int sample_counter = 0; uint8_t sample = 0; //If we want to do averaging uint32_t sample_sum =0 ; uint32_t sample_total_numbers =0 ; uint32_t sample_total_saved =0 ; while(!BUTTON_PRESS()) { WDT_HIT(); if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { AT91C_BASE_SSC->SSC_THR = 0x43; LED_D_ON(); } if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR; LED_D_OFF(); // threshold either high or low values 128 = center 0. if trigger = 178 if ((trigger_threshold > 0) && (sample < (trigger_threshold+128)) && (sample > (128-trigger_threshold))) // continue; //if (trigger_threshold > 0 && sample < trigger_threshold) // //continue; trigger_threshold = 0; sample_total_numbers++; if(averaging) { sample_sum += sample; } //Check decimation if(decimation > 1) { sample_counter++; if(sample_counter < decimation) continue; sample_counter = 0; } //Averaging if(averaging && decimation > 1) { sample = sample_sum / decimation; sample_sum =0; } //Store the sample sample_total_saved ++; if(bits_per_sample == 8){ dest[sample_total_saved-1] = sample; data.numbits = sample_total_saved << 3;//Get the return value correct if(sample_total_saved >= bufsize) break; } else{ pushBit(&data, sample & 0x80); if(bits_per_sample > 1) pushBit(&data, sample & 0x40); if(bits_per_sample > 2) pushBit(&data, sample & 0x20); if(bits_per_sample > 3) pushBit(&data, sample & 0x10); if(bits_per_sample > 4) pushBit(&data, sample & 0x08); if(bits_per_sample > 5) pushBit(&data, sample & 0x04); if(bits_per_sample > 6) pushBit(&data, sample & 0x02); //Not needed, 8bps is covered above //if(bits_per_sample > 7) pushBit(&data, sample & 0x01); if((data.numbits >> 3) +1 >= bufsize) break; } } } if(!silent) { Dbprintf("Done, saved %d out of %d seen samples at %d bits/sample",sample_total_saved, sample_total_numbers,bits_per_sample); Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]); } return data.numbits; } /** * @brief Does sample acquisition, ignoring the config values set in the sample_config. * This method is typically used by tag-specific readers who just wants to read the samples * the normal way * @param trigger_threshold * @param silent * @return number of bits sampled */ uint32_t DoAcquisition_default(int trigger_threshold, bool silent) { return DoAcquisition(1,8,0,trigger_threshold,silent); } uint32_t DoAcquisition_config( bool silent) { return DoAcquisition(config.decimation ,config.bits_per_sample ,config.averaging ,config.trigger_threshold ,silent); } uint32_t ReadLF(bool activeField, bool silent) { if (!silent) printConfig(); LFSetupFPGAForADC(config.divisor, activeField); // Now call the acquisition routine return DoAcquisition_config(silent); } /** * Initializes the FPGA for reader-mode (field on), and acquires the samples. * @return number of bits sampled **/ uint32_t SampleLF(bool printCfg) { return ReadLF(true, printCfg); } /** * Initializes the FPGA for snoop-mode (field off), and acquires the samples. * @return number of bits sampled **/ uint32_t SnoopLF() { return ReadLF(false, true); }