//----------------------------------------------------------------------------- // Copyright (C) 2011,2012 Merlok // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency MIFARE commands //----------------------------------------------------------------------------- #include "cmdhfmf.h" #include #include #include #include #include #include "comms.h" #include "cmdmain.h" #include "cmdhfmfhard.h" #include "parity.h" #include "util.h" #include "util_posix.h" #include "usb_cmd.h" #include "ui.h" #include "mifare/mifarehost.h" #include "mifare.h" #include "mifare/mfkey.h" #include "hardnested/hardnested_bf_core.h" #include "cliparser/cliparser.h" #include "cmdhf14a.h" #include "mifare/mifaredefault.h" #include "mifare/mifare4.h" #include "mifare/mad.h" #include "mifare/ndef.h" #include "emv/dump.h" #include "protocols.h" #define NESTED_SECTOR_RETRY 10 // how often we try mfested() until we give up static int CmdHelp(const char *Cmd); int CmdHF14AMifare(const char *Cmd) { int isOK = 0; uint64_t key = 0; isOK = mfDarkside(&key); switch (isOK) { case -1 : PrintAndLog("Button pressed. Aborted."); return 1; case -2 : PrintAndLog("Card is not vulnerable to Darkside attack (doesn't send NACK on authentication requests)."); return 1; case -3 : PrintAndLog("Card is not vulnerable to Darkside attack (its random number generator is not predictable)."); return 1; case -4 : PrintAndLog("Card is not vulnerable to Darkside attack (its random number generator seems to be based on the wellknown"); PrintAndLog("generating polynomial with 16 effective bits only, but shows unexpected behaviour."); return 1; case -5 : PrintAndLog("Aborted via keyboard."); return 1; default : PrintAndLog("Found valid key:%012" PRIx64 "\n", key); } PrintAndLog(""); return 0; } int CmdHF14AMfWrBl(const char *Cmd) { uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t bldata[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; char cmdp = 0x00; if (strlen(Cmd)<3) { PrintAndLog("Usage: hf mf wrbl "); PrintAndLog(" sample: hf mf wrbl 0 A FFFFFFFFFFFF 000102030405060708090A0B0C0D0E0F"); return 0; } blockNo = param_get8(Cmd, 0); cmdp = param_getchar(Cmd, 1); if (cmdp == 0x00) { PrintAndLog("Key type must be A or B"); return 1; } if (cmdp != 'A' && cmdp != 'a') keyType = 1; if (param_gethex(Cmd, 2, key, 12)) { PrintAndLog("Key must include 12 HEX symbols"); return 1; } if (param_gethex(Cmd, 3, bldata, 32)) { PrintAndLog("Block data must include 32 HEX symbols"); return 1; } PrintAndLog("--block no:%d, key type:%c, key:%s", blockNo, keyType?'B':'A', sprint_hex(key, 6)); PrintAndLog("--data: %s", sprint_hex(bldata, 16)); UsbCommand c = {CMD_MIFARE_WRITEBL, {blockNo, keyType, 0}}; memcpy(c.d.asBytes, key, 6); memcpy(c.d.asBytes + 10, bldata, 16); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); } return 0; } int CmdHF14AMfRdBl(const char *Cmd) { uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; char cmdp = 0x00; if (strlen(Cmd)<3) { PrintAndLog("Usage: hf mf rdbl "); PrintAndLog(" sample: hf mf rdbl 0 A FFFFFFFFFFFF "); return 0; } blockNo = param_get8(Cmd, 0); cmdp = param_getchar(Cmd, 1); if (cmdp == 0x00) { PrintAndLog("Key type must be A or B"); return 1; } if (cmdp != 'A' && cmdp != 'a') keyType = 1; if (param_gethex(Cmd, 2, key, 12)) { PrintAndLog("Key must include 12 HEX symbols"); return 1; } PrintAndLog("--block no:%d, key type:%c, key:%s ", blockNo, keyType?'B':'A', sprint_hex(key, 6)); UsbCommand c = {CMD_MIFARE_READBL, {blockNo, keyType, 0}}; memcpy(c.d.asBytes, key, 6); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; uint8_t *data = resp.d.asBytes; if (isOK) { PrintAndLog("isOk:%02x data:%s", isOK, sprint_hex(data, 16)); } else { PrintAndLog("isOk:%02x", isOK); return 1; } if (mfIsSectorTrailer(blockNo) && (data[6] || data[7] || data[8])) { PrintAndLogEx(NORMAL, "Trailer decoded:"); int bln = mfFirstBlockOfSector(mfSectorNum(blockNo)); int blinc = (mfNumBlocksPerSector(mfSectorNum(blockNo)) > 4) ? 5 : 1; for (int i = 0; i < 4; i++) { PrintAndLogEx(NORMAL, "Access block %d%s: %s", bln, ((blinc > 1) && (i < 3) ? "+" : "") , mfGetAccessConditionsDesc(i, &data[6])); bln += blinc; } PrintAndLogEx(NORMAL, "UserData: %s", sprint_hex_inrow(&data[9], 1)); } } else { PrintAndLog("Command execute timeout"); return 2; } return 0; } int CmdHF14AMfRdSc(const char *Cmd) { int i; uint8_t sectorNo = 0; uint8_t keyType = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t isOK = 0; uint8_t *data = NULL; char cmdp = 0x00; if (strlen(Cmd)<3) { PrintAndLog("Usage: hf mf rdsc "); PrintAndLog(" sample: hf mf rdsc 0 A FFFFFFFFFFFF "); return 0; } sectorNo = param_get8(Cmd, 0); if (sectorNo > 39) { PrintAndLog("Sector number must be less than 40"); return 1; } cmdp = param_getchar(Cmd, 1); if (cmdp != 'a' && cmdp != 'A' && cmdp != 'b' && cmdp != 'B') { PrintAndLog("Key type must be A or B"); return 1; } if (cmdp != 'A' && cmdp != 'a') keyType = 1; if (param_gethex(Cmd, 2, key, 12)) { PrintAndLog("Key must include 12 HEX symbols"); return 1; } PrintAndLog("--sector no:%d key type:%c key:%s ", sectorNo, keyType?'B':'A', sprint_hex(key, 6)); UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}}; memcpy(c.d.asBytes, key, 6); SendCommand(&c); PrintAndLog(" "); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { isOK = resp.arg[0] & 0xff; data = resp.d.asBytes; PrintAndLog("isOk:%02x", isOK); if (isOK) { for (i = 0; i < (sectorNo<32?3:15); i++) { PrintAndLog("data : %s", sprint_hex(data + i * 16, 16)); } PrintAndLog("trailer: %s", sprint_hex(data + (sectorNo<32?3:15) * 16, 16)); PrintAndLogEx(NORMAL, "Trailer decoded:"); int bln = mfFirstBlockOfSector(sectorNo); int blinc = (mfNumBlocksPerSector(sectorNo) > 4) ? 5 : 1; for (i = 0; i < 4; i++) { PrintAndLogEx(NORMAL, "Access block %d%s: %s", bln, ((blinc > 1) && (i < 3) ? "+" : "") , mfGetAccessConditionsDesc(i, &(data + (sectorNo<32?3:15) * 16)[6])); bln += blinc; } PrintAndLogEx(NORMAL, "UserData: %s", sprint_hex_inrow(&(data + (sectorNo<32?3:15) * 16)[9], 1)); } } else { PrintAndLog("Command execute timeout"); } return 0; } uint8_t FirstBlockOfSector(uint8_t sectorNo) { if (sectorNo < 32) { return sectorNo * 4; } else { return 32 * 4 + (sectorNo - 32) * 16; } } uint8_t NumBlocksPerSector(uint8_t sectorNo) { if (sectorNo < 32) { return 4; } else { return 16; } } static int ParamCardSizeSectors(const char c) { int numSectors = 16; switch (c) { case '0' : numSectors = 5; break; case '2' : numSectors = 32; break; case '4' : numSectors = 40; break; default: numSectors = 16; } return numSectors; } static int ParamCardSizeBlocks(const char c) { int numBlocks = 16 * 4; switch (c) { case '0' : numBlocks = 5 * 4; break; case '2' : numBlocks = 32 * 4; break; case '4' : numBlocks = 32 * 4 + 8 * 16; break; default: numBlocks = 16 * 4; } return numBlocks; } int CmdHF14AMfDump(const char *Cmd) { uint8_t sectorNo, blockNo; uint8_t keys[2][40][6]; uint8_t rights[40][4]; uint8_t carddata[256][16]; uint8_t numSectors = 16; FILE *fin; FILE *fout; UsbCommand resp; char cmdp = param_getchar(Cmd, 0); numSectors = ParamCardSizeSectors(cmdp); if (strlen(Cmd) > 3 || cmdp == 'h' || cmdp == 'H') { PrintAndLog("Usage: hf mf dump [card memory] [k|m]"); PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLog(" k: Always try using both Key A and Key B for each sector, even if access bits would prohibit it"); PrintAndLog(" m: When missing access bits or keys, replace that block with NULL"); PrintAndLog(""); PrintAndLog("Samples: hf mf dump"); PrintAndLog(" hf mf dump 4"); PrintAndLog(" hf mf dump 4 m"); return 0; } char opts = param_getchar(Cmd, 1); bool useBothKeysAlways = false; if (opts == 'k' || opts == 'K') useBothKeysAlways = true; bool nullMissingKeys = false; if (opts == 'm' || opts == 'M') nullMissingKeys = true; if ((fin = fopen("dumpkeys.bin","rb")) == NULL) { PrintAndLog("Could not find file dumpkeys.bin"); return 1; } // Read keys from file for (int group=0; group<=1; group++) { for (sectorNo=0; sectorNo>2) | ((data[8] & 0x1)<<1) | ((data[8] & 0x10)>>4); // C1C2C3 for data area 0 rights[sectorNo][1] = ((data[7] & 0x20)>>3) | ((data[8] & 0x2)<<0) | ((data[8] & 0x20)>>5); // C1C2C3 for data area 1 rights[sectorNo][2] = ((data[7] & 0x40)>>4) | ((data[8] & 0x4)>>1) | ((data[8] & 0x40)>>6); // C1C2C3 for data area 2 rights[sectorNo][3] = ((data[7] & 0x80)>>5) | ((data[8] & 0x8)>>2) | ((data[8] & 0x80)>>7); // C1C2C3 for sector trailer break; } else if (tries == 2) { // on last try set defaults PrintAndLog("Could not get access rights for sector %2d. Trying with defaults...", sectorNo); rights[sectorNo][0] = rights[sectorNo][1] = rights[sectorNo][2] = 0x00; rights[sectorNo][3] = 0x01; } } else { PrintAndLog("Command execute timeout when trying to read access rights for sector %2d. Trying with defaults...", sectorNo); rights[sectorNo][0] = rights[sectorNo][1] = rights[sectorNo][2] = 0x00; rights[sectorNo][3] = 0x01; } } } PrintAndLog("|-----------------------------------------|"); PrintAndLog("|----- Dumping all blocks to file... -----|"); PrintAndLog("|-----------------------------------------|"); bool isOK = true; for (sectorNo = 0; isOK && sectorNo < numSectors; sectorNo++) { for (blockNo = 0; isOK && blockNo < NumBlocksPerSector(sectorNo); blockNo++) { bool received = false; for (tries = 0; tries < 3; tries++) { if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer. At least the Access Conditions can always be read with key A. UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 0, 0}}; memcpy(c.d.asBytes, keys[0][sectorNo], 6); SendCommand(&c); received = WaitForResponseTimeout(CMD_ACK,&resp,1500); } else if (useBothKeysAlways) { // Always try both keys, even if access conditions wouldn't work. for (int k=0; k<=1; k++) { UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 1, 0}}; memcpy(c.d.asBytes, keys[k][sectorNo], 6); SendCommand(&c); received = WaitForResponseTimeout(CMD_ACK,&resp,1500); // Don't try the other one on success. if (resp.arg[0] & 0xff) break; } } else { // data block. Check if it can be read with key A or key B uint8_t data_area = sectorNo<32?blockNo:blockNo/5; if ((rights[sectorNo][data_area] == 0x03) || (rights[sectorNo][data_area] == 0x05)) { // only key B would work UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 1, 0}}; memcpy(c.d.asBytes, keys[1][sectorNo], 6); SendCommand(&c); received = WaitForResponseTimeout(CMD_ACK,&resp,1500); } else if (rights[sectorNo][data_area] == 0x07) { // no key would work PrintAndLog("Access rights do not allow reading of sector %2d block %3d", sectorNo, blockNo); if (nullMissingKeys) { memset(resp.d.asBytes, 0, 16); resp.arg[0] = 1; PrintAndLog(" ... filling the block with NULL"); received = true; } else { isOK = false; tries = 2; } } else { // key A would work UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 0, 0}}; memcpy(c.d.asBytes, keys[0][sectorNo], 6); SendCommand(&c); received = WaitForResponseTimeout(CMD_ACK,&resp,1500); } } if (received) { isOK = resp.arg[0] & 0xff; if (isOK) break; } } if (received) { isOK = resp.arg[0] & 0xff; uint8_t *data = resp.d.asBytes; if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer. Fill in the keys. memcpy(data, keys[0][sectorNo], 6); memcpy(data + 10, keys[1][sectorNo], 6); } if (isOK) { memcpy(carddata[FirstBlockOfSector(sectorNo) + blockNo], data, 16); PrintAndLog("Successfully read block %2d of sector %2d.", blockNo, sectorNo); } else { PrintAndLog("Could not read block %2d of sector %2d", blockNo, sectorNo); break; } } else { isOK = false; PrintAndLog("Command execute timeout when trying to read block %2d of sector %2d.", blockNo, sectorNo); break; } } } if (isOK) { if ((fout = fopen("dumpdata.bin","wb")) == NULL) { PrintAndLog("Could not create file name dumpdata.bin"); return 1; } uint16_t numblocks = FirstBlockOfSector(numSectors - 1) + NumBlocksPerSector(numSectors - 1); fwrite(carddata, 1, 16*numblocks, fout); fclose(fout); PrintAndLog("Dumped %d blocks (%d bytes) to file dumpdata.bin", numblocks, 16*numblocks); } return 0; } int CmdHF14AMfRestore(const char *Cmd) { uint8_t sectorNo,blockNo; uint8_t keyType = 0; uint8_t key[6] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF}; uint8_t bldata[16] = {0x00}; uint8_t keyA[40][6]; uint8_t keyB[40][6]; uint8_t numSectors; FILE *fdump; FILE *fkeys; char cmdp = param_getchar(Cmd, 0); switch (cmdp) { case '0' : numSectors = 5; break; case '1' : case '\0': numSectors = 16; break; case '2' : numSectors = 32; break; case '4' : numSectors = 40; break; default: numSectors = 16; } if (strlen(Cmd) > 1 || cmdp == 'h' || cmdp == 'H') { PrintAndLog("Usage: hf mf restore [card memory]"); PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLog(""); PrintAndLog("Samples: hf mf restore"); PrintAndLog(" hf mf restore 4"); return 0; } if ((fkeys = fopen("dumpkeys.bin","rb")) == NULL) { PrintAndLog("Could not find file dumpkeys.bin"); return 1; } for (sectorNo = 0; sectorNo < numSectors; sectorNo++) { size_t bytes_read = fread(keyA[sectorNo], 1, 6, fkeys); if (bytes_read != 6) { PrintAndLog("File reading error (dumpkeys.bin)."); fclose(fkeys); return 2; } } for (sectorNo = 0; sectorNo < numSectors; sectorNo++) { size_t bytes_read = fread(keyB[sectorNo], 1, 6, fkeys); if (bytes_read != 6) { PrintAndLog("File reading error (dumpkeys.bin)."); fclose(fkeys); return 2; } } fclose(fkeys); if ((fdump = fopen("dumpdata.bin","rb")) == NULL) { PrintAndLog("Could not find file dumpdata.bin"); return 1; } PrintAndLog("Restoring dumpdata.bin to card"); for (sectorNo = 0; sectorNo < numSectors; sectorNo++) { for(blockNo = 0; blockNo < NumBlocksPerSector(sectorNo); blockNo++) { UsbCommand c = {CMD_MIFARE_WRITEBL, {FirstBlockOfSector(sectorNo) + blockNo, keyType, 0}}; memcpy(c.d.asBytes, key, 6); size_t bytes_read = fread(bldata, 1, 16, fdump); if (bytes_read != 16) { PrintAndLog("File reading error (dumpdata.bin)."); fclose(fdump); return 2; } if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer bldata[0] = (keyA[sectorNo][0]); bldata[1] = (keyA[sectorNo][1]); bldata[2] = (keyA[sectorNo][2]); bldata[3] = (keyA[sectorNo][3]); bldata[4] = (keyA[sectorNo][4]); bldata[5] = (keyA[sectorNo][5]); bldata[10] = (keyB[sectorNo][0]); bldata[11] = (keyB[sectorNo][1]); bldata[12] = (keyB[sectorNo][2]); bldata[13] = (keyB[sectorNo][3]); bldata[14] = (keyB[sectorNo][4]); bldata[15] = (keyB[sectorNo][5]); } PrintAndLog("Writing to block %3d: %s", FirstBlockOfSector(sectorNo) + blockNo, sprint_hex(bldata, 16)); memcpy(c.d.asBytes + 10, bldata, 16); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); } } } fclose(fdump); return 0; } //---------------------------------------------- // Nested //---------------------------------------------- static void parseParamTDS(const char *Cmd, const uint8_t indx, bool *paramT, bool *paramD, uint16_t *timeout) { char ctmp3[4] = {0}; int len = param_getlength(Cmd, indx); if (len > 0 && len < 4){ param_getstr(Cmd, indx, ctmp3, sizeof(ctmp3)); *paramT |= (ctmp3[0] == 't' || ctmp3[0] == 'T'); *paramD |= (ctmp3[0] == 'd' || ctmp3[0] == 'D'); bool paramS1 = *paramT || *paramD; // slow and very slow if (ctmp3[0] == 's' || ctmp3[0] == 'S' || ctmp3[1] == 's' || ctmp3[1] == 'S') { *timeout = MF_CHKKEYS_SLOWTIMEOUT; // slow if (!paramS1 && (ctmp3[1] == 's' || ctmp3[1] == 'S')) { *timeout = MF_CHKKEYS_VERYSLOWTIMEOUT; // very slow } if (paramS1 && (ctmp3[2] == 's' || ctmp3[2] == 'S')) { *timeout = MF_CHKKEYS_VERYSLOWTIMEOUT; // very slow } } } } int CmdHF14AMfNested(const char *Cmd) { int i, j, res, iterations; sector_t *e_sector = NULL; uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t trgBlockNo = 0; uint8_t trgKeyType = 0; uint8_t SectorsCnt = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t keyBlock[MifareDefaultKeysSize * 6]; uint64_t key64 = 0; // timeout in units. (ms * 106) or us*0.106 uint16_t timeout14a = MF_CHKKEYS_DEFTIMEOUT; // fast by default bool autosearchKey = false; bool transferToEml = false; bool createDumpFile = false; FILE *fkeys; uint8_t standart[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; uint8_t tempkey[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; char cmdp, ctmp; if (strlen(Cmd)<3) { PrintAndLog("Usage:"); PrintAndLog(" all sectors: hf mf nested [t|d|s|ss]"); PrintAndLog(" all sectors autosearch key: hf mf nested * [t|d|s|ss]"); PrintAndLog(" one sector: hf mf nested o "); PrintAndLog(" [t]"); PrintAndLog(" "); PrintAndLog("card memory - 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, - 1K"); PrintAndLog("t - transfer keys to emulator memory"); PrintAndLog("d - write keys to binary file dumpkeys.bin"); PrintAndLog("s - Slow (1ms) check keys (required by some non standard cards)"); PrintAndLog("ss - Very slow (5ms) check keys"); PrintAndLog(" "); PrintAndLog(" sample1: hf mf nested 1 0 A FFFFFFFFFFFF "); PrintAndLog(" sample2: hf mf nested 1 0 A FFFFFFFFFFFF t "); PrintAndLog(" sample3: hf mf nested 1 0 A FFFFFFFFFFFF d "); PrintAndLog(" sample4: hf mf nested o 0 A FFFFFFFFFFFF 4 A"); PrintAndLog(" sample5: hf mf nested 1 * t"); PrintAndLog(" sample6: hf mf nested 1 * ss"); return 0; } // cmdp = param_getchar(Cmd, 0); if (cmdp == 'o' || cmdp == 'O') { cmdp = 'o'; SectorsCnt = 1; } else { SectorsCnt = ParamCardSizeSectors(cmdp); } // . number or autosearch key (*) if (param_getchar(Cmd, 1) == '*') { autosearchKey = true; parseParamTDS(Cmd, 2, &transferToEml, &createDumpFile, &timeout14a); PrintAndLog("--nested. sectors:%2d, block no:*, eml:%c, dmp=%c checktimeout=%d us", SectorsCnt, transferToEml?'y':'n', createDumpFile?'y':'n', ((uint32_t)timeout14a * 1000) / 106); } else { blockNo = param_get8(Cmd, 1); ctmp = param_getchar(Cmd, 2); if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') { PrintAndLog("Key type must be A or B"); return 1; } if (ctmp != 'A' && ctmp != 'a') keyType = 1; if (param_gethex(Cmd, 3, key, 12)) { PrintAndLog("Key must include 12 HEX symbols"); return 1; } // check if we can authenticate to sector res = mfCheckKeys(blockNo, keyType, timeout14a, true, 1, key, &key64); if (res) { PrintAndLog("Can't authenticate to block:%3d key type:%c key:%s", blockNo, keyType?'B':'A', sprint_hex(key, 6)); return 3; } // one sector nested if (cmdp == 'o') { trgBlockNo = param_get8(Cmd, 4); ctmp = param_getchar(Cmd, 5); if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') { PrintAndLog("Target key type must be A or B"); return 1; } if (ctmp != 'A' && ctmp != 'a') trgKeyType = 1; parseParamTDS(Cmd, 6, &transferToEml, &createDumpFile, &timeout14a); } else { parseParamTDS(Cmd, 4, &transferToEml, &createDumpFile, &timeout14a); } PrintAndLog("--nested. sectors:%2d, block no:%3d, key type:%c, eml:%c, dmp=%c checktimeout=%d us", SectorsCnt, blockNo, keyType?'B':'A', transferToEml?'y':'n', createDumpFile?'y':'n', ((uint32_t)timeout14a * 1000) / 106); } // one-sector nested if (cmdp == 'o') { // ------------------------------------ one sector working PrintAndLog("--target block no:%3d, target key type:%c ", trgBlockNo, trgKeyType?'B':'A'); int16_t isOK = mfnested(blockNo, keyType, timeout14a, key, trgBlockNo, trgKeyType, keyBlock, true); if (isOK < 0) { switch (isOK) { case -1 : PrintAndLog("Error: No response from Proxmark.\n"); break; case -2 : PrintAndLog("Button pressed. Aborted.\n"); break; case -3 : PrintAndLog("Tag isn't vulnerable to Nested Attack (random numbers are not predictable).\n"); break; default : PrintAndLog("Unknown Error (%d)\n", isOK); } return 2; } key64 = bytes_to_num(keyBlock, 6); if (!isOK) { PrintAndLog("Found valid key:%012" PRIx64, key64); // transfer key to the emulator if (transferToEml) { uint8_t sectortrailer; if (trgBlockNo < 32*4) { // 4 block sector sectortrailer = trgBlockNo | 0x03; } else { // 16 block sector sectortrailer = trgBlockNo | 0x0f; } mfEmlGetMem(keyBlock, sectortrailer, 1); if (!trgKeyType) num_to_bytes(key64, 6, keyBlock); else num_to_bytes(key64, 6, &keyBlock[10]); mfEmlSetMem(keyBlock, sectortrailer, 1); PrintAndLog("Key transferred to emulator memory."); } } else { PrintAndLog("No valid key found"); } } else { // ------------------------------------ multiple sectors working uint64_t msclock1; msclock1 = msclock(); e_sector = calloc(SectorsCnt, sizeof(sector_t)); if (e_sector == NULL) return 1; //test current key and additional standard keys first for (int defaultKeyCounter = 0; defaultKeyCounter < MifareDefaultKeysSize; defaultKeyCounter++){ num_to_bytes(MifareDefaultKeys[defaultKeyCounter], 6, (uint8_t*)(keyBlock + defaultKeyCounter * 6)); } PrintAndLog("Testing known keys. Sector count=%d", SectorsCnt); mfCheckKeysSec(SectorsCnt, 2, timeout14a, true, true, true, MifareDefaultKeysSize, keyBlock, e_sector); // get known key from array bool keyFound = false; if (autosearchKey) { for (i = 0; i < SectorsCnt; i++) { for (j = 0; j < 2; j++) { if (e_sector[i].foundKey[j]) { // get known key blockNo = i * 4; keyType = j; num_to_bytes(e_sector[i].Key[j], 6, key); keyFound = true; break; } } if (keyFound) break; } // Can't found a key.... if (!keyFound) { PrintAndLog("Can't found any of the known keys."); free(e_sector); return 4; } PrintAndLog("--auto key. block no:%3d, key type:%c key:%s", blockNo, keyType?'B':'A', sprint_hex(key, 6)); } // nested sectors iterations = 0; PrintAndLog("nested..."); bool calibrate = true; for (i = 0; i < NESTED_SECTOR_RETRY; i++) { for (uint8_t sectorNo = 0; sectorNo < SectorsCnt; sectorNo++) { for (trgKeyType = 0; trgKeyType < 2; trgKeyType++) { if (e_sector[sectorNo].foundKey[trgKeyType]) continue; PrintAndLog("-----------------------------------------------"); int16_t isOK = mfnested(blockNo, keyType, timeout14a, key, FirstBlockOfSector(sectorNo), trgKeyType, keyBlock, calibrate); if(isOK < 0) { switch (isOK) { case -1 : PrintAndLog("Error: No response from Proxmark.\n"); break; case -2 : PrintAndLog("Button pressed. Aborted.\n"); break; case -3 : PrintAndLog("Tag isn't vulnerable to Nested Attack (random numbers are not predictable).\n"); break; default : PrintAndLog("Unknown Error (%d)\n", isOK); } free(e_sector); return 2; } else { calibrate = false; } iterations++; key64 = bytes_to_num(keyBlock, 6); if (!isOK) { PrintAndLog("Found valid key:%012" PRIx64, key64); e_sector[sectorNo].foundKey[trgKeyType] = 1; e_sector[sectorNo].Key[trgKeyType] = key64; // try to check this key as a key to the other sectors mfCheckKeysSec(SectorsCnt, 2, timeout14a, true, true, true, 1, keyBlock, e_sector); } } } } // print nested statistic PrintAndLog("\n\n-----------------------------------------------\nNested statistic:\nIterations count: %d", iterations); PrintAndLog("Time in nested: %1.3f (%1.3f sec per key)", ((float)(msclock() - msclock1))/1000.0, ((float)(msclock() - msclock1))/iterations/1000.0); // print result PrintAndLog("|---|----------------|---|----------------|---|"); PrintAndLog("|sec|key A |res|key B |res|"); PrintAndLog("|---|----------------|---|----------------|---|"); for (i = 0; i < SectorsCnt; i++) { PrintAndLog("|%03d| %012" PRIx64 " | %d | %012" PRIx64 " | %d |", i, e_sector[i].Key[0], e_sector[i].foundKey[0], e_sector[i].Key[1], e_sector[i].foundKey[1]); } PrintAndLog("|---|----------------|---|----------------|---|"); // transfer keys to the emulator memory if (transferToEml) { for (i = 0; i < SectorsCnt; i++) { mfEmlGetMem(keyBlock, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1); if (e_sector[i].foundKey[0]) num_to_bytes(e_sector[i].Key[0], 6, keyBlock); if (e_sector[i].foundKey[1]) num_to_bytes(e_sector[i].Key[1], 6, &keyBlock[10]); mfEmlSetMem(keyBlock, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1); } PrintAndLog("Keys transferred to emulator memory."); } // Create dump file if (createDumpFile) { if ((fkeys = fopen("dumpkeys.bin","wb")) == NULL) { PrintAndLog("Could not create file dumpkeys.bin"); free(e_sector); return 1; } PrintAndLog("Printing keys to binary file dumpkeys.bin..."); for(i=0; i "); PrintAndLog(" [known target key (12 hex symbols)] [w] [s]"); PrintAndLog(" or hf mf hardnested r [known target key]"); PrintAndLog(" "); PrintAndLog("Options: "); PrintAndLog(" w: Acquire nonces and write them to binary file nonces.bin"); PrintAndLog(" s: Slower acquisition (required by some non standard cards)"); PrintAndLog(" r: Read nonces.bin and start attack"); PrintAndLog(" iX: set type of SIMD instructions. Without this flag programs autodetect it."); PrintAndLog(" i5: AVX512"); PrintAndLog(" i2: AVX2"); PrintAndLog(" ia: AVX"); PrintAndLog(" is: SSE2"); PrintAndLog(" im: MMX"); PrintAndLog(" in: none (use CPU regular instruction set)"); PrintAndLog(" "); PrintAndLog(" sample1: hf mf hardnested 0 A FFFFFFFFFFFF 4 A"); PrintAndLog(" sample2: hf mf hardnested 0 A FFFFFFFFFFFF 4 A w"); PrintAndLog(" sample3: hf mf hardnested 0 A FFFFFFFFFFFF 4 A w s"); PrintAndLog(" sample4: hf mf hardnested r"); PrintAndLog(" "); PrintAndLog("Add the known target key to check if it is present in the remaining key space:"); PrintAndLog(" sample5: hf mf hardnested 0 A A0A1A2A3A4A5 4 A FFFFFFFFFFFF"); return 0; } bool know_target_key = false; bool nonce_file_read = false; bool nonce_file_write = false; bool slow = false; int tests = 0; uint16_t iindx = 0; if (ctmp == 'R' || ctmp == 'r') { nonce_file_read = true; iindx = 1; if (!param_gethex(Cmd, 1, trgkey, 12)) { know_target_key = true; iindx = 2; } } else if (ctmp == 'T' || ctmp == 't') { tests = param_get32ex(Cmd, 1, 100, 10); iindx = 2; if (!param_gethex(Cmd, 2, trgkey, 12)) { know_target_key = true; iindx = 3; } } else { blockNo = param_get8(Cmd, 0); ctmp = param_getchar(Cmd, 1); if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') { PrintAndLog("Key type must be A or B"); return 1; } if (ctmp != 'A' && ctmp != 'a') { keyType = 1; } if (param_gethex(Cmd, 2, key, 12)) { PrintAndLog("Key must include 12 HEX symbols"); return 1; } trgBlockNo = param_get8(Cmd, 3); ctmp = param_getchar(Cmd, 4); if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') { PrintAndLog("Target key type must be A or B"); return 1; } if (ctmp != 'A' && ctmp != 'a') { trgKeyType = 1; } uint16_t i = 5; if (!param_gethex(Cmd, 5, trgkey, 12)) { know_target_key = true; i++; } iindx = i; while ((ctmp = param_getchar(Cmd, i))) { if (ctmp == 's' || ctmp == 'S') { slow = true; } else if (ctmp == 'w' || ctmp == 'W') { nonce_file_write = true; } else if (param_getlength(Cmd, i) == 2 && ctmp == 'i') { iindx = i; } else { PrintAndLog("Possible options are w , s and/or iX"); return 1; } i++; } } SetSIMDInstr(SIMD_AUTO); if (iindx > 0) { while ((ctmp = param_getchar(Cmd, iindx))) { if (param_getlength(Cmd, iindx) == 2 && ctmp == 'i') { switch(param_getchar_indx(Cmd, 1, iindx)) { case '5': SetSIMDInstr(SIMD_AVX512); break; case '2': SetSIMDInstr(SIMD_AVX2); break; case 'a': SetSIMDInstr(SIMD_AVX); break; case 's': SetSIMDInstr(SIMD_SSE2); break; case 'm': SetSIMDInstr(SIMD_MMX); break; case 'n': SetSIMDInstr(SIMD_NONE); break; default: PrintAndLog("Unknown SIMD type. %c", param_getchar_indx(Cmd, 1, iindx)); return 1; } } iindx++; } } PrintAndLog("--target block no:%3d, target key type:%c, known target key: 0x%02x%02x%02x%02x%02x%02x%s, file action: %s, Slow: %s, Tests: %d ", trgBlockNo, trgKeyType?'B':'A', trgkey[0], trgkey[1], trgkey[2], trgkey[3], trgkey[4], trgkey[5], know_target_key?"":" (not set)", nonce_file_write?"write":nonce_file_read?"read":"none", slow?"Yes":"No", tests); int16_t isOK = mfnestedhard(blockNo, keyType, key, trgBlockNo, trgKeyType, know_target_key?trgkey:NULL, nonce_file_read, nonce_file_write, slow, tests); if (isOK) { switch (isOK) { case 1 : PrintAndLog("Error: No response from Proxmark.\n"); break; case 2 : PrintAndLog("Button pressed. Aborted.\n"); break; default : break; } return 2; } return 0; } int CmdHF14AMfChk(const char *Cmd) { if (strlen(Cmd)<3) { PrintAndLog("Usage: hf mf chk |<*card memory> [t|d|s|ss] [] []"); PrintAndLog(" * - all sectors"); PrintAndLog("card memory - 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, - 1K"); PrintAndLog("d - write keys to binary file (not used when supplied)"); PrintAndLog("t - write keys to emulator memory"); PrintAndLog("s - slow execute. timeout 1ms"); PrintAndLog("ss - very slow execute. timeout 5ms"); PrintAndLog(" sample: hf mf chk 0 A 1234567890ab keys.dic"); PrintAndLog(" hf mf chk *1 ? t"); PrintAndLog(" hf mf chk *1 ? d"); PrintAndLog(" hf mf chk *1 ? s"); PrintAndLog(" hf mf chk *1 ? dss"); return 0; } FILE * f; char filename[FILE_PATH_SIZE]={0}; char buf[13]; uint8_t *keyBlock = NULL, *p; uint16_t stKeyBlock = 20; int i, res; int keycnt = 0; char ctmp = 0x00; int clen = 0; uint8_t blockNo = 0; uint8_t SectorsCnt = 0; uint8_t keyType = 0; uint64_t key64 = 0; // timeout in units. (ms * 106)/10 or us*0.0106 uint16_t timeout14a = MF_CHKKEYS_DEFTIMEOUT; // fast by default bool param3InUse = false; bool transferToEml = 0; bool createDumpFile = 0; bool singleBlock = false; // Flag to ID if a single or multi key check uint8_t keyFoundCount = 0; // Counter to display the number of keys found/transfered to emulator sector_t *e_sector = NULL; keyBlock = calloc(stKeyBlock, 6); if (keyBlock == NULL) return 1; int defaultKeysSize = MifareDefaultKeysSize; for (int defaultKeyCounter = 0; defaultKeyCounter < defaultKeysSize; defaultKeyCounter++){ num_to_bytes(MifareDefaultKeys[defaultKeyCounter], 6, (uint8_t*)(keyBlock + defaultKeyCounter * 6)); } if (param_getchar(Cmd, 0)=='*') { SectorsCnt = ParamCardSizeSectors(param_getchar(Cmd + 1, 0)); } else { blockNo = param_get8(Cmd, 0); // Singe Key check, so Set Sector count to cover sectors (1 to sector that contains the block) // 1 and 2 Cards : Sector = blockNo/4 + 1 // Sectors 0 - 31 : 4 blocks per sector : Blocks 0 - 127 // Sectors 32 - 39 : 16 blocks per sector : Blocks 128 - 255 (4K) if (blockNo < 128) { SectorsCnt = (blockNo / 4) + 1; } else { SectorsCnt = 32 + ((blockNo-128)/16) + 1; } singleBlock = true; // Set flag for single key check } ctmp = param_getchar(Cmd, 1); clen = param_getlength(Cmd, 1); if (clen == 1) { switch (ctmp) { case 'a': case 'A': keyType = 0; break; case 'b': case 'B': keyType = 1; break; case '?': keyType = 2; break; default: PrintAndLog("Key type must be A , B or ?"); free(keyBlock); return 1; }; } parseParamTDS(Cmd, 2, &transferToEml, &createDumpFile, &timeout14a); if (singleBlock & createDumpFile) { PrintAndLog (" block key check () and write to dump file (d) combination is not supported "); PrintAndLog (" please remove option d and try again"); return 1; } param3InUse = transferToEml | createDumpFile | (timeout14a != MF_CHKKEYS_DEFTIMEOUT); PrintAndLog("--chk keys. sectors:%2d, block no:%3d, key type:%c, eml:%c, dmp=%c checktimeout=%d us", SectorsCnt, blockNo, keyType==0?'A':keyType==1?'B':'?', transferToEml?'y':'n', createDumpFile?'y':'n', ((uint32_t)timeout14a * 1000) / 106); for (i = param3InUse; param_getchar(Cmd, 2 + i); i++) { if (!param_gethex(Cmd, 2 + i, keyBlock + 6 * keycnt, 12)) { if ( stKeyBlock - keycnt < 2) { p = realloc(keyBlock, 6*(stKeyBlock+=10)); if (!p) { PrintAndLog("Cannot allocate memory for Keys"); free(keyBlock); return 2; } keyBlock = p; } PrintAndLog("chk key[%2d] %02x%02x%02x%02x%02x%02x", keycnt, (keyBlock + 6*keycnt)[0], (keyBlock + 6*keycnt)[1], (keyBlock + 6*keycnt)[2], (keyBlock + 6*keycnt)[3], (keyBlock + 6*keycnt)[4], (keyBlock + 6*keycnt)[5], 6); keycnt++; } else { // May be a dic file if ( param_getstr(Cmd, 2 + i, filename, sizeof(filename)) >= FILE_PATH_SIZE ) { PrintAndLog("File name too long"); free(keyBlock); return 2; } if ((f = fopen( filename , "r"))) { while (fgets(buf, sizeof(buf), f)) { if (strlen(buf) < 12 || buf[11] == '\n') continue; while (fgetc(f) != '\n' && !feof(f)) ; //goto next line if( buf[0]=='#' ) continue; //The line start with # is comment, skip bool content_error = false; for (int i = 0; i < 12; i++) { if (!isxdigit((unsigned char)buf[i])) { content_error = true; } } if (content_error) { PrintAndLog("File content error. '%s' must include 12 HEX symbols", buf); continue; } buf[12] = 0; if (stKeyBlock - keycnt < 2) { p = realloc(keyBlock, 6*(stKeyBlock+=10)); if (!p) { PrintAndLog("Cannot allocate memory for defKeys"); free(keyBlock); fclose(f); return 2; } keyBlock = p; } memset(keyBlock + 6 * keycnt, 0, 6); num_to_bytes(strtoll(buf, NULL, 16), 6, keyBlock + 6*keycnt); PrintAndLog("chk custom key[%2d] %012" PRIx64 , keycnt, bytes_to_num(keyBlock + 6*keycnt, 6)); keycnt++; memset(buf, 0, sizeof(buf)); } fclose(f); } else { PrintAndLog("File: %s: not found or locked.", filename); free(keyBlock); return 1; } } } // fill with default keys if (keycnt == 0) { PrintAndLog("No key specified, trying default keys"); for (;keycnt < defaultKeysSize; keycnt++) PrintAndLog("chk default key[%2d] %02x%02x%02x%02x%02x%02x", keycnt, (keyBlock + 6*keycnt)[0], (keyBlock + 6*keycnt)[1], (keyBlock + 6*keycnt)[2], (keyBlock + 6*keycnt)[3], (keyBlock + 6*keycnt)[4], (keyBlock + 6*keycnt)[5], 6); } // initialize storage for found keys e_sector = calloc(SectorsCnt, sizeof(sector_t)); if (e_sector == NULL) { free(keyBlock); return 1; } for (uint8_t keyAB = 0; keyAB < 2; keyAB++) { for (uint16_t sectorNo = 0; sectorNo < SectorsCnt; sectorNo++) { e_sector[sectorNo].Key[keyAB] = 0xffffffffffff; e_sector[sectorNo].foundKey[keyAB] = 0; } } printf("\n"); bool foundAKey = false; bool clearTraceLog = true; uint32_t max_keys = keycnt > USB_CMD_DATA_SIZE / 6 ? USB_CMD_DATA_SIZE / 6 : keycnt; // !SingleKey, so all key check (if SectorsCnt > 0) if (!singleBlock) { PrintAndLog("To cancel this operation press the button on the proxmark..."); printf("--"); for (uint32_t c = 0; c < keycnt; c += max_keys) { uint32_t size = keycnt-c > max_keys ? max_keys : keycnt-c; bool init = (c == 0); bool drop_field = (c + size == keycnt); res = mfCheckKeysSec(SectorsCnt, keyType, timeout14a, clearTraceLog, init, drop_field, size, &keyBlock[6 * c], e_sector); // timeout is (ms * 106)/10 or us*0.0106 clearTraceLog = false; if (res != 1) { if (!res) { printf("o"); foundAKey = true; } else { printf("."); } } else { printf("\n"); PrintAndLog("Command execute timeout"); } } } else { int keyAB = keyType; do { res = mfCheckKeys(blockNo, keyAB & 0x01, timeout14a, true, keycnt, keyBlock, &key64); clearTraceLog = false; if (res != 1) { if (!res) { // Use the common format below // PrintAndLog("Found valid key:[%d:%c]%012" PRIx64, blockNo, (keyAB & 0x01)?'B':'A', key64); foundAKey = true; // Store the Single Key for display list // For a single block check, SectorsCnt = Sector that contains the block e_sector[SectorsCnt-1].foundKey[(keyAB & 0x01)] = true; // flag key found e_sector[SectorsCnt-1].Key[(keyAB & 0x01)] = key64; // Save key data } } else { PrintAndLog("Command execute timeout"); } } while(--keyAB > 0); } // print result if (foundAKey) { PrintAndLog(""); PrintAndLog("|---|----------------|----------------|"); PrintAndLog("|sec|key A |key B |"); PrintAndLog("|---|----------------|----------------|"); for (i = 0; i < SectorsCnt; i++) { // If a block key check, only print a line if a key was found. if (!singleBlock || e_sector[i].foundKey[0] || e_sector[i].foundKey[1]) { char keyAString[13] = " ? "; char keyBString[13] = " ? "; if (e_sector[i].foundKey[0]) { sprintf(keyAString, "%012" PRIx64, e_sector[i].Key[0]); } if (e_sector[i].foundKey[1]) { sprintf(keyBString, "%012" PRIx64, e_sector[i].Key[1]); } PrintAndLog("|%03d| %s | %s |", i, keyAString, keyBString); } } PrintAndLog("|---|----------------|----------------|"); } else { PrintAndLog(""); PrintAndLog("No valid keys found."); } if (transferToEml) { uint8_t block[16]; for (uint16_t sectorNo = 0; sectorNo < SectorsCnt; sectorNo++) { if (e_sector[sectorNo].foundKey[0] || e_sector[sectorNo].foundKey[1]) { mfEmlGetMem(block, FirstBlockOfSector(sectorNo) + NumBlocksPerSector(sectorNo) - 1, 1); for (uint16_t t = 0; t < 2; t++) { if (e_sector[sectorNo].foundKey[t]) { num_to_bytes(e_sector[sectorNo].Key[t], 6, block + t * 10); keyFoundCount++; // Key found count for information } } mfEmlSetMem(block, FirstBlockOfSector(sectorNo) + NumBlocksPerSector(sectorNo) - 1, 1); } } // Updated to show the actual number of keys found/transfered. PrintAndLog("%d keys(s) found have been transferred to the emulator memory",keyFoundCount); } if (createDumpFile && !singleBlock) { FILE *fkeys = fopen("dumpkeys.bin","wb"); if (fkeys == NULL) { PrintAndLog("Could not create file dumpkeys.bin"); free(e_sector); free(keyBlock); return 1; } uint8_t mkey[6]; for (uint8_t t = 0; t < 2; t++) { for (uint8_t sectorNo = 0; sectorNo < SectorsCnt; sectorNo++) { num_to_bytes(e_sector[sectorNo].Key[t], 6, mkey); fwrite(mkey, 1, 6, fkeys); } } fclose(fkeys); PrintAndLog("Found keys have been dumped to file dumpkeys.bin. 0xffffffffffff has been inserted for unknown keys."); } free(e_sector); free(keyBlock); PrintAndLog(""); return 0; } void readerAttack(nonces_t ar_resp[], bool setEmulatorMem, bool doStandardAttack) { #define ATTACK_KEY_COUNT 7 // keep same as define in iso14443a.c -> Mifare1ksim() // cannot be more than 7 or it will overrun c.d.asBytes(512) uint64_t key = 0; typedef struct { uint64_t keyA; uint64_t keyB; } st_t; st_t sector_trailer[ATTACK_KEY_COUNT]; memset(sector_trailer, 0x00, sizeof(sector_trailer)); uint8_t stSector[ATTACK_KEY_COUNT]; memset(stSector, 0x00, sizeof(stSector)); uint8_t key_cnt[ATTACK_KEY_COUNT]; memset(key_cnt, 0x00, sizeof(key_cnt)); for (uint8_t i = 0; i 0) { //PrintAndLog("DEBUG: Trying sector %d, cuid %08x, nt %08x, ar %08x, nr %08x, ar2 %08x, nr2 %08x",ar_resp[i].sector, ar_resp[i].cuid,ar_resp[i].nonce,ar_resp[i].ar,ar_resp[i].nr,ar_resp[i].ar2,ar_resp[i].nr2); if (doStandardAttack && mfkey32(ar_resp[i], &key)) { PrintAndLog(" Found Key%s for sector %02d: [%04x%08x]", (ar_resp[i].keytype) ? "B" : "A", ar_resp[i].sector, (uint32_t) (key>>32), (uint32_t) (key &0xFFFFFFFF)); for (uint8_t ii = 0; ii0) { uint8_t memBlock[16]; memset(memBlock, 0x00, sizeof(memBlock)); char cmd1[36]; memset(cmd1,0x00,sizeof(cmd1)); snprintf(cmd1,sizeof(cmd1),"%04x%08xFF078069%04x%08x",(uint32_t) (sector_trailer[i].keyA>>32), (uint32_t) (sector_trailer[i].keyA &0xFFFFFFFF),(uint32_t) (sector_trailer[i].keyB>>32), (uint32_t) (sector_trailer[i].keyB &0xFFFFFFFF)); PrintAndLog("Setting Emulator Memory Block %02d: [%s]",stSector[i]*4+3, cmd1); if (param_gethex(cmd1, 0, memBlock, 32)) { PrintAndLog("block data must include 32 HEX symbols"); return; } UsbCommand c = {CMD_MIFARE_EML_MEMSET, {(stSector[i]*4+3), 1, 0}}; memcpy(c.d.asBytes, memBlock, 16); clearCommandBuffer(); SendCommand(&c); } } } /* //un-comment to use as well moebius attack for (uint8_t i = ATTACK_KEY_COUNT; i 0) { if (tryMfk32_moebius(ar_resp[i], &key)) { PrintAndLog("M-Found Key%s for sector %02d: [%04x%08x]", (ar_resp[i].keytype) ? "B" : "A", ar_resp[i].sector, (uint32_t) (key>>32), (uint32_t) (key &0xFFFFFFFF)); } } }*/ } int usage_hf14_mfsim(void) { PrintAndLog("Usage: hf mf sim [h] [*] [u ] [n ] [i] [x]"); PrintAndLog("options:"); PrintAndLog(" h (Optional) this help"); PrintAndLog(" card memory: 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, - 1K"); PrintAndLog(" u (Optional) UID 4 or 7 bytes. If not specified, the UID 4B from emulator memory will be used"); PrintAndLog(" n (Optional) Automatically exit simulation after blocks have been read by reader. 0 = infinite"); PrintAndLog(" i (Optional) Interactive, means that console will not be returned until simulation finishes or is aborted"); PrintAndLog(" x (Optional) Crack, performs the 'reader attack', nr/ar attack against a legitimate reader, fishes out the key(s)"); PrintAndLog(" e (Optional) set keys found from 'reader attack' to emulator memory (implies x and i)"); PrintAndLog(" f (Optional) get UIDs to use for 'reader attack' from file 'f ' (implies x and i)"); PrintAndLog(" r (Optional) Generate random nonces instead of sequential nonces. Standard reader attack won't work with this option, only moebius attack works."); PrintAndLog("samples:"); PrintAndLog(" hf mf sim u 0a0a0a0a"); PrintAndLog(" hf mf sim *4"); PrintAndLog(" hf mf sim u 11223344556677"); PrintAndLog(" hf mf sim f uids.txt"); PrintAndLog(" hf mf sim u 0a0a0a0a e"); return 0; } int CmdHF14AMfSim(const char *Cmd) { UsbCommand resp; uint8_t uid[7] = {0}; uint8_t exitAfterNReads = 0; uint8_t flags = 0; int uidlen = 0; bool setEmulatorMem = false; bool attackFromFile = false; FILE *f; char filename[FILE_PATH_SIZE]; memset(filename, 0x00, sizeof(filename)); int len = 0; char buf[64]; uint8_t cmdp = 0; bool errors = false; uint8_t cardsize = '1'; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case '*': cardsize = param_getchar(Cmd + 1, cmdp); switch(cardsize) { case '0': case '1': case '2': case '4': break; default: cardsize = '1'; } cmdp++; break; case 'e': case 'E': setEmulatorMem = true; //implies x and i flags |= FLAG_INTERACTIVE; flags |= FLAG_NR_AR_ATTACK; cmdp++; break; case 'f': case 'F': len = param_getstr(Cmd, cmdp+1, filename, sizeof(filename)); if (len < 1) { PrintAndLog("error no filename found"); return 0; } attackFromFile = true; //implies x and i flags |= FLAG_INTERACTIVE; flags |= FLAG_NR_AR_ATTACK; cmdp += 2; break; case 'h': case 'H': return usage_hf14_mfsim(); case 'i': case 'I': flags |= FLAG_INTERACTIVE; cmdp++; break; case 'n': case 'N': exitAfterNReads = param_get8(Cmd, cmdp+1); cmdp += 2; break; case 'r': case 'R': flags |= FLAG_RANDOM_NONCE; cmdp++; break; case 'u': case 'U': uidlen = 14; if (param_gethex_ex(Cmd, cmdp+1, uid, &uidlen)) { return usage_hf14_mfsim(); } switch (uidlen) { case 14: flags = FLAG_7B_UID_IN_DATA; break; case 8: flags = FLAG_4B_UID_IN_DATA; break; default: return usage_hf14_mfsim(); } cmdp += 2; break; case 'x': case 'X': flags |= FLAG_NR_AR_ATTACK; cmdp++; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } if(errors) break; } //Validations if(errors) return usage_hf14_mfsim(); //get uid from file if (attackFromFile) { int count = 0; // open file f = fopen(filename, "r"); if (f == NULL) { PrintAndLog("File %s not found or locked", filename); return 1; } PrintAndLog("Loading file and simulating. Press keyboard to abort"); while(!feof(f) && !ukbhit()){ memset(buf, 0, sizeof(buf)); memset(uid, 0, sizeof(uid)); if (fgets(buf, sizeof(buf), f) == NULL) { if (count > 0) break; PrintAndLog("File reading error."); fclose(f); return 2; } if(!strlen(buf) && feof(f)) break; uidlen = strlen(buf)-1; switch(uidlen) { case 14: flags |= FLAG_7B_UID_IN_DATA; break; case 8: flags |= FLAG_4B_UID_IN_DATA; break; default: PrintAndLog("uid in file wrong length at %d (length: %d) [%s]",count, uidlen, buf); fclose(f); return 2; } for (uint8_t i = 0; i < uidlen; i += 2) { sscanf(&buf[i], "%02x", (unsigned int *)&uid[i / 2]); } PrintAndLog("mf sim cardsize: %s, uid: %s, numreads:%d, flags:%d (0x%02x) - press button to abort", cardsize == '0' ? "Mini" : cardsize == '2' ? "2K" : cardsize == '4' ? "4K" : "1K", flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4): flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): "N/A", exitAfterNReads, flags, flags); UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads, cardsize}}; memcpy(c.d.asBytes, uid, sizeof(uid)); clearCommandBuffer(); SendCommand(&c); while (! WaitForResponseTimeout(CMD_ACK,&resp,1500)) { //We're waiting only 1.5 s at a time, otherwise we get the // annoying message about "Waiting for a response... " } //got a response nonces_t ar_resp[ATTACK_KEY_COUNT*2]; memcpy(ar_resp, resp.d.asBytes, sizeof(ar_resp)); // We can skip the standard attack if we have RANDOM_NONCE set. readerAttack(ar_resp, setEmulatorMem, !(flags & FLAG_RANDOM_NONCE)); if ((bool)resp.arg[1]) { PrintAndLog("Device button pressed - quitting"); fclose(f); return 4; } count++; } fclose(f); } else { //not from file PrintAndLog("mf sim cardsize: %s, uid: %s, numreads:%d, flags:%d (0x%02x) ", cardsize == '0' ? "Mini" : cardsize == '2' ? "2K" : cardsize == '4' ? "4K" : "1K", flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4): flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): "N/A", exitAfterNReads, flags, flags); UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads, cardsize}}; memcpy(c.d.asBytes, uid, sizeof(uid)); clearCommandBuffer(); SendCommand(&c); if(flags & FLAG_INTERACTIVE) { PrintAndLog("Press pm3-button to abort simulation"); while(! WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { //We're waiting only 1.5 s at a time, otherwise we get the // annoying message about "Waiting for a response... " } //got a response if (flags & FLAG_NR_AR_ATTACK) { nonces_t ar_resp[ATTACK_KEY_COUNT*2]; memcpy(ar_resp, resp.d.asBytes, sizeof(ar_resp)); // We can skip the standard attack if we have RANDOM_NONCE set. readerAttack(ar_resp, setEmulatorMem, !(flags & FLAG_RANDOM_NONCE)); } } } return 0; } int CmdHF14AMfDbg(const char *Cmd) { int dbgMode = param_get32ex(Cmd, 0, 0, 10); if (dbgMode > 4) { PrintAndLog("Max debug mode parameter is 4 \n"); } if (strlen(Cmd) < 1 || !param_getchar(Cmd, 0) || dbgMode > 4) { PrintAndLog("Usage: hf mf dbg "); PrintAndLog(" 0 - no debug messages"); PrintAndLog(" 1 - error messages"); PrintAndLog(" 2 - plus information messages"); PrintAndLog(" 3 - plus debug messages"); PrintAndLog(" 4 - print even debug messages in timing critical functions"); PrintAndLog(" Note: this option therefore may cause malfunction itself"); return 0; } UsbCommand c = {CMD_MIFARE_SET_DBGMODE, {dbgMode, 0, 0}}; SendCommand(&c); return 0; } int CmdHF14AMfEGet(const char *Cmd) { uint8_t blockNo = 0; uint8_t data[16] = {0x00}; if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf eget "); PrintAndLog(" sample: hf mf eget 0 "); return 0; } blockNo = param_get8(Cmd, 0); PrintAndLog(" "); if (!mfEmlGetMem(data, blockNo, 1)) { PrintAndLog("data[%3d]:%s", blockNo, sprint_hex(data, 16)); } else { PrintAndLog("Command execute timeout"); } return 0; } int CmdHF14AMfEClear(const char *Cmd) { if (param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf eclr"); PrintAndLog("It set card emulator memory to empty data blocks and key A/B FFFFFFFFFFFF \n"); return 0; } UsbCommand c = {CMD_MIFARE_EML_MEMCLR, {0, 0, 0}}; SendCommand(&c); return 0; } int CmdHF14AMfESet(const char *Cmd) { uint8_t memBlock[16]; uint8_t blockNo = 0; memset(memBlock, 0x00, sizeof(memBlock)); if (strlen(Cmd) < 3 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf eset "); PrintAndLog(" sample: hf mf eset 1 000102030405060708090a0b0c0d0e0f "); return 0; } blockNo = param_get8(Cmd, 0); if (param_gethex(Cmd, 1, memBlock, 32)) { PrintAndLog("block data must include 32 HEX symbols"); return 1; } // 1 - blocks count return mfEmlSetMem(memBlock, blockNo, 1); } int CmdHF14AMfELoad(const char *Cmd) { FILE * f; char filename[FILE_PATH_SIZE]; char *fnameptr = filename; char buf[64] = {0x00}; uint8_t buf8[64] = {0x00}; int i, len, blockNum, numBlocks; int nameParamNo = 1; char ctmp = param_getchar(Cmd, 0); if ( ctmp == 'h' || ctmp == 0x00) { PrintAndLog("It loads emul dump from the file `filename.eml`"); PrintAndLog("Usage: hf mf eload [card memory] "); PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLog(""); PrintAndLog(" sample: hf mf eload filename"); PrintAndLog(" hf mf eload 4 filename"); return 0; } switch (ctmp) { case '0' : numBlocks = 5*4; break; case '1' : case '\0': numBlocks = 16*4; break; case '2' : numBlocks = 32*4; break; case '4' : numBlocks = 256; break; default: { numBlocks = 16*4; nameParamNo = 0; } } len = param_getstr(Cmd, nameParamNo, filename, sizeof(filename)); if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5; fnameptr += len; sprintf(fnameptr, ".eml"); // open file f = fopen(filename, "r"); if (f == NULL) { PrintAndLog("File %s not found or locked", filename); return 1; } blockNum = 0; while(!feof(f)){ memset(buf, 0, sizeof(buf)); if (fgets(buf, sizeof(buf), f) == NULL) { if (blockNum >= numBlocks) break; PrintAndLog("File reading error."); fclose(f); return 2; } if (strlen(buf) < 32){ if(strlen(buf) && feof(f)) break; PrintAndLog("File content error. Block data must include 32 HEX symbols"); fclose(f); return 2; } for (i = 0; i < 32; i += 2) { sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]); } if (mfEmlSetMem(buf8, blockNum, 1)) { PrintAndLog("Cant set emul block: %3d", blockNum); fclose(f); return 3; } printf("."); blockNum++; if (blockNum >= numBlocks) break; } fclose(f); printf("\n"); if ((blockNum != numBlocks)) { PrintAndLog("File content error. Got %d must be %d blocks.",blockNum, numBlocks); return 4; } PrintAndLog("Loaded %d blocks from file: %s", blockNum, filename); return 0; } int CmdHF14AMfESave(const char *Cmd) { FILE * f; char filename[FILE_PATH_SIZE]; char * fnameptr = filename; uint8_t buf[64]; int i, j, len, numBlocks; int nameParamNo = 1; memset(filename, 0, sizeof(filename)); memset(buf, 0, sizeof(buf)); char ctmp = param_getchar(Cmd, 0); if ( ctmp == 'h' || ctmp == 'H') { PrintAndLog("It saves emul dump into the file `filename.eml` or `cardID.eml`"); PrintAndLog(" Usage: hf mf esave [card memory] [file name w/o `.eml`]"); PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLog(""); PrintAndLog(" sample: hf mf esave "); PrintAndLog(" hf mf esave 4"); PrintAndLog(" hf mf esave 4 filename"); return 0; } switch (ctmp) { case '0' : numBlocks = 5*4; break; case '1' : case '\0': numBlocks = 16*4; break; case '2' : numBlocks = 32*4; break; case '4' : numBlocks = 256; break; default: { numBlocks = 16*4; nameParamNo = 0; } } len = param_getstr(Cmd,nameParamNo,filename,sizeof(filename)); if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5; // user supplied filename? if (len < 1) { // get filename (UID from memory) if (mfEmlGetMem(buf, 0, 1)) { PrintAndLog("Can\'t get UID from block: %d", 0); len = sprintf(fnameptr, "dump"); fnameptr += len; } else { for (j = 0; j < 7; j++, fnameptr += 2) sprintf(fnameptr, "%02X", buf[j]); } } else { fnameptr += len; } // add file extension sprintf(fnameptr, ".eml"); // open file f = fopen(filename, "w+"); if ( !f ) { PrintAndLog("Can't open file %s ", filename); return 1; } // put hex for (i = 0; i < numBlocks; i++) { if (mfEmlGetMem(buf, i, 1)) { PrintAndLog("Cant get block: %d", i); break; } for (j = 0; j < 16; j++) fprintf(f, "%02X", buf[j]); fprintf(f,"\n"); } fclose(f); PrintAndLog("Saved %d blocks to file: %s", numBlocks, filename); return 0; } int CmdHF14AMfECFill(const char *Cmd) { uint8_t keyType = 0; uint8_t numSectors = 16; if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf ecfill [card memory]"); PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLog(""); PrintAndLog("samples: hf mf ecfill A"); PrintAndLog(" hf mf ecfill A 4"); PrintAndLog("Read card and transfer its data to emulator memory."); PrintAndLog("Keys must be laid in the emulator memory. \n"); return 0; } char ctmp = param_getchar(Cmd, 0); if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') { PrintAndLog("Key type must be A or B"); return 1; } if (ctmp != 'A' && ctmp != 'a') keyType = 1; ctmp = param_getchar(Cmd, 1); switch (ctmp) { case '0' : numSectors = 5; break; case '1' : case '\0': numSectors = 16; break; case '2' : numSectors = 32; break; case '4' : numSectors = 40; break; default: numSectors = 16; } printf("--params: numSectors: %d, keyType:%d\n", numSectors, keyType); UsbCommand c = {CMD_MIFARE_EML_CARDLOAD, {numSectors, keyType, 0}}; SendCommand(&c); return 0; } int CmdHF14AMfEKeyPrn(const char *Cmd) { int i; uint8_t numSectors = 16; uint8_t data[16]; uint64_t keyA, keyB; bool createDumpFile = false; if (param_getchar(Cmd, 0) == 'h') { PrintAndLog("It prints the keys loaded in the emulator memory"); PrintAndLog("Usage: hf mf ekeyprn [card memory] [d]"); PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLog(" [d] : write keys to binary file dumpkeys.bin"); PrintAndLog(""); PrintAndLog(" sample: hf mf ekeyprn 1"); return 0; } uint8_t cmdp = 0; while (param_getchar(Cmd, cmdp) != 0x00) { switch (param_getchar(Cmd, cmdp)) { case '0' : numSectors = 5; break; case '1' : case '\0': numSectors = 16; break; case '2' : numSectors = 32; break; case '4' : numSectors = 40; break; case 'd' : case 'D' : createDumpFile = true; break; } cmdp++; } PrintAndLog("|---|----------------|----------------|"); PrintAndLog("|sec|key A |key B |"); PrintAndLog("|---|----------------|----------------|"); for (i = 0; i < numSectors; i++) { if (mfEmlGetMem(data, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1)) { PrintAndLog("error get block %d", FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1); break; } keyA = bytes_to_num(data, 6); keyB = bytes_to_num(data + 10, 6); PrintAndLog("|%03d| %012" PRIx64 " | %012" PRIx64 " |", i, keyA, keyB); } PrintAndLog("|---|----------------|----------------|"); // Create dump file if (createDumpFile) { FILE *fkeys; if ((fkeys = fopen("dumpkeys.bin","wb")) == NULL) { PrintAndLog("Could not create file dumpkeys.bin"); return 1; } PrintAndLog("Printing keys to binary file dumpkeys.bin..."); for(i = 0; i < numSectors; i++) { if (mfEmlGetMem(data, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1)) { PrintAndLog("error get block %d", FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1); break; } fwrite(data, 1, 6, fkeys); } for(i = 0; i < numSectors; i++) { if (mfEmlGetMem(data, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1)) { PrintAndLog("error get block %d", FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1); break; } fwrite(data+10, 1, 6, fkeys); } fclose(fkeys); } return 0; } int CmdHF14AMfCSetUID(const char *Cmd) { uint8_t uid[8] = {0x00}; uint8_t oldUid[8] = {0x00}; uint8_t atqa[2] = {0x00}; uint8_t sak[1] = {0x00}; uint8_t atqaPresent = 0; int res; uint8_t needHelp = 0; char cmdp = 1; if (param_getchar(Cmd, 0) && param_gethex(Cmd, 0, uid, 8)) { PrintAndLog("UID must include 8 HEX symbols"); return 1; } if (param_getlength(Cmd, 1) > 1 && param_getlength(Cmd, 2) > 1) { atqaPresent = 1; cmdp = 3; if (param_gethex(Cmd, 1, atqa, 4)) { PrintAndLog("ATQA must include 4 HEX symbols"); return 1; } if (param_gethex(Cmd, 2, sak, 2)) { PrintAndLog("SAK must include 2 HEX symbols"); return 1; } } while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'h': case 'H': needHelp = 1; break; default: PrintAndLog("ERROR: Unknown parameter '%c'", param_getchar(Cmd, cmdp)); needHelp = 1; break; } cmdp++; } if (strlen(Cmd) < 1 || needHelp) { PrintAndLog(""); PrintAndLog("Usage: hf mf csetuid [ATQA 4 hex symbols SAK 2 hex symbols]"); PrintAndLog("sample: hf mf csetuid 01020304"); PrintAndLog("sample: hf mf csetuid 01020304 0004 08"); PrintAndLog("Set UID, ATQA, and SAK for magic Chinese card (only works with such cards)"); return 0; } PrintAndLog("uid:%s", sprint_hex(uid, 4)); if (atqaPresent) { PrintAndLog("--atqa:%s sak:%02x", sprint_hex(atqa, 2), sak[0]); } res = mfCSetUID(uid, (atqaPresent)?atqa:NULL, (atqaPresent)?sak:NULL, oldUid); if (res) { PrintAndLog("Can't set UID. Error=%d", res); return 1; } PrintAndLog("old UID:%s", sprint_hex(oldUid, 4)); PrintAndLog("new UID:%s", sprint_hex(uid, 4)); return 0; } int CmdHF14AMfCWipe(const char *Cmd) { int res, gen = 0; int numBlocks = 16 * 4; bool wipeCard = false; bool fillCard = false; if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf cwipe [card size] [w] [f]"); PrintAndLog("sample: hf mf cwipe 1 w f"); PrintAndLog("[card size]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLog("w - Wipe magic Chinese card (only works with gen:1a cards)"); PrintAndLog("f - Fill the card with default data and keys (works with gen:1a and gen:1b cards only)"); return 0; } gen = mfCIdentify(); if ((gen != 1) && (gen != 2)) return 1; numBlocks = ParamCardSizeBlocks(param_getchar(Cmd, 0)); char cmdp = 0; while(param_getchar(Cmd, cmdp) != 0x00){ switch(param_getchar(Cmd, cmdp)) { case 'w': case 'W': wipeCard = 1; break; case 'f': case 'F': fillCard = 1; break; default: break; } cmdp++; } if (!wipeCard && !fillCard) wipeCard = true; PrintAndLog("--blocks count:%2d wipe:%c fill:%c", numBlocks, (wipeCard)?'y':'n', (fillCard)?'y':'n'); if (gen == 2) { /* generation 1b magic card */ if (wipeCard) { PrintAndLog("WARNING: can't wipe magic card 1b generation"); } res = mfCWipe(numBlocks, true, false, fillCard); } else { /* generation 1a magic card by default */ res = mfCWipe(numBlocks, false, wipeCard, fillCard); } if (res) { PrintAndLog("Can't wipe. error=%d", res); return 1; } PrintAndLog("OK"); return 0; } int CmdHF14AMfCSetBlk(const char *Cmd) { uint8_t memBlock[16] = {0x00}; uint8_t blockNo = 0; bool wipeCard = false; int res, gen = 0; if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf csetblk [w]"); PrintAndLog("sample: hf mf csetblk 1 01020304050607080910111213141516"); PrintAndLog("Set block data for magic Chinese card (only works with such cards)"); PrintAndLog("If you also want wipe the card then add 'w' at the end of the command line"); return 0; } gen = mfCIdentify(); if ((gen != 1) && (gen != 2)) return 1; blockNo = param_get8(Cmd, 0); if (param_gethex(Cmd, 1, memBlock, 32)) { PrintAndLog("block data must include 32 HEX symbols"); return 1; } char ctmp = param_getchar(Cmd, 2); wipeCard = (ctmp == 'w' || ctmp == 'W'); PrintAndLog("--block number:%2d data:%s", blockNo, sprint_hex(memBlock, 16)); if (gen == 2) { /* generation 1b magic card */ res = mfCSetBlock(blockNo, memBlock, NULL, wipeCard, CSETBLOCK_SINGLE_OPER | CSETBLOCK_MAGIC_1B); } else { /* generation 1a magic card by default */ res = mfCSetBlock(blockNo, memBlock, NULL, wipeCard, CSETBLOCK_SINGLE_OPER); } if (res) { PrintAndLog("Can't write block. error=%d", res); return 1; } return 0; } int CmdHF14AMfCLoad(const char *Cmd) { FILE * f; char filename[FILE_PATH_SIZE] = {0x00}; char * fnameptr = filename; char buf[256] = {0x00}; uint8_t buf8[256] = {0x00}; uint8_t fillFromEmulator = 0; int i, len, blockNum, flags = 0, gen = 0, numblock = 64; if (param_getchar(Cmd, 0) == 'h' || param_getchar(Cmd, 0)== 0x00) { PrintAndLog("It loads magic Chinese card from the file `filename.eml`"); PrintAndLog("or from emulator memory (option `e`). 4K card: (option `4`)"); PrintAndLog("Usage: hf mf cload [file name w/o `.eml`][e][4]"); PrintAndLog(" or: hf mf cload e [4]"); PrintAndLog("Sample: hf mf cload filename"); PrintAndLog(" hf mf cload filname 4"); PrintAndLog(" hf mf cload e"); PrintAndLog(" hf mf cload e 4"); return 0; } char ctmp = param_getchar(Cmd, 0); if (ctmp == 'e' || ctmp == 'E') fillFromEmulator = 1; ctmp = param_getchar(Cmd, 1); if (ctmp == '4') numblock = 256; gen = mfCIdentify(); PrintAndLog("Loading magic mifare %dK", numblock == 256 ? 4:1); if (fillFromEmulator) { for (blockNum = 0; blockNum < numblock; blockNum += 1) { if (mfEmlGetMem(buf8, blockNum, 1)) { PrintAndLog("Cant get block: %d", blockNum); return 2; } if (blockNum == 0) flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; // switch on field and send magic sequence if (blockNum == 1) flags = 0; // just write if (blockNum == numblock - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; // Done. Magic Halt and switch off field. if (gen == 2) /* generation 1b magic card */ flags |= CSETBLOCK_MAGIC_1B; if (mfCSetBlock(blockNum, buf8, NULL, 0, flags)) { PrintAndLog("Cant set magic card block: %d", blockNum); return 3; } } return 0; } else { param_getstr(Cmd, 0, filename, sizeof(filename)); len = strlen(filename); if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5; //memcpy(filename, Cmd, len); fnameptr += len; sprintf(fnameptr, ".eml"); // open file f = fopen(filename, "r"); if (f == NULL) { PrintAndLog("File not found or locked."); return 1; } blockNum = 0; while(!feof(f)){ memset(buf, 0, sizeof(buf)); if (fgets(buf, sizeof(buf), f) == NULL) { fclose(f); PrintAndLog("File reading error."); return 2; } if (strlen(buf) < 32) { if(strlen(buf) && feof(f)) break; PrintAndLog("File content error. Block data must include 32 HEX symbols"); fclose(f); return 2; } for (i = 0; i < 32; i += 2) sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]); if (blockNum == 0) flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; // switch on field and send magic sequence if (blockNum == 1) flags = 0; // just write if (blockNum == numblock - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; // Done. Switch off field. if (gen == 2) /* generation 1b magic card */ flags |= CSETBLOCK_MAGIC_1B; if (mfCSetBlock(blockNum, buf8, NULL, 0, flags)) { PrintAndLog("Can't set magic card block: %d", blockNum); fclose(f); return 3; } blockNum++; if (blockNum >= numblock) break; // magic card type - mifare 1K 64 blocks, mifare 4k 256 blocks } fclose(f); //if (blockNum != 16 * 4 && blockNum != 32 * 4 + 8 * 16){ if (blockNum != numblock){ PrintAndLog("File content error. There must be %d blocks", numblock); return 4; } PrintAndLog("Loaded from file: %s", filename); return 0; } return 0; } int CmdHF14AMfCGetBlk(const char *Cmd) { uint8_t memBlock[16]; uint8_t blockNo = 0; int res, gen = 0; memset(memBlock, 0x00, sizeof(memBlock)); if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf cgetblk "); PrintAndLog("sample: hf mf cgetblk 1"); PrintAndLog("Get block data from magic Chinese card (only works with such cards)\n"); return 0; } gen = mfCIdentify(); blockNo = param_get8(Cmd, 0); PrintAndLog("--block number:%2d ", blockNo); if (gen == 2) { /* generation 1b magic card */ res = mfCGetBlock(blockNo, memBlock, CSETBLOCK_SINGLE_OPER | CSETBLOCK_MAGIC_1B); } else { /* generation 1a magic card by default */ res = mfCGetBlock(blockNo, memBlock, CSETBLOCK_SINGLE_OPER); } if (res) { PrintAndLog("Can't read block. error=%d", res); return 1; } PrintAndLog("block data:%s", sprint_hex(memBlock, 16)); if (mfIsSectorTrailer(blockNo)) { PrintAndLogEx(NORMAL, "Trailer decoded:"); PrintAndLogEx(NORMAL, "Key A: %s", sprint_hex_inrow(memBlock, 6)); PrintAndLogEx(NORMAL, "Key B: %s", sprint_hex_inrow(&memBlock[10], 6)); int bln = mfFirstBlockOfSector(mfSectorNum(blockNo)); int blinc = (mfNumBlocksPerSector(mfSectorNum(blockNo)) > 4) ? 5 : 1; for (int i = 0; i < 4; i++) { PrintAndLogEx(NORMAL, "Access block %d%s: %s", bln, ((blinc > 1) && (i < 3) ? "+" : "") , mfGetAccessConditionsDesc(i, &memBlock[6])); bln += blinc; } PrintAndLogEx(NORMAL, "UserData: %s", sprint_hex_inrow(&memBlock[9], 1)); } return 0; } int CmdHF14AMfCGetSc(const char *Cmd) { uint8_t memBlock[16] = {0x00}; uint8_t sectorNo = 0; int i, res, flags, gen = 0, baseblock = 0, sect_size = 4; if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf cgetsc "); PrintAndLog("sample: hf mf cgetsc 0"); PrintAndLog("Get sector data from magic Chinese card (only works with such cards)\n"); return 0; } sectorNo = param_get8(Cmd, 0); if (sectorNo > 39) { PrintAndLog("Sector number must be in [0..15] in MIFARE classic 1k and [0..39] in MIFARE classic 4k."); return 1; } PrintAndLog("--sector number:%d ", sectorNo); gen = mfCIdentify(); flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; if (sectorNo < 32 ) { baseblock = sectorNo * 4; } else { baseblock = 128 + 16 * (sectorNo - 32); } if (sectorNo > 31) sect_size = 16; for (i = 0; i < sect_size; i++) { if (i == 1) flags = 0; if (i == sect_size - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; if (gen == 2) /* generation 1b magic card */ flags |= CSETBLOCK_MAGIC_1B; res = mfCGetBlock(baseblock + i, memBlock, flags); if (res) { PrintAndLog("Can't read block. %d error=%d", baseblock + i, res); return 1; } PrintAndLog("block %3d data:%s", baseblock + i, sprint_hex(memBlock, 16)); if (mfIsSectorTrailer(baseblock + i)) { PrintAndLogEx(NORMAL, "Trailer decoded:"); PrintAndLogEx(NORMAL, "Key A: %s", sprint_hex_inrow(memBlock, 6)); PrintAndLogEx(NORMAL, "Key B: %s", sprint_hex_inrow(&memBlock[10], 6)); int bln = baseblock; int blinc = (mfNumBlocksPerSector(sectorNo) > 4) ? 5 : 1; for (int i = 0; i < 4; i++) { PrintAndLogEx(NORMAL, "Access block %d%s: %s", bln, ((blinc > 1) && (i < 3) ? "+" : "") , mfGetAccessConditionsDesc(i, &memBlock[6])); bln += blinc; } PrintAndLogEx(NORMAL, "UserData: %s", sprint_hex_inrow(&memBlock[9], 1)); } } return 0; } int CmdHF14AMfCSave(const char *Cmd) { FILE * f; char filename[FILE_PATH_SIZE] = {0x00}; char * fnameptr = filename; uint8_t fillFromEmulator = 0; uint8_t buf[256] = {0x00}; int i, j, len, flags, gen = 0, numblock = 64; // memset(filename, 0, sizeof(filename)); // memset(buf, 0, sizeof(buf)); if (param_getchar(Cmd, 0) == 'h') { PrintAndLog("It saves `magic Chinese` card dump into the file `filename.eml` or `cardID.eml`"); PrintAndLog("or into emulator memory (option `e`). 4K card: (option `4`)"); PrintAndLog("Usage: hf mf csave [file name w/o `.eml`][e][4]"); PrintAndLog("Sample: hf mf csave "); PrintAndLog(" hf mf csave filename"); PrintAndLog(" hf mf csave e"); PrintAndLog(" hf mf csave 4"); PrintAndLog(" hf mf csave filename 4"); PrintAndLog(" hf mf csave e 4"); return 0; } char ctmp = param_getchar(Cmd, 0); if (ctmp == 'e' || ctmp == 'E') fillFromEmulator = 1; if (ctmp == '4') numblock = 256; ctmp = param_getchar(Cmd, 1); if (ctmp == '4') numblock = 256; gen = mfCIdentify(); PrintAndLog("Saving magic mifare %dK", numblock == 256 ? 4:1); if (fillFromEmulator) { // put into emulator flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; for (i = 0; i < numblock; i++) { if (i == 1) flags = 0; if (i == numblock - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; if (gen == 2) /* generation 1b magic card */ flags |= CSETBLOCK_MAGIC_1B; if (mfCGetBlock(i, buf, flags)) { PrintAndLog("Cant get block: %d", i); break; } if (mfEmlSetMem(buf, i, 1)) { PrintAndLog("Cant set emul block: %d", i); return 3; } } return 0; } else { param_getstr(Cmd, 0, filename, sizeof(filename)); len = strlen(filename); if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5; ctmp = param_getchar(Cmd, 0); if (len < 1 || (ctmp == '4')) { // get filename flags = CSETBLOCK_SINGLE_OPER; if (gen == 2) /* generation 1b magic card */ flags |= CSETBLOCK_MAGIC_1B; if (mfCGetBlock(0, buf, flags)) { PrintAndLog("Cant get block: %d", 0); len = sprintf(fnameptr, "dump"); fnameptr += len; } else { for (j = 0; j < 7; j++, fnameptr += 2) sprintf(fnameptr, "%02x", buf[j]); } } else { //memcpy(filename, Cmd, len); fnameptr += len; } sprintf(fnameptr, ".eml"); // open file f = fopen(filename, "w+"); if (f == NULL) { PrintAndLog("File not found or locked."); return 1; } // put hex flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; for (i = 0; i < numblock; i++) { if (i == 1) flags = 0; if (i == numblock - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; if (gen == 2) /* generation 1b magic card */ flags |= CSETBLOCK_MAGIC_1B; if (mfCGetBlock(i, buf, flags)) { PrintAndLog("Cant get block: %d", i); break; } for (j = 0; j < 16; j++) fprintf(f, "%02x", buf[j]); fprintf(f,"\n"); } fclose(f); PrintAndLog("Saved to file: %s", filename); return 0; } } int CmdHF14AMfSniff(const char *Cmd){ bool wantLogToFile = 0; bool wantDecrypt = 0; //bool wantSaveToEml = 0; TODO bool wantSaveToEmlFile = 0; //var int res = 0; int len = 0; int parlen = 0; int blockLen = 0; int pckNum = 0; int num = 0; uint8_t uid[7]; uint8_t uid_len; uint8_t atqa[2] = {0x00}; uint8_t sak; bool isTag; uint8_t *buf = NULL; uint16_t bufsize = 0; uint8_t *bufPtr = NULL; uint8_t parity[16]; char ctmp = param_getchar(Cmd, 0); if ( ctmp == 'h' || ctmp == 'H' ) { PrintAndLog("It continuously gets data from the field and saves it to: log, emulator, emulator file."); PrintAndLog("You can specify:"); PrintAndLog(" l - save encrypted sequence to logfile `uid.log`"); PrintAndLog(" d - decrypt sequence and put it to log file `uid.log`"); PrintAndLog(" n/a e - decrypt sequence, collect read and write commands and save the result of the sequence to emulator memory"); PrintAndLog(" f - decrypt sequence, collect read and write commands and save the result of the sequence to emulator dump file `uid.eml`"); PrintAndLog("Usage: hf mf sniff [l][d][e][f]"); PrintAndLog(" sample: hf mf sniff l d e"); return 0; } for (int i = 0; i < 4; i++) { ctmp = param_getchar(Cmd, i); if (ctmp == 'l' || ctmp == 'L') wantLogToFile = true; if (ctmp == 'd' || ctmp == 'D') wantDecrypt = true; //if (ctmp == 'e' || ctmp == 'E') wantSaveToEml = true; TODO if (ctmp == 'f' || ctmp == 'F') wantSaveToEmlFile = true; } printf("-------------------------------------------------------------------------\n"); printf("Executing command. \n"); printf("Press the key on the proxmark3 device to abort both proxmark3 and client.\n"); printf("Press the key on pc keyboard to abort the client.\n"); printf("-------------------------------------------------------------------------\n"); UsbCommand c = {CMD_MIFARE_SNIFFER, {0, 0, 0}}; clearCommandBuffer(); SendCommand(&c); // wait cycle while (true) { printf("."); fflush(stdout); if (ukbhit()) { getchar(); printf("\naborted via keyboard!\n"); break; } UsbCommand resp; if (WaitForResponseTimeoutW(CMD_ACK, &resp, 2000, false)) { res = resp.arg[0] & 0xff; uint16_t traceLen = resp.arg[1]; len = resp.arg[2]; if (res == 0) { // we are done break; } if (res == 1) { // there is (more) data to be transferred if (pckNum == 0) { // first packet, (re)allocate necessary buffer if (traceLen > bufsize || buf == NULL) { uint8_t *p; if (buf == NULL) { // not yet allocated p = malloc(traceLen); } else { // need more memory p = realloc(buf, traceLen); } if (p == NULL) { PrintAndLog("Cannot allocate memory for trace"); free(buf); return 2; } buf = p; } bufPtr = buf; bufsize = traceLen; memset(buf, 0x00, traceLen); } memcpy(bufPtr, resp.d.asBytes, len); bufPtr += len; pckNum++; } if (res == 2) { // received all data, start displaying blockLen = bufPtr - buf; bufPtr = buf; printf(">\n"); PrintAndLog("received trace len: %d packages: %d", blockLen, pckNum); while (bufPtr - buf < blockLen) { bufPtr += 6; // skip (void) timing information len = *((uint16_t *)bufPtr); if(len & 0x8000) { isTag = true; len &= 0x7fff; } else { isTag = false; } parlen = (len - 1) / 8 + 1; bufPtr += 2; if ((len == 14) && (bufPtr[0] == 0xff) && (bufPtr[1] == 0xff) && (bufPtr[12] == 0xff) && (bufPtr[13] == 0xff)) { memcpy(uid, bufPtr + 2, 7); memcpy(atqa, bufPtr + 2 + 7, 2); uid_len = (atqa[0] & 0xC0) == 0x40 ? 7 : 4; sak = bufPtr[11]; PrintAndLog("tag select uid:%s atqa:0x%02x%02x sak:0x%02x", sprint_hex(uid + (7 - uid_len), uid_len), atqa[1], atqa[0], sak); if (wantLogToFile || wantDecrypt) { FillFileNameByUID(logHexFileName, uid + (7 - uid_len), ".log", uid_len); AddLogCurrentDT(logHexFileName); } if (wantDecrypt) mfTraceInit(uid, atqa, sak, wantSaveToEmlFile); } else { oddparitybuf(bufPtr, len, parity); PrintAndLog("%s(%d):%s [%s] c[%s]%c", isTag ? "TAG":"RDR", num, sprint_hex(bufPtr, len), printBitsPar(bufPtr + len, len), printBitsPar(parity, len), memcmp(bufPtr + len, parity, len / 8 + 1) ? '!' : ' '); if (wantLogToFile) AddLogHex(logHexFileName, isTag ? "TAG: ":"RDR: ", bufPtr, len); if (wantDecrypt) mfTraceDecode(bufPtr, len, bufPtr[len], wantSaveToEmlFile); num++; } bufPtr += len; bufPtr += parlen; // ignore parity } pckNum = 0; } } // resp not NULL } // while (true) free(buf); msleep(300); // wait for exiting arm side. PrintAndLog("Done."); return 0; } //needs nt, ar, at, Data to decrypt int CmdDecryptTraceCmds(const char *Cmd){ uint8_t data[50]; int len = 100; param_gethex_ex(Cmd, 3, data, &len); return tryDecryptWord(param_get32ex(Cmd, 0, 0, 16), param_get32ex(Cmd, 1, 0, 16), param_get32ex(Cmd, 2, 0, 16), data, len/2); } int CmdHF14AMfAuth4(const char *cmd) { uint8_t keyn[20] = {0}; int keynlen = 0; uint8_t key[16] = {0}; int keylen = 0; CLIParserInit("hf mf auth4", "Executes AES authentication command in ISO14443-4", "Usage:\n\thf mf auth4 4000 000102030405060708090a0b0c0d0e0f -> executes authentication\n" "\thf mf auth4 9003 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -> executes authentication\n"); void* argtable[] = { arg_param_begin, arg_str1(NULL, NULL, "", NULL), arg_str1(NULL, NULL, "", NULL), arg_param_end }; CLIExecWithReturn(cmd, argtable, true); CLIGetHexWithReturn(1, keyn, &keynlen); CLIGetHexWithReturn(2, key, &keylen); CLIParserFree(); if (keynlen != 2) { PrintAndLog("ERROR: must be 2 bytes long instead of: %d", keynlen); return 1; } if (keylen != 16) { PrintAndLog("ERROR: must be 16 bytes long instead of: %d", keylen); return 1; } return MifareAuth4(NULL, keyn, key, true, false, true); } // https://www.nxp.com/docs/en/application-note/AN10787.pdf int CmdHF14AMfMAD(const char *cmd) { CLIParserInit("hf mf mad", "Checks and prints Mifare Application Directory (MAD)", "Usage:\n\thf mf mad -> shows MAD if exists\n" "\thf mf mad -a 03e1 -k ffffffffffff -b -> shows NDEF data if exists. read card with custom key and key B\n"); void *argtable[] = { arg_param_begin, arg_lit0("vV", "verbose", "show technical data"), arg_str0("aA", "aid", "print all sectors with aid", NULL), arg_str0("kK", "key", "key for printing sectors", NULL), arg_lit0("bB", "keyb", "use key B for access printing sectors (by default: key A)"), arg_param_end }; CLIExecWithReturn(cmd, argtable, true); bool verbose = arg_get_lit(1); uint8_t aid[2] = {0}; int aidlen; CLIGetHexWithReturn(2, aid, &aidlen); uint8_t key[6] = {0}; int keylen; CLIGetHexWithReturn(3, key, &keylen); bool keyB = arg_get_lit(4); CLIParserFree(); if (aidlen != 2 && keylen > 0) { PrintAndLogEx(WARNING, "do not need a key without aid."); } uint8_t sector0[16 * 4] = {0}; uint8_t sector10[16 * 4] = {0}; if (mfReadSector(MF_MAD1_SECTOR, MF_KEY_A, (uint8_t *)g_mifare_mad_key, sector0)) { PrintAndLogEx(ERR, "read sector 0 error. card don't have MAD or don't have MAD on default keys."); return 2; } if (verbose) { for (int i = 0; i < 4; i ++) PrintAndLogEx(NORMAL, "[%d] %s", i, sprint_hex(§or0[i * 16], 16)); } bool haveMAD2 = false; MAD1DecodeAndPrint(sector0, verbose, &haveMAD2); if (haveMAD2) { if (mfReadSector(MF_MAD2_SECTOR, MF_KEY_A, (uint8_t *)g_mifare_mad_key, sector10)) { PrintAndLogEx(ERR, "read sector 0x10 error. card don't have MAD or don't have MAD on default keys."); return 2; } MAD2DecodeAndPrint(sector10, verbose); } if (aidlen == 2) { uint16_t aaid = (aid[0] << 8) + aid[1]; PrintAndLogEx(NORMAL, "\n-------------- AID 0x%04x ---------------", aaid); uint16_t mad[7 + 8 + 8 + 8 + 8] = {0}; size_t madlen = 0; if (MADDecode(sector0, sector10, mad, &madlen)) { PrintAndLogEx(ERR, "can't decode mad."); return 10; } uint8_t akey[6] = {0}; memcpy(akey, g_mifare_ndef_key, 6); if (keylen == 6) { memcpy(akey, key, 6); } for (int i = 0; i < madlen; i++) { if (aaid == mad[i]) { uint8_t vsector[16 * 4] = {0}; if (mfReadSector(i + 1, keyB ? MF_KEY_B : MF_KEY_A, akey, vsector)) { PrintAndLogEx(NORMAL, ""); PrintAndLogEx(ERR, "read sector %d error.", i + 1); return 2; } for (int j = 0; j < (verbose ? 4 : 3); j ++) PrintAndLogEx(NORMAL, " [%03d] %s", (i + 1) * 4 + j, sprint_hex(&vsector[j * 16], 16)); } } } return 0; } int CmdHFMFNDEF(const char *cmd) { CLIParserInit("hf mf ndef", "Prints NFC Data Exchange Format (NDEF)", "Usage:\n\thf mf ndef -> shows NDEF data\n" "\thf mf ndef -a 03e1 -k ffffffffffff -b -> shows NDEF data with custom AID, key and with key B\n"); void *argtable[] = { arg_param_begin, arg_litn("vV", "verbose", 0, 2, "show technical data"), arg_str0("aA", "aid", "replace default aid for NDEF", NULL), arg_str0("kK", "key", "replace default key for NDEF", NULL), arg_lit0("bB", "keyb", "use key B for access sectors (by default: key A)"), arg_param_end }; CLIExecWithReturn(cmd, argtable, true); bool verbose = arg_get_lit(1); bool verbose2 = arg_get_lit(1) > 1; uint8_t aid[2] = {0}; int aidlen; CLIGetHexWithReturn(2, aid, &aidlen); uint8_t key[6] = {0}; int keylen; CLIGetHexWithReturn(3, key, &keylen); bool keyB = arg_get_lit(4); CLIParserFree(); uint16_t ndefAID = 0x03e1; if (aidlen == 2) ndefAID = (aid[0] << 8) + aid[1]; uint8_t ndefkey[6] = {0}; memcpy(ndefkey, g_mifare_ndef_key, 6); if (keylen == 6) { memcpy(ndefkey, key, 6); } uint8_t sector0[16 * 4] = {0}; uint8_t sector10[16 * 4] = {0}; uint8_t data[4096] = {0}; int datalen = 0; PrintAndLogEx(NORMAL, ""); if (mfReadSector(MF_MAD1_SECTOR, MF_KEY_A, (uint8_t *)g_mifare_mad_key, sector0)) { PrintAndLogEx(ERR, "read sector 0 error. card don't have MAD or don't have MAD on default keys."); return 2; } bool haveMAD2 = false; int res = MADCheck(sector0, NULL, verbose, &haveMAD2); if (res) { PrintAndLogEx(ERR, "MAD error %d.", res); return res; } if (haveMAD2) { if (mfReadSector(MF_MAD2_SECTOR, MF_KEY_A, (uint8_t *)g_mifare_mad_key, sector10)) { PrintAndLogEx(ERR, "read sector 0x10 error. card don't have MAD or don't have MAD on default keys."); return 2; } } uint16_t mad[7 + 8 + 8 + 8 + 8] = {0}; size_t madlen = 0; if (MADDecode(sector0, (haveMAD2 ? sector10 : NULL), mad, &madlen)) { PrintAndLogEx(ERR, "can't decode mad."); return 10; } printf("data reading:"); for (int i = 0; i < madlen; i++) { if (ndefAID == mad[i]) { uint8_t vsector[16 * 4] = {0}; if (mfReadSector(i + 1, keyB ? MF_KEY_B : MF_KEY_A, ndefkey, vsector)) { PrintAndLogEx(ERR, "read sector %d error.", i + 1); return 2; } memcpy(&data[datalen], vsector, 16 * 3); datalen += 16 * 3; printf("."); } } printf(" OK\n"); if (!datalen) { PrintAndLogEx(ERR, "no NDEF data."); return 11; } if (verbose2) { PrintAndLogEx(NORMAL, "NDEF data:"); dump_buffer(data, datalen, stdout, 1); } NDEFDecodeAndPrint(data, datalen, verbose); return 0; } int CmdHFMFPersonalize(const char *cmd) { CLIParserInit("hf mf personalize", "Personalize the UID of a Mifare Classic EV1 card. This is only possible if it is a 7Byte UID card and if it is not already personalized.", "Usage:\n\thf mf personalize UIDF0 -> double size UID according to ISO/IEC14443-3\n" "\thf mf personalize UIDF1 -> double size UID according to ISO/IEC14443-3, optional usage of selection process shortcut\n" "\thf mf personalize UIDF2 -> single size random ID according to ISO/IEC14443-3\n" "\thf mf personalize UIDF3 -> single size NUID according to ISO/IEC14443-3\n" "\thf mf personalize -t B -k B0B1B2B3B4B5 UIDF3 -> use key B = 0xB0B1B2B3B4B5 instead of default key A\n"); void *argtable[] = { arg_param_begin, arg_str0("tT", "keytype", "", "key type (A or B) to authenticate sector 0 (default: A)"), arg_str0("kK", "key", "", "key to authenticate sector 0 (default: FFFFFFFFFFFF)"), arg_str1(NULL, NULL, "", "Personalization Option"), arg_param_end }; CLIExecWithReturn(cmd, argtable, true); char keytypestr[2] = "A"; uint8_t keytype = 0x00; int keytypestr_len; int res = CLIParamStrToBuf(arg_get_str(1), (uint8_t*)keytypestr, 1, &keytypestr_len); if (res || (keytypestr[0] != 'a' && keytypestr[0] != 'A' && keytypestr[0] != 'b' && keytypestr[0] != 'B')) { PrintAndLog("ERROR: not a valid key type. Key type must be A or B"); CLIParserFree(); return 1; } if (keytypestr[0] == 'B' || keytypestr[0] == 'b') { keytype = 0x01; } uint8_t key[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; int key_len; res = CLIParamHexToBuf(arg_get_str(2), key, 6, &key_len); if (res || (!res && key_len > 0 && key_len != 6)) { PrintAndLog("ERROR: not a valid key. Key must be 12 hex digits"); CLIParserFree(); return 1; } char pers_optionstr[6]; int opt_len; uint8_t pers_option; res = CLIParamStrToBuf(arg_get_str(3), (uint8_t*)pers_optionstr, 5, &opt_len); if (res || (!res && opt_len > 0 && opt_len != 5) || (strncmp(pers_optionstr, "UIDF0", 5) && strncmp(pers_optionstr, "UIDF1", 5) && strncmp(pers_optionstr, "UIDF2", 5) && strncmp(pers_optionstr, "UIDF3", 5))) { PrintAndLog("ERROR: invalid personalization option. Must be one of UIDF0, UIDF1, UIDF2, or UIDF3"); CLIParserFree(); return 1; } if (!strncmp(pers_optionstr, "UIDF0", 5)) { pers_option = MIFARE_EV1_UIDF0; } else if (!strncmp(pers_optionstr, "UIDF1", 5)) { pers_option = MIFARE_EV1_UIDF1; } else if (!strncmp(pers_optionstr, "UIDF2", 5)) { pers_option = MIFARE_EV1_UIDF2; } else { pers_option = MIFARE_EV1_UIDF3; } CLIParserFree(); UsbCommand c = {CMD_MIFARE_PERSONALIZE_UID, {keytype, pers_option, 0}}; memcpy(c.d.asBytes, key, 6); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { uint8_t isOK = resp.arg[0] & 0xff; PrintAndLog("Personalization %s", isOK ? "FAILED" : "SUCCEEDED"); } else { PrintAndLog("Command execute timeout"); } return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"dbg", CmdHF14AMfDbg, 0, "Set default debug mode"}, {"rdbl", CmdHF14AMfRdBl, 0, "Read MIFARE classic block"}, {"rdsc", CmdHF14AMfRdSc, 0, "Read MIFARE classic sector"}, {"dump", CmdHF14AMfDump, 0, "Dump MIFARE classic tag to binary file"}, {"restore", CmdHF14AMfRestore, 0, "Restore MIFARE classic binary file to BLANK tag"}, {"wrbl", CmdHF14AMfWrBl, 0, "Write MIFARE classic block"}, {"auth4", CmdHF14AMfAuth4, 0, "ISO14443-4 AES authentication"}, {"chk", CmdHF14AMfChk, 0, "Test block keys"}, {"mifare", CmdHF14AMifare, 0, "Read parity error messages."}, {"hardnested", CmdHF14AMfNestedHard, 0, "Nested attack for hardened Mifare cards"}, {"nested", CmdHF14AMfNested, 0, "Test nested authentication"}, {"sniff", CmdHF14AMfSniff, 0, "Sniff card-reader communication"}, {"sim", CmdHF14AMfSim, 0, "Simulate MIFARE card"}, {"eclr", CmdHF14AMfEClear, 0, "Clear simulator memory"}, {"eget", CmdHF14AMfEGet, 0, "Get simulator memory block"}, {"eset", CmdHF14AMfESet, 0, "Set simulator memory block"}, {"eload", CmdHF14AMfELoad, 0, "Load from file emul dump"}, {"esave", CmdHF14AMfESave, 0, "Save to file emul dump"}, {"ecfill", CmdHF14AMfECFill, 0, "Fill simulator memory with help of keys from simulator"}, {"ekeyprn", CmdHF14AMfEKeyPrn, 0, "Print keys from simulator memory"}, {"cwipe", CmdHF14AMfCWipe, 0, "Wipe magic Chinese card"}, {"csetuid", CmdHF14AMfCSetUID, 0, "Set UID for magic Chinese card"}, {"csetblk", CmdHF14AMfCSetBlk, 0, "Write block - Magic Chinese card"}, {"cgetblk", CmdHF14AMfCGetBlk, 0, "Read block - Magic Chinese card"}, {"cgetsc", CmdHF14AMfCGetSc, 0, "Read sector - Magic Chinese card"}, {"cload", CmdHF14AMfCLoad, 0, "Load dump into magic Chinese card"}, {"csave", CmdHF14AMfCSave, 0, "Save dump from magic Chinese card into file or emulator"}, {"decrypt", CmdDecryptTraceCmds, 1, "[nt] [ar_enc] [at_enc] [data] - to decrypt snoop or trace"}, {"mad", CmdHF14AMfMAD, 0, "Checks and prints MAD"}, {"ndef", CmdHFMFNDEF, 0, "Prints NDEF records from card"}, {"personalize", CmdHFMFPersonalize, 0, "Personalize UID (Mifare Classic EV1 only)"}, {NULL, NULL, 0, NULL} }; int CmdHFMF(const char *Cmd) { (void)WaitForResponseTimeout(CMD_ACK,NULL,100); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }