//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Data and Graph commands //----------------------------------------------------------------------------- #include #include #include #include #include "proxmark3.h" #include "data.h" #include "ui.h" #include "graph.h" #include "cmdparser.h" #include "util.h" #include "cmdmain.h" #include "cmddata.h" static int CmdHelp(const char *Cmd); int CmdAmp(const char *Cmd) { int i, rising, falling; int max = INT_MIN, min = INT_MAX; for (i = 10; i < GraphTraceLen; ++i) { if (GraphBuffer[i] > max) max = GraphBuffer[i]; if (GraphBuffer[i] < min) min = GraphBuffer[i]; } if (max != min) { rising = falling= 0; for (i = 0; i < GraphTraceLen; ++i) { if (GraphBuffer[i + 1] < GraphBuffer[i]) { if (rising) { GraphBuffer[i] = max; rising = 0; } falling = 1; } if (GraphBuffer[i + 1] > GraphBuffer[i]) { if (falling) { GraphBuffer[i] = min; falling = 0; } rising= 1; } } } RepaintGraphWindow(); return 0; } /* * Generic command to demodulate ASK. * * Argument is convention: positive or negative (High mod means zero * or high mod means one) * * Updates the Graph trace with 0/1 values * * Arguments: * c : 0 or 1 */ //this method is dependant on all highs and lows to be the same(or clipped) this could be an issue[marshmellow] //might be able to use clock to help identify highs and lows with some more tolerance //but for now I will try a fuzz factor int Cmdaskdemod(const char *Cmd) { int i; int c, high = 0, low = 0; // TODO: complain if we do not give 2 arguments here ! // (AL - this doesn't make sense! we're only using one argument!!!) sscanf(Cmd, "%i", &c); /* Detect high and lows and clock */ // (AL - clock???) for (i = 0; i < GraphTraceLen; ++i) { if (GraphBuffer[i] > high) high = GraphBuffer[i]; else if (GraphBuffer[i] < low) low = GraphBuffer[i]; } if (c != 0 && c != 1) { PrintAndLog("Invalid argument: %s", Cmd); return 0; } //prime loop if (GraphBuffer[0] > 0) { GraphBuffer[0] = 1-c; } else { GraphBuffer[0] = c; } ////13% fuzz [marshmellow] //high=(int)(0.87*high); //low=(int)(0.87*low); for (i = 1; i < GraphTraceLen; ++i) { /* Transitions are detected at each peak * Transitions are either: * - we're low: transition if we hit a high * - we're high: transition if we hit a low * (we need to do it this way because some tags keep high or * low for long periods, others just reach the peak and go * down) */ //[marhsmellow] change == to >= for high and <= for low for fuzz if ((GraphBuffer[i] == high) && (GraphBuffer[i - 1] == c)) { GraphBuffer[i] = 1 - c; } else if ((GraphBuffer[i] == low) && (GraphBuffer[i - 1] == (1 - c))){ GraphBuffer[i] = c; } else { /* No transition */ GraphBuffer[i] = GraphBuffer[i - 1]; } } RepaintGraphWindow(); return 0; } int CmdAutoCorr(const char *Cmd) { static int CorrelBuffer[MAX_GRAPH_TRACE_LEN]; int window = atoi(Cmd); if (window == 0) { PrintAndLog("needs a window"); return 0; } if (window >= GraphTraceLen) { PrintAndLog("window must be smaller than trace (%d samples)", GraphTraceLen); return 0; } PrintAndLog("performing %d correlations", GraphTraceLen - window); for (int i = 0; i < GraphTraceLen - window; ++i) { int sum = 0; for (int j = 0; j < window; ++j) { sum += (GraphBuffer[j]*GraphBuffer[i + j]) / 256; } CorrelBuffer[i] = sum; } GraphTraceLen = GraphTraceLen - window; memcpy(GraphBuffer, CorrelBuffer, GraphTraceLen * sizeof (int)); RepaintGraphWindow(); return 0; } int CmdBitsamples(const char *Cmd) { int cnt = 0; uint8_t got[12288]; GetFromBigBuf(got,sizeof(got),0); WaitForResponse(CMD_ACK,NULL); for (int j = 0; j < sizeof(got); j++) { for (int k = 0; k < 8; k++) { if(got[j] & (1 << (7 - k))) { GraphBuffer[cnt++] = 1; } else { GraphBuffer[cnt++] = 0; } } } GraphTraceLen = cnt; RepaintGraphWindow(); return 0; } /* * Convert to a bitstream */ int CmdBitstream(const char *Cmd) { int i, j; int bit; int gtl; int clock; int low = 0; int high = 0; int hithigh, hitlow, first; /* Detect high and lows and clock */ for (i = 0; i < GraphTraceLen; ++i) { if (GraphBuffer[i] > high) high = GraphBuffer[i]; else if (GraphBuffer[i] < low) low = GraphBuffer[i]; } /* Get our clock */ clock = GetClock(Cmd, high, 1); gtl = ClearGraph(0); bit = 0; for (i = 0; i < (int)(gtl / clock); ++i) { hithigh = 0; hitlow = 0; first = 1; /* Find out if we hit both high and low peaks */ for (j = 0; j < clock; ++j) { if (GraphBuffer[(i * clock) + j] == high) hithigh = 1; else if (GraphBuffer[(i * clock) + j] == low) hitlow = 1; /* it doesn't count if it's the first part of our read because it's really just trailing from the last sequence */ if (first && (hithigh || hitlow)) hithigh = hitlow = 0; else first = 0; if (hithigh && hitlow) break; } /* If we didn't hit both high and low peaks, we had a bit transition */ if (!hithigh || !hitlow) bit ^= 1; AppendGraph(0, clock, bit); // for (j = 0; j < (int)(clock/2); j++) // GraphBuffer[(i * clock) + j] = bit ^ 1; // for (j = (int)(clock/2); j < clock; j++) // GraphBuffer[(i * clock) + j] = bit; } RepaintGraphWindow(); return 0; } int CmdBuffClear(const char *Cmd) { UsbCommand c = {CMD_BUFF_CLEAR}; SendCommand(&c); ClearGraph(true); return 0; } int CmdDec(const char *Cmd) { for (int i = 0; i < (GraphTraceLen / 2); ++i) GraphBuffer[i] = GraphBuffer[i * 2]; GraphTraceLen /= 2; PrintAndLog("decimated by 2"); RepaintGraphWindow(); return 0; } /* Print our clock rate */ int CmdDetectClockRate(const char *Cmd) { int clock = DetectClock(0); PrintAndLog("Auto-detected clock rate: %d", clock); return 0; } //demod GraphBuffer wave to 0s and 1s for each wave - 0s for short waves 1s for long waves size_t fsk_wave_demod(int size) { uint32_t last_transition = 0; uint32_t idx = 1; uint32_t maxVal = 0; // we don't care about actual value, only if it's more or less than a // threshold essentially we capture zero crossings for later analysis for(idx=1; idx1 transition if (GraphBuffer[idx-1] < GraphBuffer[idx]) { // 0 -> 1 transition if (idx-last_transition<6){ // do nothing with extra garbage (shouldn't be any) noise tolerance? } else if(idx-last_transition < 9) { GraphBuffer[numBits]=1; // Other fsk demods reverse this making the short waves 1 and long waves 0 // this is really backwards... smaller waves will typically be 0 and larger 1 [marshmellow] // but will leave as is and invert when needed later } else{ GraphBuffer[numBits]=0; } last_transition = idx; numBits++; // PrintAndLog("numbits %d",numBits); } } return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 } uint32_t myround(float f) { if (f >= UINT_MAX) return UINT_MAX; return (uint32_t) (f + (float)0.5); } //translate 11111100000 to 10 size_t aggregate_bits(int size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert) //,uint8_t l2h_crossing_value { int lastval=GraphBuffer[0]; uint32_t idx=0; size_t numBits=0; uint32_t n=1; uint32_t n2=0; for( idx=1; idx < size; idx++) { if (GraphBuffer[idx]==lastval) { n++; continue; } // if lastval was 1, we have a 1->0 crossing if ( GraphBuffer[idx-1]==1 ) { n=myround((float)(n+1)/((float)(rfLen)/(float)8)); //-2 noise tolerance // n=(n+1) / h2l_crossing_value; //truncating could get us into trouble //now we will try with actual clock (RF/64 or RF/50) variable instead //then devide with float casting then truncate after more acurate division //and round to nearest int //like n = (((float)n)/(float)rfLen/(float)10); } else {// 0->1 crossing n=myround((float)(n+1)/((float)(rfLen-2)/(float)10)); // as int 120/6 = 20 as float 120/(64/10) = 18 (18.75) //n=(n+1) / l2h_crossing_value; } if (n == 0) n = 1; //this should never happen... should we error if it does? if (n < maxConsequtiveBits) // Consecutive //when the consecutive bits are low - the noise tolerance can be high //if it is high then we must be careful how much noise tolerance we allow { if (invert==0){ // do not invert bits for (n2=0; n20 && strlen(Cmd)<=2) { rfLen=param_get8(Cmd, 0); //if rfLen option only is used if (rfLen==1){ invert=1; //if invert option only is used rfLen = 50; } else if(rfLen==0) rfLen=50; } if (strlen(Cmd)>2) { rfLen=param_get8(Cmd, 0); //if both options are used invert=param_get8(Cmd,1); } PrintAndLog("Args invert: %d \nClock:%d",invert,rfLen); size_t size = fskdemod(rfLen,invert); PrintAndLog("FSK decoded bitstream:"); // Now output the bitstream to the scrollback by line of 16 bits if(size > (7*32)+2) size = (7*32)+2; //only output a max of 7 blocks of 32 bits most tags will have full bit stream inside that sample size for (int i = 2; i < (size-16); i+=16) { PrintAndLog("%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i", GraphBuffer[i], GraphBuffer[i+1], GraphBuffer[i+2], GraphBuffer[i+3], GraphBuffer[i+4], GraphBuffer[i+5], GraphBuffer[i+6], GraphBuffer[i+7], GraphBuffer[i+8], GraphBuffer[i+9], GraphBuffer[i+10], GraphBuffer[i+11], GraphBuffer[i+12], GraphBuffer[i+13], GraphBuffer[i+14], GraphBuffer[i+15]); } ClearGraph(1); return 0; } int CmdFSKdemodHID(const char *Cmd) { //raw fsk demod no manchester decoding no start bit finding just get binary from wave //set defaults uint8_t rfLen = 50; uint8_t invert=0;//param_get8(Cmd, 0); size_t idx=0; uint32_t hi2=0, hi=0, lo=0; //get binary from fsk wave size_t size = fskdemod(rfLen,invert); // final loop, go over previously decoded fsk data and now manchester decode into usable tag ID // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 int frame_marker_mask[] = {1,1,1,0,0,0}; int numshifts = 0; idx = 0; while( idx + 6 < size) { // search for a start of frame marker if ( memcmp(GraphBuffer+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) { // frame marker found idx+=6;//sizeof(frame_marker_mask); //size of int is >6 while(GraphBuffer[idx] != GraphBuffer[idx+1] && idx < size-2) { // Keep going until next frame marker (or error) // Shift in a bit. Start by shifting high registers hi2 = (hi2<<1)|(hi>>31); hi = (hi<<1)|(lo>>31); //Then, shift in a 0 or one into low if (GraphBuffer[idx] && !GraphBuffer[idx+1]) // 1 0 lo=(lo<<1)|0; else // 0 1 lo=(lo<<1)|1; numshifts++; idx += 2; } //PrintAndLog("Num shifts: %d ", numshifts); // Hopefully, we read a tag and hit upon the next frame marker if(idx + 6 < size) { if ( memcmp(GraphBuffer+(idx), frame_marker_mask, sizeof(frame_marker_mask)) == 0) { if (hi2 != 0){ //extra large HID tags PrintAndLog("TAG ID: %x%08x%08x (%d)", (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); } else { //standard HID tags <38 bits //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd uint8_t bitlen = 0; uint32_t fc = 0; uint32_t cardnum = 0; if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used uint32_t lo2=0; lo2=(((hi & 15) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit uint8_t idx3 = 1; while(lo2>1){ //find last bit set to 1 (format len bit) lo2=lo2>>1; idx3++; } bitlen =idx3+19; fc =0; cardnum=0; if(bitlen==26){ cardnum = (lo>>1)&0xFFFF; fc = (lo>>17)&0xFF; } if(bitlen==37){ cardnum = (lo>>1)&0x7FFFF; fc = ((hi&0xF)<<12)|(lo>>20); } if(bitlen==34){ cardnum = (lo>>1)&0xFFFF; fc= ((hi&1)<<15)|(lo>>17); } if(bitlen==35){ cardnum = (lo>>1)&0xFFFFF; fc = ((hi&1)<<11)|(lo>>21); } } else { //if bit 38 is not set then 37 bit format is used bitlen= 37; fc =0; cardnum=0; if(bitlen==37){ cardnum = (lo>>1)&0x7FFFF; fc = ((hi&0xF)<<12)|(lo>>20); } } PrintAndLog("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum); ClearGraph(1); return 0; } } } // reset hi2 = hi = lo = 0; numshifts = 0; }else { idx++; } } if (idx + sizeof(frame_marker_mask) >= size){ PrintAndLog("start bits for hid not found"); PrintAndLog("FSK decoded bitstream:"); // Now output the bitstream to the scrollback by line of 16 bits if(size > (7*32)+2) size = (7*32)+2; //only output a max of 7 blocks of 32 bits most tags will have full bit stream inside that sample size for (int i = 2; i < (size-16); i+=16) { PrintAndLog("%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i", GraphBuffer[i], GraphBuffer[i+1], GraphBuffer[i+2], GraphBuffer[i+3], GraphBuffer[i+4], GraphBuffer[i+5], GraphBuffer[i+6], GraphBuffer[i+7], GraphBuffer[i+8], GraphBuffer[i+9], GraphBuffer[i+10], GraphBuffer[i+11], GraphBuffer[i+12], GraphBuffer[i+13], GraphBuffer[i+14], GraphBuffer[i+15]); } } ClearGraph(1); return 0; } int CmdFSKdemodIO(const char *Cmd) { //raw fsk demod no manchester decoding no start bit finding just get binary from wave //set defaults uint8_t rfLen = 64; uint8_t invert=1; size_t idx=0; uint8_t testMax=0; //test samples are not just noise if (GraphTraceLen < 64) return 0; for(idx=0;idx<64;idx++){ if (testMax40){ //Index map //0 10 20 30 40 50 60 //| | | | | | | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 //----------------------------------------------------------------------------- //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 // //XSF(version)facility:codeone+codetwo (raw) //Handle the data int mask[] = {0,0,0,0,0,0,0,0,0,1}; for( idx=0; idx < (size - 74); idx++) { if ( memcmp(GraphBuffer + idx, mask, sizeof(mask))==0) { //frame marker found if (GraphBuffer[idx+17]==1 && GraphBuffer[idx+26]==1 && GraphBuffer[idx+35]==1 && GraphBuffer[idx+44]==1 && GraphBuffer[idx+53]==1){ //confirmed proper separator bits found PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx], GraphBuffer[idx+1], GraphBuffer[idx+2], GraphBuffer[idx+3], GraphBuffer[idx+4], GraphBuffer[idx+5], GraphBuffer[idx+6], GraphBuffer[idx+7], GraphBuffer[idx+8]); PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx+9], GraphBuffer[idx+10], GraphBuffer[idx+11],GraphBuffer[idx+12],GraphBuffer[idx+13],GraphBuffer[idx+14],GraphBuffer[idx+15],GraphBuffer[idx+16],GraphBuffer[idx+17]); PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx+18], GraphBuffer[idx+19], GraphBuffer[idx+20],GraphBuffer[idx+21],GraphBuffer[idx+22],GraphBuffer[idx+23],GraphBuffer[idx+24],GraphBuffer[idx+25],GraphBuffer[idx+26]); PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx+27], GraphBuffer[idx+28], GraphBuffer[idx+29],GraphBuffer[idx+30],GraphBuffer[idx+31],GraphBuffer[idx+32],GraphBuffer[idx+33],GraphBuffer[idx+34],GraphBuffer[idx+35]); PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx+36], GraphBuffer[idx+37], GraphBuffer[idx+38],GraphBuffer[idx+39],GraphBuffer[idx+40],GraphBuffer[idx+41],GraphBuffer[idx+42],GraphBuffer[idx+43],GraphBuffer[idx+44]); PrintAndLog("%d%d%d%d%d%d%d%d %d",GraphBuffer[idx+45], GraphBuffer[idx+46], GraphBuffer[idx+47],GraphBuffer[idx+48],GraphBuffer[idx+49],GraphBuffer[idx+50],GraphBuffer[idx+51],GraphBuffer[idx+52],GraphBuffer[idx+53]); PrintAndLog("%d%d%d%d%d%d%d%d %d%d",GraphBuffer[idx+54],GraphBuffer[idx+55],GraphBuffer[idx+56],GraphBuffer[idx+57],GraphBuffer[idx+58],GraphBuffer[idx+59],GraphBuffer[idx+60],GraphBuffer[idx+61],GraphBuffer[idx+62],GraphBuffer[idx+63]); uint32_t code = bytebits_to_byte(GraphBuffer+idx,32); uint32_t code2 = bytebits_to_byte(GraphBuffer+idx+32,32); short version = bytebits_to_byte(GraphBuffer+idx+27,8); //14,4 uint8_t facilitycode = bytebits_to_byte(GraphBuffer+idx+19,8) ; uint16_t number = (bytebits_to_byte(GraphBuffer+idx+36,8)<<8)|(bytebits_to_byte(GraphBuffer+idx+45,8)); //36,9 PrintAndLog("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2); ClearGraph(1); return 0; } else { PrintAndLog("thought we had a valid tag but did not match format"); } } } if (idx >= (size-74)){ PrintAndLog("start bits for io prox not found"); PrintAndLog("FSK decoded bitstream:"); // Now output the bitstream to the scrollback by line of 16 bits if(size > (7*32)+2) size = (7*32)+2; //only output a max of 7 blocks of 32 bits most tags will have full bit stream inside that sample size for (int i = 2; i < (size-16); i+=16) { PrintAndLog("%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i%i", GraphBuffer[i], GraphBuffer[i+1], GraphBuffer[i+2], GraphBuffer[i+3], GraphBuffer[i+4], GraphBuffer[i+5], GraphBuffer[i+6], GraphBuffer[i+7], GraphBuffer[i+8], GraphBuffer[i+9], GraphBuffer[i+10], GraphBuffer[i+11], GraphBuffer[i+12], GraphBuffer[i+13], GraphBuffer[i+14], GraphBuffer[i+15]); } } } ClearGraph(1); return 0; } /* int CmdFSKdemodHIDold(const char *Cmd)//not put in commands yet //old CmdFSKdemod needs updating { static const int LowTone[] = { 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1 }; static const int HighTone[] = { 1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, }; int lowLen = sizeof (LowTone) / sizeof (int); int highLen = sizeof (HighTone) / sizeof (int); int convLen = (highLen > lowLen) ? highLen : lowLen; //if highlen > lowLen then highlen else lowlen uint32_t hi = 0, lo = 0; int i, j; int minMark = 0, maxMark = 0; for (i = 0; i < GraphTraceLen - convLen; ++i) { int lowSum = 0, highSum = 0; for (j = 0; j < lowLen; ++j) { lowSum += LowTone[j]*GraphBuffer[i+j]; } for (j = 0; j < highLen; ++j) { highSum += HighTone[j] * GraphBuffer[i + j]; } lowSum = abs(100 * lowSum / lowLen); highSum = abs(100 * highSum / highLen); GraphBuffer[i] = (highSum << 16) | lowSum; } for(i = 0; i < GraphTraceLen - convLen - 16; ++i) { int lowTot = 0, highTot = 0; // 10 and 8 are f_s divided by f_l and f_h, rounded for (j = 0; j < 10; ++j) { lowTot += (GraphBuffer[i+j] & 0xffff); } for (j = 0; j < 8; j++) { highTot += (GraphBuffer[i + j] >> 16); } GraphBuffer[i] = lowTot - highTot; if (GraphBuffer[i] > maxMark) maxMark = GraphBuffer[i]; if (GraphBuffer[i] < minMark) minMark = GraphBuffer[i]; } GraphTraceLen -= (convLen + 16); RepaintGraphWindow(); // Find bit-sync (3 lo followed by 3 high) (HID ONLY) int max = 0, maxPos = 0; for (i = 0; i < 6000; ++i) { int dec = 0; for (j = 0; j < 3 * lowLen; ++j) { dec -= GraphBuffer[i + j]; } for (; j < 3 * (lowLen + highLen ); ++j) { dec += GraphBuffer[i + j]; } if (dec > max) { max = dec; maxPos = i; } } // place start of bit sync marker in graph GraphBuffer[maxPos] = maxMark; GraphBuffer[maxPos + 1] = minMark; maxPos += j; // place end of bit sync marker in graph GraphBuffer[maxPos] = maxMark; GraphBuffer[maxPos+1] = minMark; PrintAndLog("actual data bits start at sample %d", maxPos); PrintAndLog("length %d/%d", highLen, lowLen); uint8_t bits[46]; bits[sizeof(bits)-1] = '\0'; // find bit pairs and manchester decode them for (i = 0; i < arraylen(bits) - 1; ++i) { int dec = 0; for (j = 0; j < lowLen; ++j) { dec -= GraphBuffer[maxPos + j]; } for (; j < lowLen + highLen; ++j) { dec += GraphBuffer[maxPos + j]; } maxPos += j; // place inter bit marker in graph GraphBuffer[maxPos] = maxMark; GraphBuffer[maxPos + 1] = minMark; // hi and lo form a 64 bit pair hi = (hi << 1) | (lo >> 31); lo = (lo << 1); // store decoded bit as binary (in hi/lo) and text (in bits[]) if(dec < 0) { bits[i] = '1'; lo |= 1; } else { bits[i] = '0'; } } PrintAndLog("bits: '%s'", bits); PrintAndLog("hex: %08x %08x", hi, lo); return 0; } */ int CmdGrid(const char *Cmd) { sscanf(Cmd, "%i %i", &PlotGridX, &PlotGridY); PlotGridXdefault= PlotGridX; PlotGridYdefault= PlotGridY; RepaintGraphWindow(); return 0; } int CmdHexsamples(const char *Cmd) { int i, j; int requested = 0; int offset = 0; char string_buf[25]; char* string_ptr = string_buf; uint8_t got[40000]; sscanf(Cmd, "%i %i", &requested, &offset); /* if no args send something */ if (requested == 0) { requested = 8; } if (offset + requested > sizeof(got)) { PrintAndLog("Tried to read past end of buffer, + > 40000"); return 0; } GetFromBigBuf(got,requested,offset); WaitForResponse(CMD_ACK,NULL); i = 0; for (j = 0; j < requested; j++) { i++; string_ptr += sprintf(string_ptr, "%02x ", got[j]); if (i == 8) { *(string_ptr - 1) = '\0'; // remove the trailing space PrintAndLog("%s", string_buf); string_buf[0] = '\0'; string_ptr = string_buf; i = 0; } if (j == requested - 1 && string_buf[0] != '\0') { // print any remaining bytes *(string_ptr - 1) = '\0'; PrintAndLog("%s", string_buf); string_buf[0] = '\0'; } } return 0; } int CmdHide(const char *Cmd) { HideGraphWindow(); return 0; } int CmdHpf(const char *Cmd) { int i; int accum = 0; for (i = 10; i < GraphTraceLen; ++i) accum += GraphBuffer[i]; accum /= (GraphTraceLen - 10); for (i = 0; i < GraphTraceLen; ++i) GraphBuffer[i] -= accum; RepaintGraphWindow(); return 0; } int CmdSamples(const char *Cmd) { int cnt = 0; int n; uint8_t got[40000]; n = strtol(Cmd, NULL, 0); if (n == 0) n = 6000; if (n > sizeof(got)) n = sizeof(got); PrintAndLog("Reading %d samples\n", n); GetFromBigBuf(got,n,0); WaitForResponse(CMD_ACK,NULL); for (int j = 0; j < n; j++) { GraphBuffer[cnt++] = ((int)got[j]) - 128; } PrintAndLog("Done!\n"); GraphTraceLen = n; RepaintGraphWindow(); return 0; } int CmdTuneSamples(const char *Cmd) { int cnt = 0; int n = 255; uint8_t got[255]; PrintAndLog("Reading %d samples\n", n); GetFromBigBuf(got,n,7256); // armsrc/apps.h: #define FREE_BUFFER_OFFSET 7256 WaitForResponse(CMD_ACK,NULL); for (int j = 0; j < n; j++) { GraphBuffer[cnt++] = ((int)got[j]) - 128; } PrintAndLog("Done! Divisor 89 is 134khz, 95 is 125khz.\n"); PrintAndLog("\n"); GraphTraceLen = n; RepaintGraphWindow(); return 0; } int CmdLoad(const char *Cmd) { FILE *f = fopen(Cmd, "r"); if (!f) { PrintAndLog("couldn't open '%s'", Cmd); return 0; } GraphTraceLen = 0; char line[80]; while (fgets(line, sizeof (line), f)) { GraphBuffer[GraphTraceLen] = atoi(line); GraphTraceLen++; } fclose(f); PrintAndLog("loaded %d samples", GraphTraceLen); RepaintGraphWindow(); return 0; } int CmdLtrim(const char *Cmd) { int ds = atoi(Cmd); for (int i = ds; i < GraphTraceLen; ++i) GraphBuffer[i-ds] = GraphBuffer[i]; GraphTraceLen -= ds; RepaintGraphWindow(); return 0; } /* * Manchester demodulate a bitstream. The bitstream needs to be already in * the GraphBuffer as 0 and 1 values * * Give the clock rate as argument in order to help the sync - the algorithm * resyncs at each pulse anyway. * * Not optimized by any means, this is the 1st time I'm writing this type of * routine, feel free to improve... * * 1st argument: clock rate (as number of samples per clock rate) * Typical values can be 64, 32, 128... */ int CmdManchesterDemod(const char *Cmd) { int i, j, invert= 0; int bit; int clock; int lastval = 0; int low = 0; int high = 0; int hithigh, hitlow, first; int lc = 0; int bitidx = 0; int bit2idx = 0; int warnings = 0; /* check if we're inverting output */ if (*Cmd == 'i') { PrintAndLog("Inverting output"); invert = 1; ++Cmd; do ++Cmd; while(*Cmd == ' '); // in case a 2nd argument was given } /* Holds the decoded bitstream: each clock period contains 2 bits */ /* later simplified to 1 bit after manchester decoding. */ /* Add 10 bits to allow for noisy / uncertain traces without aborting */ /* int BitStream[GraphTraceLen*2/clock+10]; */ /* But it does not work if compiling on WIndows: therefore we just allocate a */ /* large array */ uint8_t BitStream[MAX_GRAPH_TRACE_LEN] = {0}; /* Detect high and lows */ for (i = 0; i < GraphTraceLen; i++) { if (GraphBuffer[i] > high) high = GraphBuffer[i]; else if (GraphBuffer[i] < low) low = GraphBuffer[i]; } /* Get our clock */ clock = GetClock(Cmd, high, 1); int tolerance = clock/4; /* Detect first transition */ /* Lo-Hi (arbitrary) */ /* skip to the first high */ for (i= 0; i < GraphTraceLen; i++) if (GraphBuffer[i] == high) break; /* now look for the first low */ for (; i < GraphTraceLen; i++) { if (GraphBuffer[i] == low) { lastval = i; break; } } /* If we're not working with 1/0s, demod based off clock */ if (high != 1) { bit = 0; /* We assume the 1st bit is zero, it may not be * the case: this routine (I think) has an init problem. * Ed. */ for (; i < (int)(GraphTraceLen / clock); i++) { hithigh = 0; hitlow = 0; first = 1; /* Find out if we hit both high and low peaks */ for (j = 0; j < clock; j++) { if (GraphBuffer[(i * clock) + j] == high) hithigh = 1; else if (GraphBuffer[(i * clock) + j] == low) hitlow = 1; /* it doesn't count if it's the first part of our read because it's really just trailing from the last sequence */ if (first && (hithigh || hitlow)) hithigh = hitlow = 0; else first = 0; if (hithigh && hitlow) break; } /* If we didn't hit both high and low peaks, we had a bit transition */ if (!hithigh || !hitlow) bit ^= 1; BitStream[bit2idx++] = bit ^ invert; } } /* standard 1/0 bitstream */ else { /* Then detect duration between 2 successive transitions */ for (bitidx = 1; i < GraphTraceLen; i++) { if (GraphBuffer[i-1] != GraphBuffer[i]) { lc = i-lastval; lastval = i; // Error check: if bitidx becomes too large, we do not // have a Manchester encoded bitstream or the clock is really // wrong! if (bitidx > (GraphTraceLen*2/clock+8) ) { PrintAndLog("Error: the clock you gave is probably wrong, aborting."); return 0; } // Then switch depending on lc length: // Tolerance is 1/4 of clock rate (arbitrary) if (abs(lc-clock/2) < tolerance) { // Short pulse : either "1" or "0" BitStream[bitidx++]=GraphBuffer[i-1]; } else if (abs(lc-clock) < tolerance) { // Long pulse: either "11" or "00" BitStream[bitidx++]=GraphBuffer[i-1]; BitStream[bitidx++]=GraphBuffer[i-1]; } else { // Error warnings++; PrintAndLog("Warning: Manchester decode error for pulse width detection."); PrintAndLog("(too many of those messages mean either the stream is not Manchester encoded, or clock is wrong)"); if (warnings > 10) { PrintAndLog("Error: too many detection errors, aborting."); return 0; } } } } // At this stage, we now have a bitstream of "01" ("1") or "10" ("0"), parse it into final decoded bitstream // Actually, we overwrite BitStream with the new decoded bitstream, we just need to be careful // to stop output at the final bitidx2 value, not bitidx for (i = 0; i < bitidx; i += 2) { if ((BitStream[i] == 0) && (BitStream[i+1] == 1)) { BitStream[bit2idx++] = 1 ^ invert; } else if ((BitStream[i] == 1) && (BitStream[i+1] == 0)) { BitStream[bit2idx++] = 0 ^ invert; } else { // We cannot end up in this state, this means we are unsynchronized, // move up 1 bit: i++; warnings++; PrintAndLog("Unsynchronized, resync..."); PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)"); if (warnings > 10) { PrintAndLog("Error: too many decode errors, aborting."); return 0; } } } } PrintAndLog("Manchester decoded bitstream"); // Now output the bitstream to the scrollback by line of 16 bits for (i = 0; i < (bit2idx-16); i+=16) { PrintAndLog("%i %i %i %i %i %i %i %i %i %i %i %i %i %i %i %i", BitStream[i], BitStream[i+1], BitStream[i+2], BitStream[i+3], BitStream[i+4], BitStream[i+5], BitStream[i+6], BitStream[i+7], BitStream[i+8], BitStream[i+9], BitStream[i+10], BitStream[i+11], BitStream[i+12], BitStream[i+13], BitStream[i+14], BitStream[i+15]); } return 0; } /* Modulate our data into manchester */ int CmdManchesterMod(const char *Cmd) { int i, j; int clock; int bit, lastbit, wave; /* Get our clock */ clock = GetClock(Cmd, 0, 1); wave = 0; lastbit = 1; for (i = 0; i < (int)(GraphTraceLen / clock); i++) { bit = GraphBuffer[i * clock] ^ 1; for (j = 0; j < (int)(clock/2); j++) GraphBuffer[(i * clock) + j] = bit ^ lastbit ^ wave; for (j = (int)(clock/2); j < clock; j++) GraphBuffer[(i * clock) + j] = bit ^ lastbit ^ wave ^ 1; /* Keep track of how we start our wave and if we changed or not this time */ wave ^= bit ^ lastbit; lastbit = bit; } RepaintGraphWindow(); return 0; } int CmdNorm(const char *Cmd) { int i; int max = INT_MIN, min = INT_MAX; for (i = 10; i < GraphTraceLen; ++i) { if (GraphBuffer[i] > max) max = GraphBuffer[i]; if (GraphBuffer[i] < min) min = GraphBuffer[i]; } if (max != min) { for (i = 0; i < GraphTraceLen; ++i) { GraphBuffer[i] = (GraphBuffer[i] - ((max + min) / 2)) * 1000 / (max - min); } } RepaintGraphWindow(); return 0; } int CmdPlot(const char *Cmd) { ShowGraphWindow(); return 0; } int CmdSave(const char *Cmd) { FILE *f = fopen(Cmd, "w"); if(!f) { PrintAndLog("couldn't open '%s'", Cmd); return 0; } int i; for (i = 0; i < GraphTraceLen; i++) { fprintf(f, "%d\n", GraphBuffer[i]); } fclose(f); PrintAndLog("saved to '%s'", Cmd); return 0; } int CmdScale(const char *Cmd) { CursorScaleFactor = atoi(Cmd); if (CursorScaleFactor == 0) { PrintAndLog("bad, can't have zero scale"); CursorScaleFactor = 1; } RepaintGraphWindow(); return 0; } int CmdThreshold(const char *Cmd) { int threshold = atoi(Cmd); for (int i = 0; i < GraphTraceLen; ++i) { if (GraphBuffer[i] >= threshold) GraphBuffer[i] = 1; else GraphBuffer[i] = -1; } RepaintGraphWindow(); return 0; } int CmdDirectionalThreshold(const char *Cmd) { int8_t upThres = param_get8(Cmd, 0); int8_t downThres = param_get8(Cmd, 1); printf("Applying Up Threshold: %d, Down Threshold: %d\n", upThres, downThres); int lastValue = GraphBuffer[0]; GraphBuffer[0] = 0; // Will be changed at the end, but init 0 as we adjust to last samples value if no threshold kicks in. for (int i = 1; i < GraphTraceLen; ++i) { // Apply first threshold to samples heading up if (GraphBuffer[i] >= upThres && GraphBuffer[i] > lastValue) { lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it. GraphBuffer[i] = 1; } // Apply second threshold to samples heading down else if (GraphBuffer[i] <= downThres && GraphBuffer[i] < lastValue) { lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it. GraphBuffer[i] = -1; } else { lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it. GraphBuffer[i] = GraphBuffer[i-1]; } } GraphBuffer[0] = GraphBuffer[1]; // Aline with first edited sample. RepaintGraphWindow(); return 0; } int CmdZerocrossings(const char *Cmd) { // Zero-crossings aren't meaningful unless the signal is zero-mean. CmdHpf(""); int sign = 1; int zc = 0; int lastZc = 0; for (int i = 0; i < GraphTraceLen; ++i) { if (GraphBuffer[i] * sign >= 0) { // No change in sign, reproduce the previous sample count. zc++; GraphBuffer[i] = lastZc; } else { // Change in sign, reset the sample count. sign = -sign; GraphBuffer[i] = lastZc; if (sign > 0) { lastZc = zc; zc = 0; } } } RepaintGraphWindow(); return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"amp", CmdAmp, 1, "Amplify peaks"}, {"askdemod", Cmdaskdemod, 1, "<0 or 1> -- Attempt to demodulate simple ASK tags"}, {"autocorr", CmdAutoCorr, 1, " -- Autocorrelation over window"}, {"bitsamples", CmdBitsamples, 0, "Get raw samples as bitstring"}, {"bitstream", CmdBitstream, 1, "[clock rate] -- Convert waveform into a bitstream"}, {"buffclear", CmdBuffClear, 1, "Clear sample buffer and graph window"}, {"dec", CmdDec, 1, "Decimate samples"}, {"detectclock", CmdDetectClockRate, 1, "Detect clock rate"}, {"fskdemod", CmdFSKdemod, 1, "[clock rate] [invert] Demodulate graph window from FSK to binary (clock = 64 or 50)(invert = 1 or 0)"}, {"fskdemodhid", CmdFSKdemodHID, 1, "Demodulate graph window as a HID FSK"}, {"fskdemodio", CmdFSKdemodIO, 1, "Demodulate graph window as an IO Prox FSK"}, {"grid", CmdGrid, 1, " -- overlay grid on graph window, use zero value to turn off either"}, {"hexsamples", CmdHexsamples, 0, " [] -- Dump big buffer as hex bytes"}, {"hide", CmdHide, 1, "Hide graph window"}, {"hpf", CmdHpf, 1, "Remove DC offset from trace"}, {"load", CmdLoad, 1, " -- Load trace (to graph window"}, {"ltrim", CmdLtrim, 1, " -- Trim samples from left of trace"}, {"mandemod", CmdManchesterDemod, 1, "[i] [clock rate] -- Manchester demodulate binary stream (option 'i' to invert output)"}, {"manmod", CmdManchesterMod, 1, "[clock rate] -- Manchester modulate a binary stream"}, {"norm", CmdNorm, 1, "Normalize max/min to +/-500"}, {"plot", CmdPlot, 1, "Show graph window (hit 'h' in window for keystroke help)"}, {"samples", CmdSamples, 0, "[512 - 40000] -- Get raw samples for graph window"}, {"tune", CmdTuneSamples, 0, "Get hw tune samples for graph window"}, {"save", CmdSave, 1, " -- Save trace (from graph window)"}, {"scale", CmdScale, 1, " -- Set cursor display scale"}, {"threshold", CmdThreshold, 1, " -- Maximize/minimize every value in the graph window depending on threshold"}, {"zerocrossings", CmdZerocrossings, 1, "Count time between zero-crossings"}, {"dirthreshold", CmdDirectionalThreshold, 1, " -- Max rising higher up-thres/ Min falling lower down-thres, keep rest as prev."}, {NULL, NULL, 0, NULL} }; int CmdData(const char *Cmd) { CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }