//----------------------------------------------------------------------------- // Copyright (C) 2011,2012 Merlok // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency MIFARE commands //----------------------------------------------------------------------------- #include "cmdhfmf.h" #include #include #include #include #include #include "proxmark3.h" #include "cmdmain.h" #include "cmdhfmfhard.h" #include "util.h" #include "util_posix.h" #include "usb_cmd.h" #include "ui.h" #include "mifarehost.h" #include "mifare.h" #include "mfkey.h" #define NESTED_SECTOR_RETRY 10 // how often we try mfested() until we give up static int CmdHelp(const char *Cmd); int CmdHF14AMifare(const char *Cmd) { int isOK = 0; uint64_t key = 0; isOK = mfDarkside(&key); switch (isOK) { case -1 : PrintAndLog("Button pressed. Aborted."); return 1; case -2 : PrintAndLog("Card is not vulnerable to Darkside attack (doesn't send NACK on authentication requests)."); return 1; case -3 : PrintAndLog("Card is not vulnerable to Darkside attack (its random number generator is not predictable)."); return 1; case -4 : PrintAndLog("Card is not vulnerable to Darkside attack (its random number generator seems to be based on the wellknown"); PrintAndLog("generating polynomial with 16 effective bits only, but shows unexpected behaviour."); return 1; case -5 : PrintAndLog("Aborted via keyboard."); return 1; default : PrintAndLog("Found valid key:%012" PRIx64 "\n", key); } PrintAndLog(""); return 0; } int CmdHF14AMfWrBl(const char *Cmd) { uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t bldata[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; char cmdp = 0x00; if (strlen(Cmd)<3) { PrintAndLog("Usage: hf mf wrbl "); PrintAndLog(" sample: hf mf wrbl 0 A FFFFFFFFFFFF 000102030405060708090A0B0C0D0E0F"); return 0; } blockNo = param_get8(Cmd, 0); cmdp = param_getchar(Cmd, 1); if (cmdp == 0x00) { PrintAndLog("Key type must be A or B"); return 1; } if (cmdp != 'A' && cmdp != 'a') keyType = 1; if (param_gethex(Cmd, 2, key, 12)) { PrintAndLog("Key must include 12 HEX symbols"); return 1; } if (param_gethex(Cmd, 3, bldata, 32)) { PrintAndLog("Block data must include 32 HEX symbols"); return 1; } PrintAndLog("--block no:%d, key type:%c, key:%s", blockNo, keyType?'B':'A', sprint_hex(key, 6)); PrintAndLog("--data: %s", sprint_hex(bldata, 16)); UsbCommand c = {CMD_MIFARE_WRITEBL, {blockNo, keyType, 0}}; memcpy(c.d.asBytes, key, 6); memcpy(c.d.asBytes + 10, bldata, 16); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); } return 0; } int CmdHF14AMfRdBl(const char *Cmd) { uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; char cmdp = 0x00; if (strlen(Cmd)<3) { PrintAndLog("Usage: hf mf rdbl "); PrintAndLog(" sample: hf mf rdbl 0 A FFFFFFFFFFFF "); return 0; } blockNo = param_get8(Cmd, 0); cmdp = param_getchar(Cmd, 1); if (cmdp == 0x00) { PrintAndLog("Key type must be A or B"); return 1; } if (cmdp != 'A' && cmdp != 'a') keyType = 1; if (param_gethex(Cmd, 2, key, 12)) { PrintAndLog("Key must include 12 HEX symbols"); return 1; } PrintAndLog("--block no:%d, key type:%c, key:%s ", blockNo, keyType?'B':'A', sprint_hex(key, 6)); UsbCommand c = {CMD_MIFARE_READBL, {blockNo, keyType, 0}}; memcpy(c.d.asBytes, key, 6); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; uint8_t *data = resp.d.asBytes; if (isOK) PrintAndLog("isOk:%02x data:%s", isOK, sprint_hex(data, 16)); else PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); } return 0; } int CmdHF14AMfRdSc(const char *Cmd) { int i; uint8_t sectorNo = 0; uint8_t keyType = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t isOK = 0; uint8_t *data = NULL; char cmdp = 0x00; if (strlen(Cmd)<3) { PrintAndLog("Usage: hf mf rdsc "); PrintAndLog(" sample: hf mf rdsc 0 A FFFFFFFFFFFF "); return 0; } sectorNo = param_get8(Cmd, 0); if (sectorNo > 39) { PrintAndLog("Sector number must be less than 40"); return 1; } cmdp = param_getchar(Cmd, 1); if (cmdp != 'a' && cmdp != 'A' && cmdp != 'b' && cmdp != 'B') { PrintAndLog("Key type must be A or B"); return 1; } if (cmdp != 'A' && cmdp != 'a') keyType = 1; if (param_gethex(Cmd, 2, key, 12)) { PrintAndLog("Key must include 12 HEX symbols"); return 1; } PrintAndLog("--sector no:%d key type:%c key:%s ", sectorNo, keyType?'B':'A', sprint_hex(key, 6)); UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}}; memcpy(c.d.asBytes, key, 6); SendCommand(&c); PrintAndLog(" "); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { isOK = resp.arg[0] & 0xff; data = resp.d.asBytes; PrintAndLog("isOk:%02x", isOK); if (isOK) { for (i = 0; i < (sectorNo<32?3:15); i++) { PrintAndLog("data : %s", sprint_hex(data + i * 16, 16)); } PrintAndLog("trailer: %s", sprint_hex(data + (sectorNo<32?3:15) * 16, 16)); } } else { PrintAndLog("Command execute timeout"); } return 0; } uint8_t FirstBlockOfSector(uint8_t sectorNo) { if (sectorNo < 32) { return sectorNo * 4; } else { return 32 * 4 + (sectorNo - 32) * 16; } } uint8_t NumBlocksPerSector(uint8_t sectorNo) { if (sectorNo < 32) { return 4; } else { return 16; } } int CmdHF14AMfDump(const char *Cmd) { uint8_t sectorNo, blockNo; uint8_t keyA[40][6]; uint8_t keyB[40][6]; uint8_t rights[40][4]; uint8_t carddata[256][16]; uint8_t numSectors = 16; FILE *fin; FILE *fout; UsbCommand resp; char cmdp = param_getchar(Cmd, 0); switch (cmdp) { case '0' : numSectors = 5; break; case '1' : case '\0': numSectors = 16; break; case '2' : numSectors = 32; break; case '4' : numSectors = 40; break; default: numSectors = 16; } if (strlen(Cmd) > 1 || cmdp == 'h' || cmdp == 'H') { PrintAndLog("Usage: hf mf dump [card memory]"); PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLog(""); PrintAndLog("Samples: hf mf dump"); PrintAndLog(" hf mf dump 4"); return 0; } if ((fin = fopen("dumpkeys.bin","rb")) == NULL) { PrintAndLog("Could not find file dumpkeys.bin"); return 1; } // Read keys A from file for (sectorNo=0; sectorNo>2) | ((data[8] & 0x1)<<1) | ((data[8] & 0x10)>>4); // C1C2C3 for data area 0 rights[sectorNo][1] = ((data[7] & 0x20)>>3) | ((data[8] & 0x2)<<0) | ((data[8] & 0x20)>>5); // C1C2C3 for data area 1 rights[sectorNo][2] = ((data[7] & 0x40)>>4) | ((data[8] & 0x4)>>1) | ((data[8] & 0x40)>>6); // C1C2C3 for data area 2 rights[sectorNo][3] = ((data[7] & 0x80)>>5) | ((data[8] & 0x8)>>2) | ((data[8] & 0x80)>>7); // C1C2C3 for sector trailer break; } else if (tries == 2) { // on last try set defaults PrintAndLog("Could not get access rights for sector %2d. Trying with defaults...", sectorNo); rights[sectorNo][0] = rights[sectorNo][1] = rights[sectorNo][2] = 0x00; rights[sectorNo][3] = 0x01; } } else { PrintAndLog("Command execute timeout when trying to read access rights for sector %2d. Trying with defaults...", sectorNo); rights[sectorNo][0] = rights[sectorNo][1] = rights[sectorNo][2] = 0x00; rights[sectorNo][3] = 0x01; } } } PrintAndLog("|-----------------------------------------|"); PrintAndLog("|----- Dumping all blocks to file... -----|"); PrintAndLog("|-----------------------------------------|"); bool isOK = true; for (sectorNo = 0; isOK && sectorNo < numSectors; sectorNo++) { for (blockNo = 0; isOK && blockNo < NumBlocksPerSector(sectorNo); blockNo++) { bool received = false; for (tries = 0; tries < 3; tries++) { if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer. At least the Access Conditions can always be read with key A. UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 0, 0}}; memcpy(c.d.asBytes, keyA[sectorNo], 6); SendCommand(&c); received = WaitForResponseTimeout(CMD_ACK,&resp,1500); } else { // data block. Check if it can be read with key A or key B uint8_t data_area = sectorNo<32?blockNo:blockNo/5; if ((rights[sectorNo][data_area] == 0x03) || (rights[sectorNo][data_area] == 0x05)) { // only key B would work UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 1, 0}}; memcpy(c.d.asBytes, keyB[sectorNo], 6); SendCommand(&c); received = WaitForResponseTimeout(CMD_ACK,&resp,1500); } else if (rights[sectorNo][data_area] == 0x07) { // no key would work isOK = false; PrintAndLog("Access rights do not allow reading of sector %2d block %3d", sectorNo, blockNo); tries = 2; } else { // key A would work UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 0, 0}}; memcpy(c.d.asBytes, keyA[sectorNo], 6); SendCommand(&c); received = WaitForResponseTimeout(CMD_ACK,&resp,1500); } } if (received) { isOK = resp.arg[0] & 0xff; if (isOK) break; } } if (received) { isOK = resp.arg[0] & 0xff; uint8_t *data = resp.d.asBytes; if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer. Fill in the keys. data[0] = (keyA[sectorNo][0]); data[1] = (keyA[sectorNo][1]); data[2] = (keyA[sectorNo][2]); data[3] = (keyA[sectorNo][3]); data[4] = (keyA[sectorNo][4]); data[5] = (keyA[sectorNo][5]); data[10] = (keyB[sectorNo][0]); data[11] = (keyB[sectorNo][1]); data[12] = (keyB[sectorNo][2]); data[13] = (keyB[sectorNo][3]); data[14] = (keyB[sectorNo][4]); data[15] = (keyB[sectorNo][5]); } if (isOK) { memcpy(carddata[FirstBlockOfSector(sectorNo) + blockNo], data, 16); PrintAndLog("Successfully read block %2d of sector %2d.", blockNo, sectorNo); } else { PrintAndLog("Could not read block %2d of sector %2d", blockNo, sectorNo); break; } } else { isOK = false; PrintAndLog("Command execute timeout when trying to read block %2d of sector %2d.", blockNo, sectorNo); break; } } } if (isOK) { if ((fout = fopen("dumpdata.bin","wb")) == NULL) { PrintAndLog("Could not create file name dumpdata.bin"); return 1; } uint16_t numblocks = FirstBlockOfSector(numSectors - 1) + NumBlocksPerSector(numSectors - 1); fwrite(carddata, 1, 16*numblocks, fout); fclose(fout); PrintAndLog("Dumped %d blocks (%d bytes) to file dumpdata.bin", numblocks, 16*numblocks); } return 0; } int CmdHF14AMfRestore(const char *Cmd) { uint8_t sectorNo,blockNo; uint8_t keyType = 0; uint8_t key[6] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF}; uint8_t bldata[16] = {0x00}; uint8_t keyA[40][6]; uint8_t keyB[40][6]; uint8_t numSectors; FILE *fdump; FILE *fkeys; char cmdp = param_getchar(Cmd, 0); switch (cmdp) { case '0' : numSectors = 5; break; case '1' : case '\0': numSectors = 16; break; case '2' : numSectors = 32; break; case '4' : numSectors = 40; break; default: numSectors = 16; } if (strlen(Cmd) > 1 || cmdp == 'h' || cmdp == 'H') { PrintAndLog("Usage: hf mf restore [card memory]"); PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLog(""); PrintAndLog("Samples: hf mf restore"); PrintAndLog(" hf mf restore 4"); return 0; } if ((fkeys = fopen("dumpkeys.bin","rb")) == NULL) { PrintAndLog("Could not find file dumpkeys.bin"); return 1; } for (sectorNo = 0; sectorNo < numSectors; sectorNo++) { size_t bytes_read = fread(keyA[sectorNo], 1, 6, fkeys); if (bytes_read != 6) { PrintAndLog("File reading error (dumpkeys.bin)."); fclose(fkeys); return 2; } } for (sectorNo = 0; sectorNo < numSectors; sectorNo++) { size_t bytes_read = fread(keyB[sectorNo], 1, 6, fkeys); if (bytes_read != 6) { PrintAndLog("File reading error (dumpkeys.bin)."); fclose(fkeys); return 2; } } fclose(fkeys); if ((fdump = fopen("dumpdata.bin","rb")) == NULL) { PrintAndLog("Could not find file dumpdata.bin"); return 1; } PrintAndLog("Restoring dumpdata.bin to card"); for (sectorNo = 0; sectorNo < numSectors; sectorNo++) { for(blockNo = 0; blockNo < NumBlocksPerSector(sectorNo); blockNo++) { UsbCommand c = {CMD_MIFARE_WRITEBL, {FirstBlockOfSector(sectorNo) + blockNo, keyType, 0}}; memcpy(c.d.asBytes, key, 6); size_t bytes_read = fread(bldata, 1, 16, fdump); if (bytes_read != 16) { PrintAndLog("File reading error (dumpdata.bin)."); fclose(fdump); return 2; } if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer bldata[0] = (keyA[sectorNo][0]); bldata[1] = (keyA[sectorNo][1]); bldata[2] = (keyA[sectorNo][2]); bldata[3] = (keyA[sectorNo][3]); bldata[4] = (keyA[sectorNo][4]); bldata[5] = (keyA[sectorNo][5]); bldata[10] = (keyB[sectorNo][0]); bldata[11] = (keyB[sectorNo][1]); bldata[12] = (keyB[sectorNo][2]); bldata[13] = (keyB[sectorNo][3]); bldata[14] = (keyB[sectorNo][4]); bldata[15] = (keyB[sectorNo][5]); } PrintAndLog("Writing to block %3d: %s", FirstBlockOfSector(sectorNo) + blockNo, sprint_hex(bldata, 16)); memcpy(c.d.asBytes + 10, bldata, 16); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); } } } fclose(fdump); return 0; } typedef struct { uint64_t Key[2]; int foundKey[2]; } sector_t; int CmdHF14AMfNested(const char *Cmd) { int i, j, res, iterations; sector_t *e_sector = NULL; uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t trgBlockNo = 0; uint8_t trgKeyType = 0; uint8_t SectorsCnt = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t keyBlock[14*6]; uint64_t key64 = 0; bool transferToEml = false; bool createDumpFile = false; FILE *fkeys; uint8_t standart[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; uint8_t tempkey[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; char cmdp, ctmp; if (strlen(Cmd)<3) { PrintAndLog("Usage:"); PrintAndLog(" all sectors: hf mf nested [t,d]"); PrintAndLog(" one sector: hf mf nested o "); PrintAndLog(" [t]"); PrintAndLog("card memory - 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, - 1K"); PrintAndLog("t - transfer keys into emulator memory"); PrintAndLog("d - write keys to binary file"); PrintAndLog(" "); PrintAndLog(" sample1: hf mf nested 1 0 A FFFFFFFFFFFF "); PrintAndLog(" sample2: hf mf nested 1 0 A FFFFFFFFFFFF t "); PrintAndLog(" sample3: hf mf nested 1 0 A FFFFFFFFFFFF d "); PrintAndLog(" sample4: hf mf nested o 0 A FFFFFFFFFFFF 4 A"); return 0; } cmdp = param_getchar(Cmd, 0); blockNo = param_get8(Cmd, 1); ctmp = param_getchar(Cmd, 2); if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') { PrintAndLog("Key type must be A or B"); return 1; } if (ctmp != 'A' && ctmp != 'a') keyType = 1; if (param_gethex(Cmd, 3, key, 12)) { PrintAndLog("Key must include 12 HEX symbols"); return 1; } if (cmdp == 'o' || cmdp == 'O') { cmdp = 'o'; trgBlockNo = param_get8(Cmd, 4); ctmp = param_getchar(Cmd, 5); if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') { PrintAndLog("Target key type must be A or B"); return 1; } if (ctmp != 'A' && ctmp != 'a') trgKeyType = 1; } else { switch (cmdp) { case '0': SectorsCnt = 05; break; case '1': SectorsCnt = 16; break; case '2': SectorsCnt = 32; break; case '4': SectorsCnt = 40; break; default: SectorsCnt = 16; } } ctmp = param_getchar(Cmd, 4); if (ctmp == 't' || ctmp == 'T') transferToEml = true; else if (ctmp == 'd' || ctmp == 'D') createDumpFile = true; ctmp = param_getchar(Cmd, 6); transferToEml |= (ctmp == 't' || ctmp == 'T'); transferToEml |= (ctmp == 'd' || ctmp == 'D'); if (cmdp == 'o') { PrintAndLog("--target block no:%3d, target key type:%c ", trgBlockNo, trgKeyType?'B':'A'); int16_t isOK = mfnested(blockNo, keyType, key, trgBlockNo, trgKeyType, keyBlock, true); if (isOK) { switch (isOK) { case -1 : PrintAndLog("Error: No response from Proxmark.\n"); break; case -2 : PrintAndLog("Button pressed. Aborted.\n"); break; case -3 : PrintAndLog("Tag isn't vulnerable to Nested Attack (random numbers are not predictable).\n"); break; default : PrintAndLog("Unknown Error.\n"); } return 2; } key64 = bytes_to_num(keyBlock, 6); if (key64) { PrintAndLog("Found valid key:%012" PRIx64, key64); // transfer key to the emulator if (transferToEml) { uint8_t sectortrailer; if (trgBlockNo < 32*4) { // 4 block sector sectortrailer = (trgBlockNo & 0x03) + 3; } else { // 16 block sector sectortrailer = (trgBlockNo & 0x0f) + 15; } mfEmlGetMem(keyBlock, sectortrailer, 1); if (!trgKeyType) num_to_bytes(key64, 6, keyBlock); else num_to_bytes(key64, 6, &keyBlock[10]); mfEmlSetMem(keyBlock, sectortrailer, 1); } } else { PrintAndLog("No valid key found"); } } else { // ------------------------------------ multiple sectors working uint64_t msclock1; msclock1 = msclock(); e_sector = calloc(SectorsCnt, sizeof(sector_t)); if (e_sector == NULL) return 1; //test current key and additional standard keys first memcpy(keyBlock, key, 6); num_to_bytes(0xffffffffffff, 6, (uint8_t*)(keyBlock + 1 * 6)); num_to_bytes(0x000000000000, 6, (uint8_t*)(keyBlock + 2 * 6)); num_to_bytes(0xa0a1a2a3a4a5, 6, (uint8_t*)(keyBlock + 3 * 6)); num_to_bytes(0xb0b1b2b3b4b5, 6, (uint8_t*)(keyBlock + 4 * 6)); num_to_bytes(0xaabbccddeeff, 6, (uint8_t*)(keyBlock + 5 * 6)); num_to_bytes(0x4d3a99c351dd, 6, (uint8_t*)(keyBlock + 6 * 6)); num_to_bytes(0x1a982c7e459a, 6, (uint8_t*)(keyBlock + 7 * 6)); num_to_bytes(0xd3f7d3f7d3f7, 6, (uint8_t*)(keyBlock + 8 * 6)); num_to_bytes(0x714c5c886e97, 6, (uint8_t*)(keyBlock + 9 * 6)); num_to_bytes(0x587ee5f9350f, 6, (uint8_t*)(keyBlock + 10 * 6)); num_to_bytes(0xa0478cc39091, 6, (uint8_t*)(keyBlock + 11 * 6)); num_to_bytes(0x533cb6c723f6, 6, (uint8_t*)(keyBlock + 12 * 6)); num_to_bytes(0x8fd0a4f256e9, 6, (uint8_t*)(keyBlock + 13 * 6)); PrintAndLog("Testing known keys. Sector count=%d", SectorsCnt); for (i = 0; i < SectorsCnt; i++) { for (j = 0; j < 2; j++) { if (e_sector[i].foundKey[j]) continue; res = mfCheckKeys(FirstBlockOfSector(i), j, true, 6, keyBlock, &key64); if (!res) { e_sector[i].Key[j] = key64; e_sector[i].foundKey[j] = 1; } } } // nested sectors iterations = 0; PrintAndLog("nested..."); bool calibrate = true; for (i = 0; i < NESTED_SECTOR_RETRY; i++) { for (uint8_t sectorNo = 0; sectorNo < SectorsCnt; sectorNo++) { for (trgKeyType = 0; trgKeyType < 2; trgKeyType++) { if (e_sector[sectorNo].foundKey[trgKeyType]) continue; PrintAndLog("-----------------------------------------------"); int16_t isOK = mfnested(blockNo, keyType, key, FirstBlockOfSector(sectorNo), trgKeyType, keyBlock, calibrate); if(isOK) { switch (isOK) { case -1 : PrintAndLog("Error: No response from Proxmark.\n"); break; case -2 : PrintAndLog("Button pressed. Aborted.\n"); break; case -3 : PrintAndLog("Tag isn't vulnerable to Nested Attack (random numbers are not predictable).\n"); break; default : PrintAndLog("Unknown Error.\n"); } free(e_sector); return 2; } else { calibrate = false; } iterations++; key64 = bytes_to_num(keyBlock, 6); if (key64) { PrintAndLog("Found valid key:%012" PRIx64, key64); e_sector[sectorNo].foundKey[trgKeyType] = 1; e_sector[sectorNo].Key[trgKeyType] = key64; } } } } printf("Time in nested: %1.3f (%1.3f sec per key)\n\n", ((float)(msclock() - msclock1))/1000.0, ((float)(msclock() - msclock1))/iterations/1000.0); PrintAndLog("-----------------------------------------------\nIterations count: %d\n\n", iterations); //print them PrintAndLog("|---|----------------|---|----------------|---|"); PrintAndLog("|sec|key A |res|key B |res|"); PrintAndLog("|---|----------------|---|----------------|---|"); for (i = 0; i < SectorsCnt; i++) { PrintAndLog("|%03d| %012" PRIx64 " | %d | %012" PRIx64 " | %d |", i, e_sector[i].Key[0], e_sector[i].foundKey[0], e_sector[i].Key[1], e_sector[i].foundKey[1]); } PrintAndLog("|---|----------------|---|----------------|---|"); // transfer them to the emulator if (transferToEml) { for (i = 0; i < SectorsCnt; i++) { mfEmlGetMem(keyBlock, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1); if (e_sector[i].foundKey[0]) num_to_bytes(e_sector[i].Key[0], 6, keyBlock); if (e_sector[i].foundKey[1]) num_to_bytes(e_sector[i].Key[1], 6, &keyBlock[10]); mfEmlSetMem(keyBlock, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1); } } // Create dump file if (createDumpFile) { if ((fkeys = fopen("dumpkeys.bin","wb")) == NULL) { PrintAndLog("Could not create file dumpkeys.bin"); free(e_sector); return 1; } PrintAndLog("Printing keys to binary file dumpkeys.bin..."); for(i=0; i "); PrintAndLog(" [known target key (12 hex symbols)] [w] [s]"); PrintAndLog(" or hf mf hardnested r [known target key]"); PrintAndLog(" "); PrintAndLog("Options: "); PrintAndLog(" w: Acquire nonces and write them to binary file nonces.bin"); PrintAndLog(" s: Slower acquisition (required by some non standard cards)"); PrintAndLog(" r: Read nonces.bin and start attack"); PrintAndLog(" "); PrintAndLog(" sample1: hf mf hardnested 0 A FFFFFFFFFFFF 4 A"); PrintAndLog(" sample2: hf mf hardnested 0 A FFFFFFFFFFFF 4 A w"); PrintAndLog(" sample3: hf mf hardnested 0 A FFFFFFFFFFFF 4 A w s"); PrintAndLog(" sample4: hf mf hardnested r"); PrintAndLog(" "); PrintAndLog("Add the known target key to check if it is present in the remaining key space:"); PrintAndLog(" sample5: hf mf hardnested 0 A A0A1A2A3A4A5 4 A FFFFFFFFFFFF"); return 0; } bool know_target_key = false; bool nonce_file_read = false; bool nonce_file_write = false; bool slow = false; int tests = 0; if (ctmp == 'R' || ctmp == 'r') { nonce_file_read = true; if (!param_gethex(Cmd, 1, trgkey, 12)) { know_target_key = true; } } else if (ctmp == 'T' || ctmp == 't') { tests = param_get32ex(Cmd, 1, 100, 10); if (!param_gethex(Cmd, 2, trgkey, 12)) { know_target_key = true; } } else { blockNo = param_get8(Cmd, 0); ctmp = param_getchar(Cmd, 1); if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') { PrintAndLog("Key type must be A or B"); return 1; } if (ctmp != 'A' && ctmp != 'a') { keyType = 1; } if (param_gethex(Cmd, 2, key, 12)) { PrintAndLog("Key must include 12 HEX symbols"); return 1; } trgBlockNo = param_get8(Cmd, 3); ctmp = param_getchar(Cmd, 4); if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') { PrintAndLog("Target key type must be A or B"); return 1; } if (ctmp != 'A' && ctmp != 'a') { trgKeyType = 1; } uint16_t i = 5; if (!param_gethex(Cmd, 5, trgkey, 12)) { know_target_key = true; i++; } while ((ctmp = param_getchar(Cmd, i))) { if (ctmp == 's' || ctmp == 'S') { slow = true; } else if (ctmp == 'w' || ctmp == 'W') { nonce_file_write = true; } else { PrintAndLog("Possible options are w and/or s"); return 1; } i++; } } PrintAndLog("--target block no:%3d, target key type:%c, known target key: 0x%02x%02x%02x%02x%02x%02x%s, file action: %s, Slow: %s, Tests: %d ", trgBlockNo, trgKeyType?'B':'A', trgkey[0], trgkey[1], trgkey[2], trgkey[3], trgkey[4], trgkey[5], know_target_key?"":" (not set)", nonce_file_write?"write":nonce_file_read?"read":"none", slow?"Yes":"No", tests); int16_t isOK = mfnestedhard(blockNo, keyType, key, trgBlockNo, trgKeyType, know_target_key?trgkey:NULL, nonce_file_read, nonce_file_write, slow, tests); if (isOK) { switch (isOK) { case 1 : PrintAndLog("Error: No response from Proxmark.\n"); break; case 2 : PrintAndLog("Button pressed. Aborted.\n"); break; default : break; } return 2; } return 0; } int CmdHF14AMfChk(const char *Cmd) { if (strlen(Cmd)<3) { PrintAndLog("Usage: hf mf chk |<*card memory> [t|d] [] []"); PrintAndLog(" * - all sectors"); PrintAndLog("card memory - 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, - 1K"); PrintAndLog("d - write keys to binary file\n"); PrintAndLog("t - write keys to emulator memory"); PrintAndLog(" sample: hf mf chk 0 A 1234567890ab keys.dic"); PrintAndLog(" hf mf chk *1 ? t"); PrintAndLog(" hf mf chk *1 ? d"); return 0; } FILE * f; char filename[FILE_PATH_SIZE]={0}; char buf[13]; uint8_t *keyBlock = NULL, *p; uint16_t stKeyBlock = 20; int i, res; int keycnt = 0; char ctmp = 0x00; uint8_t blockNo = 0; uint8_t SectorsCnt = 1; uint8_t keyType = 0; uint64_t key64 = 0; int transferToEml = 0; int createDumpFile = 0; keyBlock = calloc(stKeyBlock, 6); if (keyBlock == NULL) return 1; uint64_t defaultKeys[] = { 0xffffffffffff, // Default key (first key used by program if no user defined key) 0x000000000000, // Blank key 0xa0a1a2a3a4a5, // NFCForum MAD key 0xb0b1b2b3b4b5, 0xaabbccddeeff, 0x4d3a99c351dd, 0x1a982c7e459a, 0xd3f7d3f7d3f7, 0x714c5c886e97, 0x587ee5f9350f, 0xa0478cc39091, 0x533cb6c723f6, 0x8fd0a4f256e9 }; int defaultKeysSize = sizeof(defaultKeys) / sizeof(uint64_t); for (int defaultKeyCounter = 0; defaultKeyCounter < defaultKeysSize; defaultKeyCounter++) { num_to_bytes(defaultKeys[defaultKeyCounter], 6, (uint8_t*)(keyBlock + defaultKeyCounter * 6)); } if (param_getchar(Cmd, 0)=='*') { blockNo = 3; switch(param_getchar(Cmd+1, 0)) { case '0': SectorsCnt = 5; break; case '1': SectorsCnt = 16; break; case '2': SectorsCnt = 32; break; case '4': SectorsCnt = 40; break; default: SectorsCnt = 16; } } else blockNo = param_get8(Cmd, 0); ctmp = param_getchar(Cmd, 1); switch (ctmp) { case 'a': case 'A': keyType = !0; break; case 'b': case 'B': keyType = !1; break; case '?': keyType = 2; break; default: PrintAndLog("Key type must be A , B or ?"); free(keyBlock); return 1; }; ctmp = param_getchar(Cmd, 2); if (ctmp == 't' || ctmp == 'T') transferToEml = 1; else if (ctmp == 'd' || ctmp == 'D') createDumpFile = 1; for (i = transferToEml || createDumpFile; param_getchar(Cmd, 2 + i); i++) { if (!param_gethex(Cmd, 2 + i, keyBlock + 6 * keycnt, 12)) { if ( stKeyBlock - keycnt < 2) { p = realloc(keyBlock, 6*(stKeyBlock+=10)); if (!p) { PrintAndLog("Cannot allocate memory for Keys"); free(keyBlock); return 2; } keyBlock = p; } PrintAndLog("chk key[%2d] %02x%02x%02x%02x%02x%02x", keycnt, (keyBlock + 6*keycnt)[0],(keyBlock + 6*keycnt)[1], (keyBlock + 6*keycnt)[2], (keyBlock + 6*keycnt)[3], (keyBlock + 6*keycnt)[4], (keyBlock + 6*keycnt)[5], 6); keycnt++; } else { // May be a dic file if ( param_getstr(Cmd, 2 + i,filename) >= FILE_PATH_SIZE ) { PrintAndLog("File name too long"); free(keyBlock); return 2; } if ( (f = fopen( filename , "r")) ) { while( fgets(buf, sizeof(buf), f) ){ if (strlen(buf) < 12 || buf[11] == '\n') continue; while (fgetc(f) != '\n' && !feof(f)) ; //goto next line if( buf[0]=='#' ) continue; //The line start with # is comment, skip if (!isxdigit(buf[0])){ PrintAndLog("File content error. '%s' must include 12 HEX symbols",buf); continue; } buf[12] = 0; if ( stKeyBlock - keycnt < 2) { p = realloc(keyBlock, 6*(stKeyBlock+=10)); if (!p) { PrintAndLog("Cannot allocate memory for defKeys"); free(keyBlock); fclose(f); return 2; } keyBlock = p; } memset(keyBlock + 6 * keycnt, 0, 6); num_to_bytes(strtoll(buf, NULL, 16), 6, keyBlock + 6*keycnt); PrintAndLog("chk custom key[%2d] %012" PRIx64 , keycnt, bytes_to_num(keyBlock + 6*keycnt, 6)); keycnt++; memset(buf, 0, sizeof(buf)); } fclose(f); } else { PrintAndLog("File: %s: not found or locked.", filename); free(keyBlock); return 1; } } } if (keycnt == 0) { PrintAndLog("No key specified, trying default keys"); for (;keycnt < defaultKeysSize; keycnt++) PrintAndLog("chk default key[%2d] %02x%02x%02x%02x%02x%02x", keycnt, (keyBlock + 6*keycnt)[0],(keyBlock + 6*keycnt)[1], (keyBlock + 6*keycnt)[2], (keyBlock + 6*keycnt)[3], (keyBlock + 6*keycnt)[4], (keyBlock + 6*keycnt)[5], 6); } // initialize storage for found keys bool validKey[2][40]; uint8_t foundKey[2][40][6]; for (uint16_t t = 0; t < 2; t++) { for (uint16_t sectorNo = 0; sectorNo < SectorsCnt; sectorNo++) { validKey[t][sectorNo] = false; for (uint16_t i = 0; i < 6; i++) { foundKey[t][sectorNo][i] = 0xff; } } } for ( int t = !keyType; t < 2; keyType==2?(t++):(t=2) ) { int b=blockNo; for (int i = 0; i < SectorsCnt; ++i) { PrintAndLog("--sector:%2d, block:%3d, key type:%C, key count:%2d ", i, b, t?'B':'A', keycnt); uint32_t max_keys = keycnt>USB_CMD_DATA_SIZE/6?USB_CMD_DATA_SIZE/6:keycnt; for (uint32_t c = 0; c < keycnt; c+=max_keys) { uint32_t size = keycnt-c>max_keys?max_keys:keycnt-c; res = mfCheckKeys(b, t, true, size, &keyBlock[6*c], &key64); if (res != 1) { if (!res) { PrintAndLog("Found valid key:[%012" PRIx64 "]",key64); num_to_bytes(key64, 6, foundKey[t][i]); validKey[t][i] = true; } } else { PrintAndLog("Command execute timeout"); } } b<127?(b+=4):(b+=16); } } if (transferToEml) { uint8_t block[16]; for (uint16_t sectorNo = 0; sectorNo < SectorsCnt; sectorNo++) { if (validKey[0][sectorNo] || validKey[1][sectorNo]) { mfEmlGetMem(block, FirstBlockOfSector(sectorNo) + NumBlocksPerSector(sectorNo) - 1, 1); for (uint16_t t = 0; t < 2; t++) { if (validKey[t][sectorNo]) { memcpy(block + t*10, foundKey[t][sectorNo], 6); } } mfEmlSetMem(block, FirstBlockOfSector(sectorNo) + NumBlocksPerSector(sectorNo) - 1, 1); } } PrintAndLog("Found keys have been transferred to the emulator memory"); } if (createDumpFile) { FILE *fkeys = fopen("dumpkeys.bin","wb"); if (fkeys == NULL) { PrintAndLog("Could not create file dumpkeys.bin"); free(keyBlock); return 1; } for (uint16_t t = 0; t < 2; t++) { fwrite(foundKey[t], 1, 6*SectorsCnt, fkeys); } fclose(fkeys); PrintAndLog("Found keys have been dumped to file dumpkeys.bin. 0xffffffffffff has been inserted for unknown keys."); } free(keyBlock); PrintAndLog(""); return 0; } void readerAttack(nonces_t ar_resp[], bool setEmulatorMem, bool doStandardAttack) { #define ATTACK_KEY_COUNT 7 // keep same as define in iso14443a.c -> Mifare1ksim() // cannot be more than 7 or it will overrun c.d.asBytes(512) uint64_t key = 0; typedef struct { uint64_t keyA; uint64_t keyB; } st_t; st_t sector_trailer[ATTACK_KEY_COUNT]; memset(sector_trailer, 0x00, sizeof(sector_trailer)); uint8_t stSector[ATTACK_KEY_COUNT]; memset(stSector, 0x00, sizeof(stSector)); uint8_t key_cnt[ATTACK_KEY_COUNT]; memset(key_cnt, 0x00, sizeof(key_cnt)); for (uint8_t i = 0; i 0) { //PrintAndLog("DEBUG: Trying sector %d, cuid %08x, nt %08x, ar %08x, nr %08x, ar2 %08x, nr2 %08x",ar_resp[i].sector, ar_resp[i].cuid,ar_resp[i].nonce,ar_resp[i].ar,ar_resp[i].nr,ar_resp[i].ar2,ar_resp[i].nr2); if (doStandardAttack && mfkey32(ar_resp[i], &key)) { PrintAndLog(" Found Key%s for sector %02d: [%04x%08x]", (ar_resp[i].keytype) ? "B" : "A", ar_resp[i].sector, (uint32_t) (key>>32), (uint32_t) (key &0xFFFFFFFF)); for (uint8_t ii = 0; ii0) { uint8_t memBlock[16]; memset(memBlock, 0x00, sizeof(memBlock)); char cmd1[36]; memset(cmd1,0x00,sizeof(cmd1)); snprintf(cmd1,sizeof(cmd1),"%04x%08xFF078069%04x%08x",(uint32_t) (sector_trailer[i].keyA>>32), (uint32_t) (sector_trailer[i].keyA &0xFFFFFFFF),(uint32_t) (sector_trailer[i].keyB>>32), (uint32_t) (sector_trailer[i].keyB &0xFFFFFFFF)); PrintAndLog("Setting Emulator Memory Block %02d: [%s]",stSector[i]*4+3, cmd1); if (param_gethex(cmd1, 0, memBlock, 32)) { PrintAndLog("block data must include 32 HEX symbols"); return; } UsbCommand c = {CMD_MIFARE_EML_MEMSET, {(stSector[i]*4+3), 1, 0}}; memcpy(c.d.asBytes, memBlock, 16); clearCommandBuffer(); SendCommand(&c); } } } /* //un-comment to use as well moebius attack for (uint8_t i = ATTACK_KEY_COUNT; i 0) { if (tryMfk32_moebius(ar_resp[i], &key)) { PrintAndLog("M-Found Key%s for sector %02d: [%04x%08x]", (ar_resp[i].keytype) ? "B" : "A", ar_resp[i].sector, (uint32_t) (key>>32), (uint32_t) (key &0xFFFFFFFF)); } } }*/ } int usage_hf14_mf1ksim(void) { PrintAndLog("Usage: hf mf sim h u n i x"); PrintAndLog("options:"); PrintAndLog(" h this help"); PrintAndLog(" u (Optional) UID 4,7 or 10 bytes. If not specified, the UID 4B from emulator memory will be used"); PrintAndLog(" n (Optional) Automatically exit simulation after blocks have been read by reader. 0 = infinite"); PrintAndLog(" i (Optional) Interactive, means that console will not be returned until simulation finishes or is aborted"); PrintAndLog(" x (Optional) Crack, performs the 'reader attack', nr/ar attack against a legitimate reader, fishes out the key(s)"); PrintAndLog(" e (Optional) set keys found from 'reader attack' to emulator memory (implies x and i)"); PrintAndLog(" f (Optional) get UIDs to use for 'reader attack' from file 'f ' (implies x and i)"); PrintAndLog(" r (Optional) Generate random nonces instead of sequential nonces. Standard reader attack won't work with this option, only moebius attack works."); PrintAndLog("samples:"); PrintAndLog(" hf mf sim u 0a0a0a0a"); PrintAndLog(" hf mf sim u 11223344556677"); PrintAndLog(" hf mf sim u 112233445566778899AA"); PrintAndLog(" hf mf sim f uids.txt"); PrintAndLog(" hf mf sim u 0a0a0a0a e"); return 0; } int CmdHF14AMf1kSim(const char *Cmd) { UsbCommand resp; uint8_t uid[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; uint8_t exitAfterNReads = 0; uint8_t flags = 0; int uidlen = 0; uint8_t pnr = 0; bool setEmulatorMem = false; bool attackFromFile = false; FILE *f; char filename[FILE_PATH_SIZE]; memset(filename, 0x00, sizeof(filename)); int len = 0; char buf[64]; uint8_t cmdp = 0; bool errors = false; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'e': case 'E': setEmulatorMem = true; //implies x and i flags |= FLAG_INTERACTIVE; flags |= FLAG_NR_AR_ATTACK; cmdp++; break; case 'f': case 'F': len = param_getstr(Cmd, cmdp+1, filename); if (len < 1) { PrintAndLog("error no filename found"); return 0; } attackFromFile = true; //implies x and i flags |= FLAG_INTERACTIVE; flags |= FLAG_NR_AR_ATTACK; cmdp += 2; break; case 'h': case 'H': return usage_hf14_mf1ksim(); case 'i': case 'I': flags |= FLAG_INTERACTIVE; cmdp++; break; case 'n': case 'N': exitAfterNReads = param_get8(Cmd, pnr+1); cmdp += 2; break; case 'r': case 'R': flags |= FLAG_RANDOM_NONCE; cmdp++; break; case 'u': case 'U': param_gethex_ex(Cmd, cmdp+1, uid, &uidlen); switch(uidlen) { case 20: flags = FLAG_10B_UID_IN_DATA; break; //not complete case 14: flags = FLAG_7B_UID_IN_DATA; break; case 8: flags = FLAG_4B_UID_IN_DATA; break; default: return usage_hf14_mf1ksim(); } cmdp += 2; break; case 'x': case 'X': flags |= FLAG_NR_AR_ATTACK; cmdp++; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } if(errors) break; } //Validations if(errors) return usage_hf14_mf1ksim(); //get uid from file if (attackFromFile) { int count = 0; // open file f = fopen(filename, "r"); if (f == NULL) { PrintAndLog("File %s not found or locked", filename); return 1; } PrintAndLog("Loading file and simulating. Press keyboard to abort"); while(!feof(f) && !ukbhit()){ memset(buf, 0, sizeof(buf)); memset(uid, 0, sizeof(uid)); if (fgets(buf, sizeof(buf), f) == NULL) { if (count > 0) break; PrintAndLog("File reading error."); fclose(f); return 2; } if(!strlen(buf) && feof(f)) break; uidlen = strlen(buf)-1; switch(uidlen) { case 20: flags |= FLAG_10B_UID_IN_DATA; break; //not complete case 14: flags |= FLAG_7B_UID_IN_DATA; break; case 8: flags |= FLAG_4B_UID_IN_DATA; break; default: PrintAndLog("uid in file wrong length at %d (length: %d) [%s]",count, uidlen, buf); fclose(f); return 2; } for (uint8_t i = 0; i < uidlen; i += 2) { sscanf(&buf[i], "%02x", (unsigned int *)&uid[i / 2]); } PrintAndLog("mf 1k sim uid: %s, numreads:%d, flags:%d (0x%02x) - press button to abort", flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4): flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): flags & FLAG_10B_UID_IN_DATA ? sprint_hex(uid,10): "N/A" , exitAfterNReads, flags, flags); UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads,0}}; memcpy(c.d.asBytes, uid, sizeof(uid)); clearCommandBuffer(); SendCommand(&c); while(! WaitForResponseTimeout(CMD_ACK,&resp,1500)) { //We're waiting only 1.5 s at a time, otherwise we get the // annoying message about "Waiting for a response... " } //got a response nonces_t ar_resp[ATTACK_KEY_COUNT*2]; memcpy(ar_resp, resp.d.asBytes, sizeof(ar_resp)); // We can skip the standard attack if we have RANDOM_NONCE set. readerAttack(ar_resp, setEmulatorMem, !(flags & FLAG_RANDOM_NONCE)); if ((bool)resp.arg[1]) { PrintAndLog("Device button pressed - quitting"); fclose(f); return 4; } count++; } fclose(f); } else { //not from file PrintAndLog("mf 1k sim uid: %s, numreads:%d, flags:%d (0x%02x) ", flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4): flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): flags & FLAG_10B_UID_IN_DATA ? sprint_hex(uid,10): "N/A" , exitAfterNReads, flags, flags); UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads,0}}; memcpy(c.d.asBytes, uid, sizeof(uid)); clearCommandBuffer(); SendCommand(&c); if(flags & FLAG_INTERACTIVE) { PrintAndLog("Press pm3-button to abort simulation"); while(! WaitForResponseTimeout(CMD_ACK,&resp,1500)) { //We're waiting only 1.5 s at a time, otherwise we get the // annoying message about "Waiting for a response... " } //got a response if (flags & FLAG_NR_AR_ATTACK) { nonces_t ar_resp[ATTACK_KEY_COUNT*2]; memcpy(ar_resp, resp.d.asBytes, sizeof(ar_resp)); // We can skip the standard attack if we have RANDOM_NONCE set. readerAttack(ar_resp, setEmulatorMem, !(flags & FLAG_RANDOM_NONCE)); } } } return 0; } int CmdHF14AMfDbg(const char *Cmd) { int dbgMode = param_get32ex(Cmd, 0, 0, 10); if (dbgMode > 4) { PrintAndLog("Max debug mode parameter is 4 \n"); } if (strlen(Cmd) < 1 || !param_getchar(Cmd, 0) || dbgMode > 4) { PrintAndLog("Usage: hf mf dbg "); PrintAndLog(" 0 - no debug messages"); PrintAndLog(" 1 - error messages"); PrintAndLog(" 2 - plus information messages"); PrintAndLog(" 3 - plus debug messages"); PrintAndLog(" 4 - print even debug messages in timing critical functions"); PrintAndLog(" Note: this option therefore may cause malfunction itself"); return 0; } UsbCommand c = {CMD_MIFARE_SET_DBGMODE, {dbgMode, 0, 0}}; SendCommand(&c); return 0; } int CmdHF14AMfEGet(const char *Cmd) { uint8_t blockNo = 0; uint8_t data[16] = {0x00}; if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf eget "); PrintAndLog(" sample: hf mf eget 0 "); return 0; } blockNo = param_get8(Cmd, 0); PrintAndLog(" "); if (!mfEmlGetMem(data, blockNo, 1)) { PrintAndLog("data[%3d]:%s", blockNo, sprint_hex(data, 16)); } else { PrintAndLog("Command execute timeout"); } return 0; } int CmdHF14AMfEClear(const char *Cmd) { if (param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf eclr"); PrintAndLog("It set card emulator memory to empty data blocks and key A/B FFFFFFFFFFFF \n"); return 0; } UsbCommand c = {CMD_MIFARE_EML_MEMCLR, {0, 0, 0}}; SendCommand(&c); return 0; } int CmdHF14AMfESet(const char *Cmd) { uint8_t memBlock[16]; uint8_t blockNo = 0; memset(memBlock, 0x00, sizeof(memBlock)); if (strlen(Cmd) < 3 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf eset "); PrintAndLog(" sample: hf mf eset 1 000102030405060708090a0b0c0d0e0f "); return 0; } blockNo = param_get8(Cmd, 0); if (param_gethex(Cmd, 1, memBlock, 32)) { PrintAndLog("block data must include 32 HEX symbols"); return 1; } // 1 - blocks count UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNo, 1, 0}}; memcpy(c.d.asBytes, memBlock, 16); SendCommand(&c); return 0; } int CmdHF14AMfELoad(const char *Cmd) { FILE * f; char filename[FILE_PATH_SIZE]; char *fnameptr = filename; char buf[64] = {0x00}; uint8_t buf8[64] = {0x00}; int i, len, blockNum, numBlocks; int nameParamNo = 1; char ctmp = param_getchar(Cmd, 0); if ( ctmp == 'h' || ctmp == 0x00) { PrintAndLog("It loads emul dump from the file `filename.eml`"); PrintAndLog("Usage: hf mf eload [card memory] "); PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLog(""); PrintAndLog(" sample: hf mf eload filename"); PrintAndLog(" hf mf eload 4 filename"); return 0; } switch (ctmp) { case '0' : numBlocks = 5*4; break; case '1' : case '\0': numBlocks = 16*4; break; case '2' : numBlocks = 32*4; break; case '4' : numBlocks = 256; break; default: { numBlocks = 16*4; nameParamNo = 0; } } len = param_getstr(Cmd,nameParamNo,filename); if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5; fnameptr += len; sprintf(fnameptr, ".eml"); // open file f = fopen(filename, "r"); if (f == NULL) { PrintAndLog("File %s not found or locked", filename); return 1; } blockNum = 0; while(!feof(f)){ memset(buf, 0, sizeof(buf)); if (fgets(buf, sizeof(buf), f) == NULL) { if (blockNum >= numBlocks) break; PrintAndLog("File reading error."); fclose(f); return 2; } if (strlen(buf) < 32){ if(strlen(buf) && feof(f)) break; PrintAndLog("File content error. Block data must include 32 HEX symbols"); fclose(f); return 2; } for (i = 0; i < 32; i += 2) { sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]); } if (mfEmlSetMem(buf8, blockNum, 1)) { PrintAndLog("Cant set emul block: %3d", blockNum); fclose(f); return 3; } printf("."); blockNum++; if (blockNum >= numBlocks) break; } fclose(f); printf("\n"); if ((blockNum != numBlocks)) { PrintAndLog("File content error. Got %d must be %d blocks.",blockNum, numBlocks); return 4; } PrintAndLog("Loaded %d blocks from file: %s", blockNum, filename); return 0; } int CmdHF14AMfESave(const char *Cmd) { FILE * f; char filename[FILE_PATH_SIZE]; char * fnameptr = filename; uint8_t buf[64]; int i, j, len, numBlocks; int nameParamNo = 1; memset(filename, 0, sizeof(filename)); memset(buf, 0, sizeof(buf)); char ctmp = param_getchar(Cmd, 0); if ( ctmp == 'h' || ctmp == 'H') { PrintAndLog("It saves emul dump into the file `filename.eml` or `cardID.eml`"); PrintAndLog(" Usage: hf mf esave [card memory] [file name w/o `.eml`]"); PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLog(""); PrintAndLog(" sample: hf mf esave "); PrintAndLog(" hf mf esave 4"); PrintAndLog(" hf mf esave 4 filename"); return 0; } switch (ctmp) { case '0' : numBlocks = 5*4; break; case '1' : case '\0': numBlocks = 16*4; break; case '2' : numBlocks = 32*4; break; case '4' : numBlocks = 256; break; default: { numBlocks = 16*4; nameParamNo = 0; } } len = param_getstr(Cmd,nameParamNo,filename); if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5; // user supplied filename? if (len < 1) { // get filename (UID from memory) if (mfEmlGetMem(buf, 0, 1)) { PrintAndLog("Can\'t get UID from block: %d", 0); len = sprintf(fnameptr, "dump"); fnameptr += len; } else { for (j = 0; j < 7; j++, fnameptr += 2) sprintf(fnameptr, "%02X", buf[j]); } } else { fnameptr += len; } // add file extension sprintf(fnameptr, ".eml"); // open file f = fopen(filename, "w+"); if ( !f ) { PrintAndLog("Can't open file %s ", filename); return 1; } // put hex for (i = 0; i < numBlocks; i++) { if (mfEmlGetMem(buf, i, 1)) { PrintAndLog("Cant get block: %d", i); break; } for (j = 0; j < 16; j++) fprintf(f, "%02X", buf[j]); fprintf(f,"\n"); } fclose(f); PrintAndLog("Saved %d blocks to file: %s", numBlocks, filename); return 0; } int CmdHF14AMfECFill(const char *Cmd) { uint8_t keyType = 0; uint8_t numSectors = 16; if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf ecfill [card memory]"); PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLog(""); PrintAndLog("samples: hf mf ecfill A"); PrintAndLog(" hf mf ecfill A 4"); PrintAndLog("Read card and transfer its data to emulator memory."); PrintAndLog("Keys must be laid in the emulator memory. \n"); return 0; } char ctmp = param_getchar(Cmd, 0); if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') { PrintAndLog("Key type must be A or B"); return 1; } if (ctmp != 'A' && ctmp != 'a') keyType = 1; ctmp = param_getchar(Cmd, 1); switch (ctmp) { case '0' : numSectors = 5; break; case '1' : case '\0': numSectors = 16; break; case '2' : numSectors = 32; break; case '4' : numSectors = 40; break; default: numSectors = 16; } printf("--params: numSectors: %d, keyType:%d", numSectors, keyType); UsbCommand c = {CMD_MIFARE_EML_CARDLOAD, {numSectors, keyType, 0}}; SendCommand(&c); return 0; } int CmdHF14AMfEKeyPrn(const char *Cmd) { int i; uint8_t numSectors; uint8_t data[16]; uint64_t keyA, keyB; if (param_getchar(Cmd, 0) == 'h') { PrintAndLog("It prints the keys loaded in the emulator memory"); PrintAndLog("Usage: hf mf ekeyprn [card memory]"); PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLog(""); PrintAndLog(" sample: hf mf ekeyprn 1"); return 0; } char cmdp = param_getchar(Cmd, 0); switch (cmdp) { case '0' : numSectors = 5; break; case '1' : case '\0': numSectors = 16; break; case '2' : numSectors = 32; break; case '4' : numSectors = 40; break; default: numSectors = 16; } PrintAndLog("|---|----------------|----------------|"); PrintAndLog("|sec|key A |key B |"); PrintAndLog("|---|----------------|----------------|"); for (i = 0; i < numSectors; i++) { if (mfEmlGetMem(data, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1)) { PrintAndLog("error get block %d", FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1); break; } keyA = bytes_to_num(data, 6); keyB = bytes_to_num(data + 10, 6); PrintAndLog("|%03d| %012" PRIx64 " | %012" PRIx64 " |", i, keyA, keyB); } PrintAndLog("|---|----------------|----------------|"); return 0; } int CmdHF14AMfCSetUID(const char *Cmd) { uint8_t uid[8] = {0x00}; uint8_t oldUid[8] = {0x00}; uint8_t atqa[2] = {0x00}; uint8_t sak[1] = {0x00}; uint8_t atqaPresent = 0; int res; uint8_t needHelp = 0; char cmdp = 1; if (param_getchar(Cmd, 0) && param_gethex(Cmd, 0, uid, 8)) { PrintAndLog("UID must include 8 HEX symbols"); return 1; } if (param_getlength(Cmd, 1) > 1 && param_getlength(Cmd, 2) > 1) { atqaPresent = 1; cmdp = 3; if (param_gethex(Cmd, 1, atqa, 4)) { PrintAndLog("ATQA must include 4 HEX symbols"); return 1; } if (param_gethex(Cmd, 2, sak, 2)) { PrintAndLog("SAK must include 2 HEX symbols"); return 1; } } while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'h': case 'H': needHelp = 1; break; default: PrintAndLog("ERROR: Unknown parameter '%c'", param_getchar(Cmd, cmdp)); needHelp = 1; break; } cmdp++; } if (strlen(Cmd) < 1 || needHelp) { PrintAndLog(""); PrintAndLog("Usage: hf mf csetuid [ATQA 4 hex symbols SAK 2 hex symbols]"); PrintAndLog("sample: hf mf csetuid 01020304"); PrintAndLog("sample: hf mf csetuid 01020304 0004 08"); PrintAndLog("Set UID, ATQA, and SAK for magic Chinese card (only works with such cards)"); return 0; } PrintAndLog("uid:%s", sprint_hex(uid, 4)); if (atqaPresent) { PrintAndLog("--atqa:%s sak:%02x", sprint_hex(atqa, 2), sak[0]); } res = mfCSetUID(uid, (atqaPresent)?atqa:NULL, (atqaPresent)?sak:NULL, oldUid); if (res) { PrintAndLog("Can't set UID. Error=%d", res); return 1; } PrintAndLog("old UID:%s", sprint_hex(oldUid, 4)); PrintAndLog("new UID:%s", sprint_hex(uid, 4)); return 0; } static int ParamGetCardSize(const char c) { int numBlocks = 16 * 4; switch (c) { case '0' : numBlocks = 5 * 4; break; case '2' : numBlocks = 32 * 4; break; case '4' : numBlocks = 32 * 4 + 8 * 16; break; default: numBlocks = 16 * 4; } return numBlocks; } int CmdHF14AMfCWipe(const char *Cmd) { int res, gen = 0; int numBlocks = 16 * 4; bool wipeCard = false; bool fillCard = false; if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf cwipe [card size] [w] [p]"); PrintAndLog("sample: hf mf cwipe 1 w s"); PrintAndLog("[card size]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLog("w - Wipe magic Chinese card (only works with gen:1a cards)"); PrintAndLog("f - Fill the card with default data and keys (works with gen:1a and gen:1b cards only)"); return 0; } gen = mfCIdentify(); if ((gen != 1) && (gen != 2)) return 1; numBlocks = ParamGetCardSize(param_getchar(Cmd, 0)); char cmdp = 0; while(param_getchar(Cmd, cmdp) != 0x00){ switch(param_getchar(Cmd, cmdp)) { case 'w': case 'W': wipeCard = 1; break; case 'f': case 'F': fillCard = 1; break; default: break; } cmdp++; } if (!wipeCard && !fillCard) wipeCard = true; PrintAndLog("--blocks count:%2d wipe:%c fill:%c", numBlocks, (wipeCard)?'y':'n', (fillCard)?'y':'n'); if (gen == 2) { /* generation 1b magic card */ if (wipeCard) { PrintAndLog("WARNING: can't wipe magic card 1b generation"); } res = mfCWipe(numBlocks, true, false, fillCard); } else { /* generation 1a magic card by default */ res = mfCWipe(numBlocks, false, wipeCard, fillCard); } if (res) { PrintAndLog("Can't wipe. error=%d", res); return 1; } PrintAndLog("OK"); return 0; } int CmdHF14AMfCSetBlk(const char *Cmd) { uint8_t memBlock[16] = {0x00}; uint8_t blockNo = 0; bool wipeCard = false; int res, gen = 0; if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf csetblk [w]"); PrintAndLog("sample: hf mf csetblk 1 01020304050607080910111213141516"); PrintAndLog("Set block data for magic Chinese card (only works with such cards)"); PrintAndLog("If you also want wipe the card then add 'w' at the end of the command line"); return 0; } gen = mfCIdentify(); if ((gen != 1) && (gen != 2)) return 1; blockNo = param_get8(Cmd, 0); if (param_gethex(Cmd, 1, memBlock, 32)) { PrintAndLog("block data must include 32 HEX symbols"); return 1; } char ctmp = param_getchar(Cmd, 2); wipeCard = (ctmp == 'w' || ctmp == 'W'); PrintAndLog("--block number:%2d data:%s", blockNo, sprint_hex(memBlock, 16)); if (gen == 2) { /* generation 1b magic card */ res = mfCSetBlock(blockNo, memBlock, NULL, wipeCard, CSETBLOCK_SINGLE_OPER | CSETBLOCK_MAGIC_1B); } else { /* generation 1a magic card by default */ res = mfCSetBlock(blockNo, memBlock, NULL, wipeCard, CSETBLOCK_SINGLE_OPER); } if (res) { PrintAndLog("Can't write block. error=%d", res); return 1; } return 0; } int CmdHF14AMfCLoad(const char *Cmd) { FILE * f; char filename[FILE_PATH_SIZE] = {0x00}; char * fnameptr = filename; char buf[256] = {0x00}; uint8_t buf8[256] = {0x00}; uint8_t fillFromEmulator = 0; int i, len, blockNum, flags = 0, gen = 0, numblock = 64; if (param_getchar(Cmd, 0) == 'h' || param_getchar(Cmd, 0)== 0x00) { PrintAndLog("It loads magic Chinese card from the file `filename.eml`"); PrintAndLog("or from emulator memory (option `e`). 4K card: (option `4`)"); PrintAndLog("Usage: hf mf cload [file name w/o `.eml`][e][4]"); PrintAndLog(" or: hf mf cload e [4]"); PrintAndLog("Sample: hf mf cload filename"); PrintAndLog(" hf mf cload filname 4"); PrintAndLog(" hf mf cload e"); PrintAndLog(" hf mf cload e 4"); return 0; } char ctmp = param_getchar(Cmd, 0); if (ctmp == 'e' || ctmp == 'E') fillFromEmulator = 1; ctmp = param_getchar(Cmd, 1); if (ctmp == '4') numblock = 256; gen = mfCIdentify(); PrintAndLog("Loading magic mifare %dK", numblock == 256 ? 4:1); if (fillFromEmulator) { for (blockNum = 0; blockNum < numblock; blockNum += 1) { if (mfEmlGetMem(buf8, blockNum, 1)) { PrintAndLog("Cant get block: %d", blockNum); return 2; } if (blockNum == 0) flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; // switch on field and send magic sequence if (blockNum == 1) flags = 0; // just write if (blockNum == numblock - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; // Done. Magic Halt and switch off field. if (gen == 2) /* generation 1b magic card */ flags |= CSETBLOCK_MAGIC_1B; if (mfCSetBlock(blockNum, buf8, NULL, 0, flags)) { PrintAndLog("Cant set magic card block: %d", blockNum); return 3; } } return 0; } else { param_getstr(Cmd, 0, filename); len = strlen(filename); if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5; //memcpy(filename, Cmd, len); fnameptr += len; sprintf(fnameptr, ".eml"); // open file f = fopen(filename, "r"); if (f == NULL) { PrintAndLog("File not found or locked."); return 1; } blockNum = 0; while(!feof(f)){ memset(buf, 0, sizeof(buf)); if (fgets(buf, sizeof(buf), f) == NULL) { fclose(f); PrintAndLog("File reading error."); return 2; } if (strlen(buf) < 32) { if(strlen(buf) && feof(f)) break; PrintAndLog("File content error. Block data must include 32 HEX symbols"); fclose(f); return 2; } for (i = 0; i < 32; i += 2) sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]); if (blockNum == 0) flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; // switch on field and send magic sequence if (blockNum == 1) flags = 0; // just write if (blockNum == numblock - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; // Done. Switch off field. if (gen == 2) /* generation 1b magic card */ flags |= CSETBLOCK_MAGIC_1B; if (mfCSetBlock(blockNum, buf8, NULL, 0, flags)) { PrintAndLog("Can't set magic card block: %d", blockNum); fclose(f); return 3; } blockNum++; if (blockNum >= numblock) break; // magic card type - mifare 1K 64 blocks, mifare 4k 256 blocks } fclose(f); //if (blockNum != 16 * 4 && blockNum != 32 * 4 + 8 * 16){ if (blockNum != numblock){ PrintAndLog("File content error. There must be %d blocks", numblock); return 4; } PrintAndLog("Loaded from file: %s", filename); return 0; } return 0; } int CmdHF14AMfCGetBlk(const char *Cmd) { uint8_t memBlock[16]; uint8_t blockNo = 0; int res, gen = 0; memset(memBlock, 0x00, sizeof(memBlock)); if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf cgetblk "); PrintAndLog("sample: hf mf cgetblk 1"); PrintAndLog("Get block data from magic Chinese card (only works with such cards)\n"); return 0; } gen = mfCIdentify(); blockNo = param_get8(Cmd, 0); PrintAndLog("--block number:%2d ", blockNo); if (gen == 2) { /* generation 1b magic card */ res = mfCGetBlock(blockNo, memBlock, CSETBLOCK_SINGLE_OPER | CSETBLOCK_MAGIC_1B); } else { /* generation 1a magic card by default */ res = mfCGetBlock(blockNo, memBlock, CSETBLOCK_SINGLE_OPER); } if (res) { PrintAndLog("Can't read block. error=%d", res); return 1; } PrintAndLog("block data:%s", sprint_hex(memBlock, 16)); return 0; } int CmdHF14AMfCGetSc(const char *Cmd) { uint8_t memBlock[16] = {0x00}; uint8_t sectorNo = 0; int i, res, flags, gen = 0, baseblock = 0, sect_size = 4; if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf cgetsc "); PrintAndLog("sample: hf mf cgetsc 0"); PrintAndLog("Get sector data from magic Chinese card (only works with such cards)\n"); return 0; } sectorNo = param_get8(Cmd, 0); if (sectorNo > 39) { PrintAndLog("Sector number must be in [0..15] in MIFARE classic 1k and [0..39] in MIFARE classic 4k."); return 1; } PrintAndLog("--sector number:%d ", sectorNo); gen = mfCIdentify(); flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; if (sectorNo < 32 ) { baseblock = sectorNo * 4; } else { baseblock = 128 + 16 * (sectorNo - 32); } if (sectorNo > 31) sect_size = 16; for (i = 0; i < sect_size; i++) { if (i == 1) flags = 0; if (i == sect_size - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; if (gen == 2) /* generation 1b magic card */ flags |= CSETBLOCK_MAGIC_1B; res = mfCGetBlock(baseblock + i, memBlock, flags); if (res) { PrintAndLog("Can't read block. %d error=%d", baseblock + i, res); return 1; } PrintAndLog("block %3d data:%s", baseblock + i, sprint_hex(memBlock, 16)); } return 0; } int CmdHF14AMfCSave(const char *Cmd) { FILE * f; char filename[FILE_PATH_SIZE] = {0x00}; char * fnameptr = filename; uint8_t fillFromEmulator = 0; uint8_t buf[256] = {0x00}; int i, j, len, flags, gen = 0, numblock = 64; // memset(filename, 0, sizeof(filename)); // memset(buf, 0, sizeof(buf)); if (param_getchar(Cmd, 0) == 'h') { PrintAndLog("It saves `magic Chinese` card dump into the file `filename.eml` or `cardID.eml`"); PrintAndLog("or into emulator memory (option `e`). 4K card: (option `4`)"); PrintAndLog("Usage: hf mf csave [file name w/o `.eml`][e][4]"); PrintAndLog("Sample: hf mf csave "); PrintAndLog(" hf mf csave filename"); PrintAndLog(" hf mf csave e"); PrintAndLog(" hf mf csave 4"); PrintAndLog(" hf mf csave filename 4"); PrintAndLog(" hf mf csave e 4"); return 0; } char ctmp = param_getchar(Cmd, 0); if (ctmp == 'e' || ctmp == 'E') fillFromEmulator = 1; if (ctmp == '4') numblock = 256; ctmp = param_getchar(Cmd, 1); if (ctmp == '4') numblock = 256; gen = mfCIdentify(); PrintAndLog("Saving magic mifare %dK", numblock == 256 ? 4:1); if (fillFromEmulator) { // put into emulator flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; for (i = 0; i < numblock; i++) { if (i == 1) flags = 0; if (i == numblock - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; if (gen == 2) /* generation 1b magic card */ flags |= CSETBLOCK_MAGIC_1B; if (mfCGetBlock(i, buf, flags)) { PrintAndLog("Cant get block: %d", i); break; } if (mfEmlSetMem(buf, i, 1)) { PrintAndLog("Cant set emul block: %d", i); return 3; } } return 0; } else { param_getstr(Cmd, 0, filename); len = strlen(filename); if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5; ctmp = param_getchar(Cmd, 0); if (len < 1 || (ctmp == '4')) { // get filename flags = CSETBLOCK_SINGLE_OPER; if (gen == 2) /* generation 1b magic card */ flags |= CSETBLOCK_MAGIC_1B; if (mfCGetBlock(0, buf, flags)) { PrintAndLog("Cant get block: %d", 0); len = sprintf(fnameptr, "dump"); fnameptr += len; } else { for (j = 0; j < 7; j++, fnameptr += 2) sprintf(fnameptr, "%02x", buf[j]); } } else { //memcpy(filename, Cmd, len); fnameptr += len; } sprintf(fnameptr, ".eml"); // open file f = fopen(filename, "w+"); if (f == NULL) { PrintAndLog("File not found or locked."); return 1; } // put hex flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; for (i = 0; i < numblock; i++) { if (i == 1) flags = 0; if (i == numblock - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; if (gen == 2) /* generation 1b magic card */ flags |= CSETBLOCK_MAGIC_1B; if (mfCGetBlock(i, buf, flags)) { PrintAndLog("Cant get block: %d", i); break; } for (j = 0; j < 16; j++) fprintf(f, "%02x", buf[j]); fprintf(f,"\n"); } fclose(f); PrintAndLog("Saved to file: %s", filename); return 0; } } int CmdHF14AMfSniff(const char *Cmd){ bool wantLogToFile = 0; bool wantDecrypt = 0; //bool wantSaveToEml = 0; TODO bool wantSaveToEmlFile = 0; //var int res = 0; int len = 0; int blockLen = 0; int pckNum = 0; int num = 0; uint8_t uid[7]; uint8_t uid_len; uint8_t atqa[2] = {0x00}; uint8_t sak; bool isTag; uint8_t *buf = NULL; uint16_t bufsize = 0; uint8_t *bufPtr = NULL; char ctmp = param_getchar(Cmd, 0); if ( ctmp == 'h' || ctmp == 'H' ) { PrintAndLog("It continuously gets data from the field and saves it to: log, emulator, emulator file."); PrintAndLog("You can specify:"); PrintAndLog(" l - save encrypted sequence to logfile `uid.log`"); PrintAndLog(" d - decrypt sequence and put it to log file `uid.log`"); PrintAndLog(" n/a e - decrypt sequence, collect read and write commands and save the result of the sequence to emulator memory"); PrintAndLog(" f - decrypt sequence, collect read and write commands and save the result of the sequence to emulator dump file `uid.eml`"); PrintAndLog("Usage: hf mf sniff [l][d][e][f]"); PrintAndLog(" sample: hf mf sniff l d e"); return 0; } for (int i = 0; i < 4; i++) { ctmp = param_getchar(Cmd, i); if (ctmp == 'l' || ctmp == 'L') wantLogToFile = true; if (ctmp == 'd' || ctmp == 'D') wantDecrypt = true; //if (ctmp == 'e' || ctmp == 'E') wantSaveToEml = true; TODO if (ctmp == 'f' || ctmp == 'F') wantSaveToEmlFile = true; } printf("-------------------------------------------------------------------------\n"); printf("Executing command. \n"); printf("Press the key on the proxmark3 device to abort both proxmark3 and client.\n"); printf("Press the key on pc keyboard to abort the client.\n"); printf("-------------------------------------------------------------------------\n"); UsbCommand c = {CMD_MIFARE_SNIFFER, {0, 0, 0}}; clearCommandBuffer(); SendCommand(&c); // wait cycle while (true) { printf("."); fflush(stdout); if (ukbhit()) { getchar(); printf("\naborted via keyboard!\n"); break; } UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,2000)) { res = resp.arg[0] & 0xff; uint16_t traceLen = resp.arg[1]; len = resp.arg[2]; if (res == 0) { // we are done free(buf); return 0; } if (res == 1) { // there is (more) data to be transferred if (pckNum == 0) { // first packet, (re)allocate necessary buffer if (traceLen > bufsize || buf == NULL) { uint8_t *p; if (buf == NULL) { // not yet allocated p = malloc(traceLen); } else { // need more memory p = realloc(buf, traceLen); } if (p == NULL) { PrintAndLog("Cannot allocate memory for trace"); free(buf); return 2; } buf = p; } bufPtr = buf; bufsize = traceLen; memset(buf, 0x00, traceLen); } memcpy(bufPtr, resp.d.asBytes, len); bufPtr += len; pckNum++; } if (res == 2) { // received all data, start displaying blockLen = bufPtr - buf; bufPtr = buf; printf(">\n"); PrintAndLog("received trace len: %d packages: %d", blockLen, pckNum); while (bufPtr - buf < blockLen) { bufPtr += 6; // skip (void) timing information len = *((uint16_t *)bufPtr); if(len & 0x8000) { isTag = true; len &= 0x7fff; } else { isTag = false; } bufPtr += 2; if ((len == 14) && (bufPtr[0] == 0xff) && (bufPtr[1] == 0xff) && (bufPtr[12] == 0xff) && (bufPtr[13] == 0xff)) { memcpy(uid, bufPtr + 2, 7); memcpy(atqa, bufPtr + 2 + 7, 2); uid_len = (atqa[0] & 0xC0) == 0x40 ? 7 : 4; sak = bufPtr[11]; PrintAndLog("tag select uid:%s atqa:0x%02x%02x sak:0x%02x", sprint_hex(uid + (7 - uid_len), uid_len), atqa[1], atqa[0], sak); if (wantLogToFile || wantDecrypt) { FillFileNameByUID(logHexFileName, uid + (7 - uid_len), ".log", uid_len); AddLogCurrentDT(logHexFileName); } if (wantDecrypt) mfTraceInit(uid, atqa, sak, wantSaveToEmlFile); } else { PrintAndLog("%s(%d):%s", isTag ? "TAG":"RDR", num, sprint_hex(bufPtr, len)); if (wantLogToFile) AddLogHex(logHexFileName, isTag ? "TAG: ":"RDR: ", bufPtr, len); if (wantDecrypt) mfTraceDecode(bufPtr, len, wantSaveToEmlFile); num++; } bufPtr += len; bufPtr += ((len-1)/8+1); // ignore parity } pckNum = 0; } } // resp not NULL } // while (true) free(buf); return 0; } //needs nt, ar, at, Data to decrypt int CmdDecryptTraceCmds(const char *Cmd){ uint8_t data[50]; int len = 0; param_gethex_ex(Cmd,3,data,&len); return tryDecryptWord(param_get32ex(Cmd,0,0,16),param_get32ex(Cmd,1,0,16),param_get32ex(Cmd,2,0,16),data,len/2); } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"dbg", CmdHF14AMfDbg, 0, "Set default debug mode"}, {"rdbl", CmdHF14AMfRdBl, 0, "Read MIFARE classic block"}, {"rdsc", CmdHF14AMfRdSc, 0, "Read MIFARE classic sector"}, {"dump", CmdHF14AMfDump, 0, "Dump MIFARE classic tag to binary file"}, {"restore", CmdHF14AMfRestore, 0, "Restore MIFARE classic binary file to BLANK tag"}, {"wrbl", CmdHF14AMfWrBl, 0, "Write MIFARE classic block"}, {"chk", CmdHF14AMfChk, 0, "Test block keys"}, {"mifare", CmdHF14AMifare, 0, "Read parity error messages."}, {"hardnested", CmdHF14AMfNestedHard, 0, "Nested attack for hardened Mifare cards"}, {"nested", CmdHF14AMfNested, 0, "Test nested authentication"}, {"sniff", CmdHF14AMfSniff, 0, "Sniff card-reader communication"}, {"sim", CmdHF14AMf1kSim, 0, "Simulate MIFARE card"}, {"eclr", CmdHF14AMfEClear, 0, "Clear simulator memory block"}, {"eget", CmdHF14AMfEGet, 0, "Get simulator memory block"}, {"eset", CmdHF14AMfESet, 0, "Set simulator memory block"}, {"eload", CmdHF14AMfELoad, 0, "Load from file emul dump"}, {"esave", CmdHF14AMfESave, 0, "Save to file emul dump"}, {"ecfill", CmdHF14AMfECFill, 0, "Fill simulator memory with help of keys from simulator"}, {"ekeyprn", CmdHF14AMfEKeyPrn, 0, "Print keys from simulator memory"}, {"cwipe", CmdHF14AMfCWipe, 0, "Wipe magic Chinese card"}, {"csetuid", CmdHF14AMfCSetUID, 0, "Set UID for magic Chinese card"}, {"csetblk", CmdHF14AMfCSetBlk, 0, "Write block - Magic Chinese card"}, {"cgetblk", CmdHF14AMfCGetBlk, 0, "Read block - Magic Chinese card"}, {"cgetsc", CmdHF14AMfCGetSc, 0, "Read sector - Magic Chinese card"}, {"cload", CmdHF14AMfCLoad, 0, "Load dump into magic Chinese card"}, {"csave", CmdHF14AMfCSave, 0, "Save dump from magic Chinese card into file or emulator"}, {"decrypt", CmdDecryptTraceCmds, 1, "[nt] [ar_enc] [at_enc] [data] - to decrypt snoop or trace"}, {NULL, NULL, 0, NULL} }; int CmdHFMF(const char *Cmd) { // flush WaitForResponseTimeout(CMD_ACK,NULL,100); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }