//----------------------------------------------------------------------------- // Jonathan Westhues, split Nov 2006 // Modified by Greg Jones, Jan 2009 // Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011 // Modified by piwi, Oct 2018 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Routines to support ISO 15693. This includes both the reader software and // the `fake tag' modes. //----------------------------------------------------------------------------- // The ISO 15693 describes two transmission modes from reader to tag, and four // transmission modes from tag to reader. As of Oct 2018 this code supports // both reader modes and the high speed variant with one subcarrier from card to reader. // As long as the card fully support ISO 15693 this is no problem, since the // reader chooses both data rates, but some non-standard tags do not. // For card simulation, the code supports both high and low speed modes with one subcarrier. // // VCD (reader) -> VICC (tag) // 1 out of 256: // data rate: 1,66 kbit/s (fc/8192) // used for long range // 1 out of 4: // data rate: 26,48 kbit/s (fc/512) // used for short range, high speed // // VICC (tag) -> VCD (reader) // Modulation: // ASK / one subcarrier (423,75 khz) // FSK / two subcarriers (423,75 khz && 484,28 khz) // Data Rates / Modes: // low ASK: 6,62 kbit/s // low FSK: 6.67 kbit/s // high ASK: 26,48 kbit/s // high FSK: 26,69 kbit/s //----------------------------------------------------------------------------- // Random Remarks: // *) UID is always used "transmission order" (LSB), which is reverse to display order // TODO / BUGS / ISSUES: // *) signal decoding is unable to detect collisions. // *) add anti-collision support for inventory-commands // *) read security status of a block // *) sniffing and simulation do not support two subcarrier modes. // *) remove or refactor code under "deprecated" // *) document all the functions #include "iso15693.h" #include "proxmark3.h" #include "util.h" #include "apps.h" #include "string.h" #include "iso15693tools.h" #include "protocols.h" #include "cmd.h" #include "BigBuf.h" #define arraylen(x) (sizeof(x)/sizeof((x)[0])) static int DEBUG = 0; /////////////////////////////////////////////////////////////////////// // ISO 15693 Part 2 - Air Interface // This section basicly contains transmission and receiving of bits /////////////////////////////////////////////////////////////////////// #define Crc(data,datalen) Iso15693Crc(data,datalen) #define AddCrc(data,datalen) Iso15693AddCrc(data,datalen) #define sprintUID(target,uid) Iso15693sprintUID(target,uid) // buffers #define ISO15693_DMA_BUFFER_SIZE 2048 // must be a power of 2 #define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet #define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet // timing. Delays in SSP_CLK ticks. #define DELAY_READER_TO_ARM 8 #define DELAY_ARM_TO_READER 1 #define DELAY_ISO15693_VCD_TO_VICC 132 // 132/423.75kHz = 311.5us from end of EOF to start of tag response #define DELAY_ISO15693_VICC_TO_VCD 1017 // 1017/3.39MHz = 300us between end of tag response and next reader command // --------------------------- // Signal Processing // --------------------------- // prepare data using "1 out of 4" code for later transmission // resulting data rate is 26.48 kbit/s (fc/512) // cmd ... data // n ... length of data static void CodeIso15693AsReader(uint8_t *cmd, int n) { int i, j; ToSendReset(); // Give it a bit of slack at the beginning for(i = 0; i < 24; i++) { ToSendStuffBit(1); } // SOF for 1of4 ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); for(i = 0; i < n; i++) { for(j = 0; j < 8; j += 2) { int these = (cmd[i] >> j) & 3; switch(these) { case 0: ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); break; case 1: ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); break; case 2: ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); break; case 3: ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); break; } } } // EOF ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); // Fill remainder of last byte with 1 for(i = 0; i < 4; i++) { ToSendStuffBit(1); } ToSendMax++; } // encode data using "1 out of 256" scheme // data rate is 1,66 kbit/s (fc/8192) // is designed for more robust communication over longer distances static void CodeIso15693AsReader256(uint8_t *cmd, int n) { int i, j; ToSendReset(); // Give it a bit of slack at the beginning for(i = 0; i < 24; i++) { ToSendStuffBit(1); } // SOF for 1of256 ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); for(i = 0; i < n; i++) { for (j = 0; j<=255; j++) { if (cmd[i]==j) { ToSendStuffBit(1); ToSendStuffBit(0); } else { ToSendStuffBit(1); ToSendStuffBit(1); } } } // EOF ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); // Fill remainder of last byte with 1 for(i = 0; i < 4; i++) { ToSendStuffBit(1); } ToSendMax++; } static void CodeIso15693AsTag(uint8_t *cmd, int n) { ToSendReset(); // SOF ToSendStuffBit(0); ToSendStuffBit(0); ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); // data for(int i = 0; i < n; i++) { for(int j = 0; j < 8; j++) { if ((cmd[i] >> j) & 0x01) { ToSendStuffBit(0); ToSendStuffBit(1); } else { ToSendStuffBit(1); ToSendStuffBit(0); } } } // EOF ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(0); ToSendStuffBit(0); ToSendMax++; } // Transmit the command (to the tag) that was placed in cmd[]. static void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t start_time) { FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_TX); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); while (GetCountSspClk() < start_time); LED_B_ON(); for(int c = 0; c < len; ) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = ~cmd[c]; c++; } WDT_HIT(); } LED_B_OFF(); } //----------------------------------------------------------------------------- // Transmit the tag response (to the reader) that was placed in cmd[]. //----------------------------------------------------------------------------- static void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t start_time, bool slow) { // don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk() FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K); uint8_t shift_delay = start_time & 0x00000007; uint8_t bitmask = 0x00; for (int i = 0; i < shift_delay; i++) { bitmask |= (0x01 << i); } while (GetCountSspClk() < (start_time & 0xfffffff8)) ; AT91C_BASE_SSC->SSC_THR = 0x00; // clear TXRDY LED_C_ON(); uint8_t bits_to_shift = 0x00; for(size_t c = 0; c <= len; c++) { uint8_t bits_to_send = bits_to_shift << (8 - shift_delay) | (c==len?0x00:cmd[c]) >> shift_delay; bits_to_shift = cmd[c] & bitmask; for (int i = 7; i >= 0; i--) { for (int j = 0; j < (slow?4:1); ) { if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { if (bits_to_send >> i & 0x01) { AT91C_BASE_SSC->SSC_THR = 0xff; } else { AT91C_BASE_SSC->SSC_THR = 0x00; } j++; } WDT_HIT(); } } } LED_C_OFF(); } //============================================================================= // An ISO 15693 decoder for tag responses (one subcarrier only). // Uses cross correlation to identify each bit and EOF. // This function is called 8 times per bit (every 2 subcarrier cycles). // Subcarrier frequency fs is 424kHz, 1/fs = 2,36us, // i.e. function is called every 4,72us // LED handling: // LED C -> ON once we have received the SOF and are expecting the rest. // LED C -> OFF once we have received EOF or are unsynced // // Returns: true if we received a EOF // false if we are still waiting for some more //============================================================================= #define NOISE_THRESHOLD 160 // don't try to correlate noise typedef struct DecodeTag { enum { STATE_TAG_SOF_LOW, STATE_TAG_SOF_HIGH, STATE_TAG_SOF_HIGH_END, STATE_TAG_RECEIVING_DATA, STATE_TAG_EOF } state; int bitCount; int posCount; enum { LOGIC0, LOGIC1, SOF_PART1, SOF_PART2 } lastBit; uint16_t shiftReg; uint16_t max_len; uint8_t *output; int len; int sum1, sum2; } DecodeTag_t; static int inline __attribute__((always_inline)) Handle15693SamplesFromTag(uint16_t amplitude, DecodeTag_t *DecodeTag) { switch(DecodeTag->state) { case STATE_TAG_SOF_LOW: // waiting for 12 times low (11 times low is accepted as well) if (amplitude < NOISE_THRESHOLD) { DecodeTag->posCount++; } else { if (DecodeTag->posCount > 10) { DecodeTag->posCount = 1; DecodeTag->sum1 = 0; DecodeTag->state = STATE_TAG_SOF_HIGH; } else { DecodeTag->posCount = 0; } } break; case STATE_TAG_SOF_HIGH: // waiting for 10 times high. Take average over the last 8 if (amplitude > NOISE_THRESHOLD) { DecodeTag->posCount++; if (DecodeTag->posCount > 2) { DecodeTag->sum1 += amplitude; // keep track of average high value } if (DecodeTag->posCount == 10) { DecodeTag->sum1 >>= 4; // calculate half of average high value (8 samples) DecodeTag->state = STATE_TAG_SOF_HIGH_END; } } else { // high phase was too short DecodeTag->posCount = 1; DecodeTag->state = STATE_TAG_SOF_LOW; } break; case STATE_TAG_SOF_HIGH_END: // waiting for a falling edge if (amplitude < DecodeTag->sum1) { // signal drops below 50% average high: a falling edge DecodeTag->lastBit = SOF_PART1; // detected 1st part of SOF (12 samples low and 12 samples high) DecodeTag->shiftReg = 0; DecodeTag->bitCount = 0; DecodeTag->len = 0; DecodeTag->sum1 = amplitude; DecodeTag->sum2 = 0; DecodeTag->posCount = 2; DecodeTag->state = STATE_TAG_RECEIVING_DATA; LED_C_ON(); } else { DecodeTag->posCount++; if (DecodeTag->posCount > 13) { // high phase too long DecodeTag->posCount = 0; DecodeTag->state = STATE_TAG_SOF_LOW; LED_C_OFF(); } } break; case STATE_TAG_RECEIVING_DATA: if (DecodeTag->posCount == 1) { DecodeTag->sum1 = 0; DecodeTag->sum2 = 0; } if (DecodeTag->posCount <= 4) { DecodeTag->sum1 += amplitude; } else { DecodeTag->sum2 += amplitude; } if (DecodeTag->posCount == 8) { int32_t corr_1 = DecodeTag->sum2 - DecodeTag->sum1; int32_t corr_0 = -corr_1; int32_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 2; if (corr_EOF > corr_0 && corr_EOF > corr_1) { if (DecodeTag->lastBit == LOGIC0) { // this was already part of EOF DecodeTag->state = STATE_TAG_EOF; } else { DecodeTag->posCount = 0; DecodeTag->state = STATE_TAG_SOF_LOW; LED_C_OFF(); } } else if (corr_1 > corr_0) { // logic 1 if (DecodeTag->lastBit == SOF_PART1) { // still part of SOF DecodeTag->lastBit = SOF_PART2; // SOF completed } else { DecodeTag->lastBit = LOGIC1; DecodeTag->shiftReg >>= 1; DecodeTag->shiftReg |= 0x80; DecodeTag->bitCount++; if (DecodeTag->bitCount == 8) { DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg; DecodeTag->len++; if (DecodeTag->len > DecodeTag->max_len) { // buffer overflow, give up DecodeTag->posCount = 0; DecodeTag->state = STATE_TAG_SOF_LOW; LED_C_OFF(); } DecodeTag->bitCount = 0; DecodeTag->shiftReg = 0; } } } else { // logic 0 if (DecodeTag->lastBit == SOF_PART1) { // incomplete SOF DecodeTag->posCount = 0; DecodeTag->state = STATE_TAG_SOF_LOW; LED_C_OFF(); } else { DecodeTag->lastBit = LOGIC0; DecodeTag->shiftReg >>= 1; DecodeTag->bitCount++; if (DecodeTag->bitCount == 8) { DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg; DecodeTag->len++; if (DecodeTag->len > DecodeTag->max_len) { // buffer overflow, give up DecodeTag->posCount = 0; DecodeTag->state = STATE_TAG_SOF_LOW; LED_C_OFF(); } DecodeTag->bitCount = 0; DecodeTag->shiftReg = 0; } } } DecodeTag->posCount = 0; } DecodeTag->posCount++; break; case STATE_TAG_EOF: if (DecodeTag->posCount == 1) { DecodeTag->sum1 = 0; DecodeTag->sum2 = 0; } if (DecodeTag->posCount <= 4) { DecodeTag->sum1 += amplitude; } else { DecodeTag->sum2 += amplitude; } if (DecodeTag->posCount == 8) { int32_t corr_1 = DecodeTag->sum2 - DecodeTag->sum1; int32_t corr_0 = -corr_1; int32_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 2; if (corr_EOF > corr_0 || corr_1 > corr_0) { DecodeTag->posCount = 0; DecodeTag->state = STATE_TAG_SOF_LOW; LED_C_OFF(); } else { LED_C_OFF(); return true; } } DecodeTag->posCount++; break; } return false; } static void DecodeTagInit(DecodeTag_t *DecodeTag, uint8_t *data, uint16_t max_len) { DecodeTag->posCount = 0; DecodeTag->state = STATE_TAG_SOF_LOW; DecodeTag->output = data; DecodeTag->max_len = max_len; } static void DecodeTagReset(DecodeTag_t *DecodeTag) { DecodeTag->posCount = 0; DecodeTag->state = STATE_TAG_SOF_LOW; } /* * Receive and decode the tag response, also log to tracebuffer */ static int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, int timeout) { int samples = 0; bool gotFrame = false; uint16_t *dmaBuf = (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE*sizeof(uint16_t)); // the Decoder data structure DecodeTag_t DecodeTag = { 0 }; DecodeTagInit(&DecodeTag, response, max_len); // wait for last transfer to complete while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)); // And put the FPGA in the appropriate mode FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_AMPLITUDE); // Setup and start DMA. FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE); uint16_t *upTo = dmaBuf; for(;;) { uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1); if (behindBy == 0) continue; uint16_t tagdata = *upTo++; if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content. upTo = dmaBuf; // start reading the circular buffer from the beginning if(behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) { Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy); break; } } if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated. AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers } samples++; if (Handle15693SamplesFromTag(tagdata, &DecodeTag)) { gotFrame = true; break; } if (samples > timeout && DecodeTag.state < STATE_TAG_RECEIVING_DATA) { DecodeTag.len = 0; break; } } FpgaDisableSscDma(); BigBuf_free(); if (DEBUG) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d", samples, gotFrame, DecodeTag.state, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount); if (DecodeTag.len > 0) { LogTrace(DecodeTag.output, DecodeTag.len, 0, 0, NULL, false); } return DecodeTag.len; } //============================================================================= // An ISO15693 decoder for reader commands. // // This function is called 4 times per bit (every 2 subcarrier cycles). // Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us // LED handling: // LED B -> ON once we have received the SOF and are expecting the rest. // LED B -> OFF once we have received EOF or are in error state or unsynced // // Returns: true if we received a EOF // false if we are still waiting for some more //============================================================================= typedef struct DecodeReader { enum { STATE_READER_UNSYNCD, STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF, STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF, STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF, STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4, STATE_READER_RECEIVE_DATA_1_OUT_OF_4, STATE_READER_RECEIVE_DATA_1_OUT_OF_256 } state; enum { CODING_1_OUT_OF_4, CODING_1_OUT_OF_256 } Coding; uint8_t shiftReg; uint8_t bitCount; int byteCount; int byteCountMax; int posCount; int sum1, sum2; uint8_t *output; } DecodeReader_t; static void DecodeReaderInit(DecodeReader_t* DecodeReader, uint8_t *data, uint16_t max_len) { DecodeReader->output = data; DecodeReader->byteCountMax = max_len; DecodeReader->state = STATE_READER_UNSYNCD; DecodeReader->byteCount = 0; DecodeReader->bitCount = 0; DecodeReader->posCount = 1; DecodeReader->shiftReg = 0; } static void DecodeReaderReset(DecodeReader_t* DecodeReader) { DecodeReader->state = STATE_READER_UNSYNCD; } static int inline __attribute__((always_inline)) Handle15693SampleFromReader(uint8_t bit, DecodeReader_t *restrict DecodeReader) { switch(DecodeReader->state) { case STATE_READER_UNSYNCD: if(!bit) { // we went low, so this could be the beginning of a SOF DecodeReader->posCount = 1; DecodeReader->state = STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF; } break; case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF: DecodeReader->posCount++; if(bit) { // detected rising edge if(DecodeReader->posCount < 4) { // rising edge too early (nominally expected at 5) DecodeReaderReset(DecodeReader); } else { // SOF DecodeReader->state = STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF; } } else { if(DecodeReader->posCount > 5) { // stayed low for too long DecodeReaderReset(DecodeReader); } else { // do nothing, keep waiting } } break; case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF: DecodeReader->posCount++; if(!bit) { // detected a falling edge if (DecodeReader->posCount < 20) { // falling edge too early (nominally expected at 21 earliest) DecodeReaderReset(DecodeReader); } else if (DecodeReader->posCount < 23) { // SOF for 1 out of 4 coding DecodeReader->Coding = CODING_1_OUT_OF_4; DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF; } else if (DecodeReader->posCount < 28) { // falling edge too early (nominally expected at 29 latest) DecodeReaderReset(DecodeReader); } else { // SOF for 1 out of 4 coding DecodeReader->Coding = CODING_1_OUT_OF_256; DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF; } } else { if(DecodeReader->posCount > 29) { // stayed high for too long DecodeReaderReset(DecodeReader); } else { // do nothing, keep waiting } } break; case STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF: DecodeReader->posCount++; if (bit) { // detected rising edge if (DecodeReader->Coding == CODING_1_OUT_OF_256) { if (DecodeReader->posCount < 32) { // rising edge too early (nominally expected at 33) DecodeReaderReset(DecodeReader); } else { DecodeReader->posCount = 1; DecodeReader->bitCount = 0; DecodeReader->byteCount = 0; DecodeReader->sum1 = 1; DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_256; LED_B_ON(); } } else { // CODING_1_OUT_OF_4 if (DecodeReader->posCount < 24) { // rising edge too early (nominally expected at 25) DecodeReaderReset(DecodeReader); } else { DecodeReader->state = STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4; } } } else { if (DecodeReader->Coding == CODING_1_OUT_OF_256) { if (DecodeReader->posCount > 34) { // signal stayed low for too long DecodeReaderReset(DecodeReader); } else { // do nothing, keep waiting } } else { // CODING_1_OUT_OF_4 if (DecodeReader->posCount > 26) { // signal stayed low for too long DecodeReaderReset(DecodeReader); } else { // do nothing, keep waiting } } } break; case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4: DecodeReader->posCount++; if (bit) { if (DecodeReader->posCount == 33) { DecodeReader->posCount = 1; DecodeReader->bitCount = 0; DecodeReader->byteCount = 0; DecodeReader->sum1 = 1; DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_4; LED_B_ON(); } else { // do nothing, keep waiting } } else { // unexpected falling edge DecodeReaderReset(DecodeReader); } break; case STATE_READER_RECEIVE_DATA_1_OUT_OF_4: DecodeReader->posCount++; if (DecodeReader->posCount == 1) { DecodeReader->sum1 = bit; } else if (DecodeReader->posCount <= 4) { DecodeReader->sum1 += bit; } else if (DecodeReader->posCount == 5) { DecodeReader->sum2 = bit; } else { DecodeReader->sum2 += bit; } if (DecodeReader->posCount == 8) { DecodeReader->posCount = 0; int corr10 = DecodeReader->sum1 - DecodeReader->sum2; int corr01 = DecodeReader->sum2 - DecodeReader->sum1; int corr11 = (DecodeReader->sum1 + DecodeReader->sum2) / 2; if (corr01 > corr11 && corr01 > corr10) { // EOF LED_B_OFF(); // Finished receiving DecodeReaderReset(DecodeReader); if (DecodeReader->byteCount != 0) { return true; } } if (corr10 > corr11) { // detected a 2bit position DecodeReader->shiftReg >>= 2; DecodeReader->shiftReg |= (DecodeReader->bitCount << 6); } if (DecodeReader->bitCount == 15) { // we have a full byte DecodeReader->output[DecodeReader->byteCount++] = DecodeReader->shiftReg; if (DecodeReader->byteCount > DecodeReader->byteCountMax) { // buffer overflow, give up LED_B_OFF(); DecodeReaderReset(DecodeReader); } DecodeReader->bitCount = 0; DecodeReader->shiftReg = 0; } else { DecodeReader->bitCount++; } } break; case STATE_READER_RECEIVE_DATA_1_OUT_OF_256: DecodeReader->posCount++; if (DecodeReader->posCount == 1) { DecodeReader->sum1 = bit; } else if (DecodeReader->posCount <= 4) { DecodeReader->sum1 += bit; } else if (DecodeReader->posCount == 5) { DecodeReader->sum2 = bit; } else { DecodeReader->sum2 += bit; } if (DecodeReader->posCount == 8) { DecodeReader->posCount = 0; int corr10 = DecodeReader->sum1 - DecodeReader->sum2; int corr01 = DecodeReader->sum2 - DecodeReader->sum1; int corr11 = (DecodeReader->sum1 + DecodeReader->sum2) / 2; if (corr01 > corr11 && corr01 > corr10) { // EOF LED_B_OFF(); // Finished receiving DecodeReaderReset(DecodeReader); if (DecodeReader->byteCount != 0) { return true; } } if (corr10 > corr11) { // detected the bit position DecodeReader->shiftReg = DecodeReader->bitCount; } if (DecodeReader->bitCount == 255) { // we have a full byte DecodeReader->output[DecodeReader->byteCount++] = DecodeReader->shiftReg; if (DecodeReader->byteCount > DecodeReader->byteCountMax) { // buffer overflow, give up LED_B_OFF(); DecodeReaderReset(DecodeReader); } } DecodeReader->bitCount++; } break; default: LED_B_OFF(); DecodeReaderReset(DecodeReader); break; } return false; } //----------------------------------------------------------------------------- // Receive a command (from the reader to us, where we are the simulated tag), // and store it in the given buffer, up to the given maximum length. Keeps // spinning, waiting for a well-framed command, until either we get one // (returns true) or someone presses the pushbutton on the board (false). // // Assume that we're called with the SSC (to the FPGA) and ADC path set // correctly. //----------------------------------------------------------------------------- static int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time) { int samples = 0; bool gotFrame = false; uint8_t b; uint8_t *dmaBuf = BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE); // the decoder data structure DecodeReader_t DecodeReader = {0}; DecodeReaderInit(&DecodeReader, received, max_len); // wait for last transfer to complete while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)); LED_D_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); // clear receive register and wait for next transfer uint32_t temp = AT91C_BASE_SSC->SSC_RHR; (void) temp; while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) ; uint32_t bit_time = GetCountSspClk() & 0xfffffff8; // Setup and start DMA. FpgaSetupSscDma(dmaBuf, ISO15693_DMA_BUFFER_SIZE); uint8_t *upTo = dmaBuf; for(;;) { uint16_t behindBy = ((uint8_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1); if (behindBy == 0) continue; b = *upTo++; if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content. upTo = dmaBuf; // start reading the circular buffer from the beginning if(behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) { Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy); break; } } if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated. AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers } for (int i = 7; i >= 0; i--) { if (Handle15693SampleFromReader((b >> i) & 0x01, &DecodeReader)) { *eof_time = bit_time + samples - DELAY_READER_TO_ARM; // end of EOF gotFrame = true; break; } samples++; } if (gotFrame) { break; } if (BUTTON_PRESS()) { DecodeReader.byteCount = 0; break; } WDT_HIT(); } FpgaDisableSscDma(); BigBuf_free_keep_EM(); if (DEBUG) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d", samples, gotFrame, DecodeReader.state, DecodeReader.byteCount, DecodeReader.bitCount, DecodeReader.posCount); if (DecodeReader.byteCount > 0) { LogTrace(DecodeReader.output, DecodeReader.byteCount, 0, 0, NULL, true); } return DecodeReader.byteCount; } // Encode (into the ToSend buffers) an identify request, which is the first // thing that you must send to a tag to get a response. static void BuildIdentifyRequest(void) { uint8_t cmd[5]; uint16_t crc; // one sub-carrier, inventory, 1 slot, fast rate // AFI is at bit 5 (1<<4) when doing an INVENTORY cmd[0] = (1 << 2) | (1 << 5) | (1 << 1); // inventory command code cmd[1] = 0x01; // no mask cmd[2] = 0x00; //Now the CRC crc = Crc(cmd, 3); cmd[3] = crc & 0xff; cmd[4] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } //----------------------------------------------------------------------------- // Start to read an ISO 15693 tag. We send an identify request, then wait // for the response. The response is not demodulated, just left in the buffer // so that it can be downloaded to a PC and processed there. //----------------------------------------------------------------------------- void AcquireRawAdcSamplesIso15693(void) { LEDsoff(); LED_A_ON(); uint8_t *dest = BigBuf_get_addr(); FpgaDownloadAndGo(FPGA_BITSTREAM_HF); BuildIdentifyRequest(); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); // Give the tags time to energize LED_D_ON(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); SpinDelay(100); // Now send the command FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_TX); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); LED_B_ON(); for(int c = 0; c < ToSendMax; ) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = ~ToSend[c]; c++; } WDT_HIT(); } LED_B_OFF(); // wait for last transfer to complete while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)); FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_AMPLITUDE); for(int c = 0; c < 4000; ) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { uint16_t r = AT91C_BASE_SSC->SSC_RHR; dest[c++] = r >> 5; } } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); } void SnoopIso15693(void) { FpgaDownloadAndGo(FPGA_BITSTREAM_HF); BigBuf_free(); clear_trace(); set_tracing(true); // The DMA buffer, used to stream samples from the FPGA uint16_t* dmaBuf = (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE*sizeof(uint16_t)); uint16_t *upTo; // Count of samples received so far, so that we can include timing // information in the trace buffer. int samples = 0; DecodeTag_t DecodeTag = {0}; uint8_t response[ISO15693_MAX_RESPONSE_LENGTH]; DecodeTagInit(&DecodeTag, response, sizeof(response)); DecodeReader_t DecodeReader = {0};; uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH]; DecodeReaderInit(&DecodeReader, cmd, sizeof(cmd)); // Print some debug information about the buffer sizes if (DEBUG) { Dbprintf("Snooping buffers initialized:"); Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen()); Dbprintf(" Reader -> tag: %i bytes", ISO15693_MAX_COMMAND_LENGTH); Dbprintf(" tag -> Reader: %i bytes", ISO15693_MAX_RESPONSE_LENGTH); Dbprintf(" DMA: %i bytes", ISO15693_DMA_BUFFER_SIZE * sizeof(uint16_t)); } Dbprintf("Snoop started. Press button to stop."); // Signal field is off, no reader signal, no tag signal LEDsoff(); // And put the FPGA in the appropriate mode FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_SNOOP | FPGA_HF_READER_RX_XCORR_AMPLITUDE); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); // Setup for the DMA. FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); upTo = dmaBuf; FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE); bool TagIsActive = false; bool ReaderIsActive = false; bool ExpectTagAnswer = false; // And now we loop, receiving samples. for(;;) { uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1); if (behindBy == 0) continue; uint16_t snoopdata = *upTo++; if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content. upTo = dmaBuf; // start reading the circular buffer from the beginning if(behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) { Dbprintf("About to blow circular buffer - aborted! behindBy=%d, samples=%d", behindBy, samples); break; } if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated. AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers WDT_HIT(); if(BUTTON_PRESS()) { DbpString("Snoop stopped."); break; } } } samples++; if (!TagIsActive) { // no need to try decoding reader data if the tag is sending if (Handle15693SampleFromReader(snoopdata & 0x02, &DecodeReader)) { FpgaDisableSscDma(); ExpectTagAnswer = true; LogTrace(DecodeReader.output, DecodeReader.byteCount, samples, samples, NULL, true); /* And ready to receive another command. */ DecodeReaderReset(&DecodeReader); /* And also reset the demod code, which might have been */ /* false-triggered by the commands from the reader. */ DecodeTagReset(&DecodeTag); upTo = dmaBuf; FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE); } if (Handle15693SampleFromReader(snoopdata & 0x01, &DecodeReader)) { FpgaDisableSscDma(); ExpectTagAnswer = true; LogTrace(DecodeReader.output, DecodeReader.byteCount, samples, samples, NULL, true); /* And ready to receive another command. */ DecodeReaderReset(&DecodeReader); /* And also reset the demod code, which might have been */ /* false-triggered by the commands from the reader. */ DecodeTagReset(&DecodeTag); upTo = dmaBuf; FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE); } ReaderIsActive = (DecodeReader.state >= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF); } if (!ReaderIsActive && ExpectTagAnswer) { // no need to try decoding tag data if the reader is currently sending or no answer expected yet if (Handle15693SamplesFromTag(snoopdata >> 2, &DecodeTag)) { FpgaDisableSscDma(); //Use samples as a time measurement LogTrace(DecodeTag.output, DecodeTag.len, samples, samples, NULL, false); // And ready to receive another response. DecodeTagReset(&DecodeTag); DecodeReaderReset(&DecodeReader); ExpectTagAnswer = false; upTo = dmaBuf; FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE); } TagIsActive = (DecodeTag.state >= STATE_TAG_RECEIVING_DATA); } } FpgaDisableSscDma(); BigBuf_free(); LEDsoff(); DbpString("Snoop statistics:"); Dbprintf(" ExpectTagAnswer: %d", ExpectTagAnswer); Dbprintf(" DecodeTag State: %d", DecodeTag.state); Dbprintf(" DecodeTag byteCnt: %d", DecodeTag.len); Dbprintf(" DecodeReader State: %d", DecodeReader.state); Dbprintf(" DecodeReader byteCnt: %d", DecodeReader.byteCount); Dbprintf(" Trace length: %d", BigBuf_get_traceLen()); } // Initialize the proxmark as iso15k reader // (this might produces glitches that confuse some tags static void Iso15693InitReader() { FpgaDownloadAndGo(FPGA_BITSTREAM_HF); // Setup SSC // FpgaSetupSsc(); // Start from off (no field generated) LED_D_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(10); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); // Give the tags time to energize LED_D_ON(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); SpinDelay(250); } /////////////////////////////////////////////////////////////////////// // ISO 15693 Part 3 - Air Interface // This section basically contains transmission and receiving of bits /////////////////////////////////////////////////////////////////////// // uid is in transmission order (which is reverse of display order) static void BuildReadBlockRequest(uint8_t *uid, uint8_t blockNumber ) { uint8_t cmd[13]; uint16_t crc; // If we set the Option_Flag in this request, the VICC will respond with the security status of the block // followed by the block data cmd[0] = ISO15693_REQ_OPTION | ISO15693_REQ_ADDRESS | ISO15693_REQ_DATARATE_HIGH; // READ BLOCK command code cmd[1] = ISO15693_READBLOCK; // UID may be optionally specified here // 64-bit UID cmd[2] = uid[0]; cmd[3] = uid[1]; cmd[4] = uid[2]; cmd[5] = uid[3]; cmd[6] = uid[4]; cmd[7] = uid[5]; cmd[8] = uid[6]; cmd[9] = uid[7]; // 0xe0; // always e0 (not exactly unique) // Block number to read cmd[10] = blockNumber; //Now the CRC crc = Crc(cmd, 11); // the crc needs to be calculated over 11 bytes cmd[11] = crc & 0xff; cmd[12] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } // Now the VICC>VCD responses when we are simulating a tag static void BuildInventoryResponse(uint8_t *uid) { uint8_t cmd[12]; uint16_t crc; cmd[0] = 0; // No error, no protocol format extension cmd[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported // 64-bit UID cmd[2] = uid[7]; //0x32; cmd[3] = uid[6]; //0x4b; cmd[4] = uid[5]; //0x03; cmd[5] = uid[4]; //0x01; cmd[6] = uid[3]; //0x00; cmd[7] = uid[2]; //0x10; cmd[8] = uid[1]; //0x05; cmd[9] = uid[0]; //0xe0; //Now the CRC crc = Crc(cmd, 10); cmd[10] = crc & 0xff; cmd[11] = crc >> 8; CodeIso15693AsTag(cmd, sizeof(cmd)); } // Universal Method for sending to and recv bytes from a tag // init ... should we initialize the reader? // speed ... 0 low speed, 1 hi speed // *recv will contain the tag's answer // return: lenght of received data int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t *recv, uint16_t max_recv_len, uint32_t start_time) { LED_A_ON(); LED_B_OFF(); LED_C_OFF(); if (init) Iso15693InitReader(); int answerLen=0; if (!speed) { // low speed (1 out of 256) CodeIso15693AsReader256(send, sendlen); } else { // high speed (1 out of 4) CodeIso15693AsReader(send, sendlen); } TransmitTo15693Tag(ToSend, ToSendMax, start_time); // Now wait for a response if (recv != NULL) { answerLen = GetIso15693AnswerFromTag(recv, max_recv_len, DELAY_ISO15693_VCD_TO_VICC * 2); } LED_A_OFF(); return answerLen; } // -------------------------------------------------------------------- // Debug Functions // -------------------------------------------------------------------- // Decodes a message from a tag and displays its metadata and content #define DBD15STATLEN 48 void DbdecodeIso15693Answer(int len, uint8_t *d) { char status[DBD15STATLEN+1]={0}; uint16_t crc; if (len > 3) { if (d[0] & ISO15693_RES_EXT) strncat(status,"ProtExt ", DBD15STATLEN); if (d[0] & ISO15693_RES_ERROR) { // error strncat(status,"Error ", DBD15STATLEN); switch (d[1]) { case 0x01: strncat(status,"01:notSupp", DBD15STATLEN); break; case 0x02: strncat(status,"02:notRecog", DBD15STATLEN); break; case 0x03: strncat(status,"03:optNotSupp", DBD15STATLEN); break; case 0x0f: strncat(status,"0f:noInfo", DBD15STATLEN); break; case 0x10: strncat(status,"10:doesn'tExist", DBD15STATLEN); break; case 0x11: strncat(status,"11:lockAgain", DBD15STATLEN); break; case 0x12: strncat(status,"12:locked", DBD15STATLEN); break; case 0x13: strncat(status,"13:progErr", DBD15STATLEN); break; case 0x14: strncat(status,"14:lockErr", DBD15STATLEN); break; default: strncat(status,"unknownErr", DBD15STATLEN); } strncat(status," ", DBD15STATLEN); } else { strncat(status,"NoErr ", DBD15STATLEN); } crc=Crc(d,len-2); if ( (( crc & 0xff ) == d[len-2]) && (( crc >> 8 ) == d[len-1]) ) strncat(status,"CrcOK",DBD15STATLEN); else strncat(status,"CrcFail!",DBD15STATLEN); Dbprintf("%s",status); } } /////////////////////////////////////////////////////////////////////// // Functions called via USB/Client /////////////////////////////////////////////////////////////////////// void SetDebugIso15693(uint32_t debug) { DEBUG=debug; Dbprintf("Iso15693 Debug is now %s",DEBUG?"on":"off"); return; } //----------------------------------------------------------------------------- // Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector // all demodulation performed in arm rather than host. - greg //----------------------------------------------------------------------------- void ReaderIso15693(uint32_t parameter) { LEDsoff(); LED_A_ON(); set_tracing(true); int answerLen = 0; uint8_t TagUID[8] = {0x00}; FpgaDownloadAndGo(FPGA_BITSTREAM_HF); uint8_t answer[ISO15693_MAX_RESPONSE_LENGTH]; SetAdcMuxFor(GPIO_MUXSEL_HIPKD); // Setup SSC FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); // Start from off (no field generated) FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(200); // Give the tags time to energize LED_D_ON(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); SpinDelay(200); StartCountSspClk(); // FIRST WE RUN AN INVENTORY TO GET THE TAG UID // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME // Now send the IDENTIFY command BuildIdentifyRequest(); TransmitTo15693Tag(ToSend, ToSendMax, 0); // Now wait for a response answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC * 2) ; uint32_t start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD; if (answerLen >=12) // we should do a better check than this { TagUID[0] = answer[2]; TagUID[1] = answer[3]; TagUID[2] = answer[4]; TagUID[3] = answer[5]; TagUID[4] = answer[6]; TagUID[5] = answer[7]; TagUID[6] = answer[8]; // IC Manufacturer code TagUID[7] = answer[9]; // always E0 } Dbprintf("%d octets read from IDENTIFY request:", answerLen); DbdecodeIso15693Answer(answerLen, answer); Dbhexdump(answerLen, answer, false); // UID is reverse if (answerLen >= 12) Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX", TagUID[7],TagUID[6],TagUID[5],TagUID[4], TagUID[3],TagUID[2],TagUID[1],TagUID[0]); // Dbprintf("%d octets read from SELECT request:", answerLen2); // DbdecodeIso15693Answer(answerLen2,answer2); // Dbhexdump(answerLen2,answer2,true); // Dbprintf("%d octets read from XXX request:", answerLen3); // DbdecodeIso15693Answer(answerLen3,answer3); // Dbhexdump(answerLen3,answer3,true); // read all pages if (answerLen >= 12 && DEBUG) { // debugptr = BigBuf_get_addr(); int i = 0; while (i < 32) { // sanity check, assume max 32 pages BuildReadBlockRequest(TagUID, i); TransmitTo15693Tag(ToSend, ToSendMax, start_time); int answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC * 2); start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD; if (answerLen > 0) { Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i, answerLen); DbdecodeIso15693Answer(answerLen, answer); Dbhexdump(answerLen, answer, false); if ( *((uint32_t*) answer) == 0x07160101 ) break; // exit on NoPageErr } i++; } } // for the time being, switch field off to protect rdv4.0 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); LED_A_OFF(); } // Simulate an ISO15693 TAG. // For Inventory command: print command and send Inventory Response with given UID // TODO: interpret other reader commands and send appropriate response void SimTagIso15693(uint32_t parameter, uint8_t *uid) { LEDsoff(); LED_A_ON(); FpgaDownloadAndGo(FPGA_BITSTREAM_HF); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR); StartCountSspClk(); uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH]; // Build a suitable response to the reader INVENTORY command BuildInventoryResponse(uid); // Listen to reader while (!BUTTON_PRESS()) { uint32_t eof_time = 0, start_time = 0; int cmd_len = GetIso15693CommandFromReader(cmd, sizeof(cmd), &eof_time); if ((cmd_len >= 5) && (cmd[0] & ISO15693_REQ_INVENTORY) && (cmd[1] == ISO15693_INVENTORY)) { // TODO: check more flags bool slow = !(cmd[0] & ISO15693_REQ_DATARATE_HIGH); start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC - DELAY_ARM_TO_READER; TransmitTo15693Reader(ToSend, ToSendMax, start_time, slow); } Dbprintf("%d bytes read from reader:", cmd_len); Dbhexdump(cmd_len, cmd, false); } LEDsoff(); } // Since there is no standardized way of reading the AFI out of a tag, we will brute force it // (some manufactures offer a way to read the AFI, though) void BruteforceIso15693Afi(uint32_t speed) { LEDsoff(); LED_A_ON(); uint8_t data[6]; uint8_t recv[ISO15693_MAX_RESPONSE_LENGTH]; int datalen=0, recvlen=0; Iso15693InitReader(); StartCountSspClk(); // first without AFI // Tags should respond without AFI and with AFI=0 even when AFI is active data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_SLOT1; data[1] = ISO15693_INVENTORY; data[2] = 0; // mask length datalen = AddCrc(data,3); recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), 0); uint32_t start_time = GetCountSspClk() + DELAY_ISO15693_VCD_TO_VICC; WDT_HIT(); if (recvlen>=12) { Dbprintf("NoAFI UID=%s", sprintUID(NULL, &recv[2])); } // now with AFI data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_AFI | ISO15693_REQINV_SLOT1; data[1] = ISO15693_INVENTORY; data[2] = 0; // AFI data[3] = 0; // mask length for (int i = 0; i < 256; i++) { data[2] = i & 0xFF; datalen = AddCrc(data,4); recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), start_time); start_time = GetCountSspClk() + DELAY_ISO15693_VCD_TO_VICC; WDT_HIT(); if (recvlen >= 12) { Dbprintf("AFI=%i UID=%s", i, sprintUID(NULL, &recv[2])); } } Dbprintf("AFI Bruteforcing done."); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); } // Allows to directly send commands to the tag via the client void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint8_t data[]) { int recvlen = 0; uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH]; LED_A_ON(); if (DEBUG) { Dbprintf("SEND:"); Dbhexdump(datalen, data, false); } recvlen = SendDataTag(data, datalen, true, speed, (recv?recvbuf:NULL), sizeof(recvbuf), 0); if (recv) { if (DEBUG) { Dbprintf("RECV:"); Dbhexdump(recvlen, recvbuf, false); DbdecodeIso15693Answer(recvlen, recvbuf); } cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH); } // for the time being, switch field off to protect rdv4.0 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); LED_A_OFF(); } // -------------------------------------------------------------------- // -- Misc & deprecated functions // -------------------------------------------------------------------- /* // do not use; has a fix UID static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid) { uint8_t cmd[12]; uint16_t crc; // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block // followed by teh block data // one sub-carrier, inventory, 1 slot, fast rate cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit // System Information command code cmd[1] = 0x2B; // UID may be optionally specified here // 64-bit UID cmd[2] = 0x32; cmd[3]= 0x4b; cmd[4] = 0x03; cmd[5] = 0x01; cmd[6] = 0x00; cmd[7] = 0x10; cmd[8] = 0x05; cmd[9]= 0xe0; // always e0 (not exactly unique) //Now the CRC crc = Crc(cmd, 10); // the crc needs to be calculated over 2 bytes cmd[10] = crc & 0xff; cmd[11] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } // do not use; has a fix UID static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid) { uint8_t cmd[14]; uint16_t crc; // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block // followed by teh block data // one sub-carrier, inventory, 1 slot, fast rate cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit // READ Multi BLOCK command code cmd[1] = 0x23; // UID may be optionally specified here // 64-bit UID cmd[2] = 0x32; cmd[3]= 0x4b; cmd[4] = 0x03; cmd[5] = 0x01; cmd[6] = 0x00; cmd[7] = 0x10; cmd[8] = 0x05; cmd[9]= 0xe0; // always e0 (not exactly unique) // First Block number to read cmd[10] = 0x00; // Number of Blocks to read cmd[11] = 0x2f; // read quite a few //Now the CRC crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes cmd[12] = crc & 0xff; cmd[13] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } // do not use; has a fix UID static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode) { uint8_t cmd[14]; uint16_t crc; // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block // followed by teh block data // one sub-carrier, inventory, 1 slot, fast rate cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit // READ BLOCK command code cmd[1] = CmdCode; // UID may be optionally specified here // 64-bit UID cmd[2] = 0x32; cmd[3]= 0x4b; cmd[4] = 0x03; cmd[5] = 0x01; cmd[6] = 0x00; cmd[7] = 0x10; cmd[8] = 0x05; cmd[9]= 0xe0; // always e0 (not exactly unique) // Parameter cmd[10] = 0x00; cmd[11] = 0x0a; // cmd[12] = 0x00; // cmd[13] = 0x00; //Now the CRC crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes cmd[12] = crc & 0xff; cmd[13] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } // do not use; has a fix UID static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode) { uint8_t cmd[14]; uint16_t crc; // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block // followed by teh block data // one sub-carrier, inventory, 1 slot, fast rate cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit // READ BLOCK command code cmd[1] = CmdCode; // UID may be optionally specified here // 64-bit UID cmd[2] = 0x32; cmd[3]= 0x4b; cmd[4] = 0x03; cmd[5] = 0x01; cmd[6] = 0x00; cmd[7] = 0x10; cmd[8] = 0x05; cmd[9]= 0xe0; // always e0 (not exactly unique) // Parameter cmd[10] = 0x05; // for custom codes this must be manufcturer code cmd[11] = 0x00; // cmd[12] = 0x00; // cmd[13] = 0x00; //Now the CRC crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes cmd[12] = crc & 0xff; cmd[13] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } */