//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Low frequency commands //----------------------------------------------------------------------------- #include #include #include #include #include #include #include "proxmark3.h" #include "cmdlf.h" #include "lfdemod.h" // for psk2TOpsk1 #include "util.h" // for parsing cli command utils #include "ui.h" // for show graph controls #include "graph.h" // for graph data #include "cmdparser.h" // for getting cli commands included in cmdmain.h #include "cmdmain.h" // for sending cmds to device #include "data.h" // for GetFromBigBuf #include "cmddata.h" // for `lf search` #include "cmdlfawid.h" // for awid menu #include "cmdlfem4x.h" // for em4x menu #include "cmdlfhid.h" // for hid menu #include "cmdlfhitag.h" // for hitag menu #include "cmdlfio.h" // for ioprox menu #include "cmdlft55xx.h" // for t55xx menu #include "cmdlfti.h" // for ti menu #include "cmdlfpresco.h" // for presco menu #include "cmdlfpcf7931.h"// for pcf7931 menu #include "cmdlfpyramid.h"// for pyramid menu #include "cmdlfviking.h" // for viking menu #include "cmdlfcotag.h" // for COTAG menu #include "cmdlfvisa2000.h" // for VISA2000 menu #include "cmdlfindala.h" // for indala menu #include "cmdlfgproxii.h"// for gproxii menu #include "cmdlffdx.h" // for fdx-b menu #include "cmdlfparadox.h"// for paradox menu #include "cmdlfnexwatch.h"//for nexwatch menu #include "cmdlfjablotron.h" //for jablotron menu #include "cmdlfnoralsy.h"// for noralsy menu #include "cmdlfsecurakey.h"//for securakey menu #include "cmdlfpac.h" // for pac menu bool g_lf_threshold_set = false; static int CmdHelp(const char *Cmd); int usage_lf_cmdread(void) { PrintAndLog("Usage: lf cmdread d z o c [H] "); PrintAndLog("Options: "); PrintAndLog(" h This help"); PrintAndLog(" L Low frequency (125 KHz)"); PrintAndLog(" H High frequency (134 KHz)"); PrintAndLog(" d delay OFF period"); PrintAndLog(" z time period ZERO"); PrintAndLog(" o time period ONE"); PrintAndLog(" c Command bytes"); PrintAndLog(" ************* All periods in microseconds"); PrintAndLog("Examples:"); PrintAndLog(" lf cmdread d 80 z 100 o 200 c 11000"); PrintAndLog(" lf cmdread d 80 z 100 o 100 c 11000 H"); return 0; } /* send a command before reading */ int CmdLFCommandRead(const char *Cmd) { static char dummy[3] = {0x20,0x00,0x00}; UsbCommand c = {CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K}; bool errors = false; //uint8_t divisor = 95; //125khz uint8_t cmdp = 0; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'h': return usage_lf_cmdread(); case 'H': //divisor = 88; dummy[1]='h'; cmdp++; break; case 'L': cmdp++; break; case 'c': param_getstr(Cmd, cmdp+1, (char *)&c.d.asBytes); cmdp+=2; break; case 'd': c.arg[0] = param_get32ex(Cmd, cmdp+1, 0, 10); cmdp+=2; break; case 'z': c.arg[1] = param_get32ex(Cmd, cmdp+1, 0, 10); cmdp+=2; break; case 'o': c.arg[2] = param_get32ex(Cmd, cmdp+1, 0, 10); cmdp+=2; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = 1; break; } if(errors) break; } // No args if(cmdp == 0) errors = 1; //Validations if(errors) return usage_lf_cmdread(); // in case they specified 'H' strcpy((char *)&c.d.asBytes + strlen((char *)c.d.asBytes), dummy); clearCommandBuffer(); SendCommand(&c); return 0; } int CmdFlexdemod(const char *Cmd) { int i; for (i = 0; i < GraphTraceLen; ++i) { if (GraphBuffer[i] < 0) { GraphBuffer[i] = -1; } else { GraphBuffer[i] = 1; } } #define LONG_WAIT 100 int start; for (start = 0; start < GraphTraceLen - LONG_WAIT; start++) { int first = GraphBuffer[start]; for (i = start; i < start + LONG_WAIT; i++) { if (GraphBuffer[i] != first) { break; } } if (i == (start + LONG_WAIT)) { break; } } if (start == GraphTraceLen - LONG_WAIT) { PrintAndLog("nothing to wait for"); return 0; } GraphBuffer[start] = 2; GraphBuffer[start+1] = -2; uint8_t bits[64] = {0x00}; int bit, sum; i = start; for (bit = 0; bit < 64; bit++) { sum = 0; for (int j = 0; j < 16; j++) { sum += GraphBuffer[i++]; } bits[bit] = (sum > 0) ? 1 : 0; PrintAndLog("bit %d sum %d", bit, sum); } for (bit = 0; bit < 64; bit++) { int j; int sum = 0; for (j = 0; j < 16; j++) { sum += GraphBuffer[i++]; } if (sum > 0 && bits[bit] != 1) { PrintAndLog("oops1 at %d", bit); } if (sum < 0 && bits[bit] != 0) { PrintAndLog("oops2 at %d", bit); } } // HACK writing back to graphbuffer. GraphTraceLen = 32*64; i = 0; int phase = 0; for (bit = 0; bit < 64; bit++) { phase = (bits[bit] == 0) ? 0 : 1; int j; for (j = 0; j < 32; j++) { GraphBuffer[i++] = phase; phase = !phase; } } RepaintGraphWindow(); return 0; } int usage_lf_read(void) { PrintAndLog("Usage: lf read"); PrintAndLog("Options: "); PrintAndLog(" h This help"); PrintAndLog(" s silent run no printout"); PrintAndLog(" [# samples] # samples to collect (optional)"); PrintAndLog("Use 'lf config' to set parameters."); return 0; } int usage_lf_snoop(void) { PrintAndLog("Usage: lf snoop"); PrintAndLog("Options: "); PrintAndLog(" h This help"); PrintAndLog("This function takes no arguments. "); PrintAndLog("Use 'lf config' to set parameters."); return 0; } int usage_lf_config(void) { PrintAndLog("Usage: lf config [H|] [b ] [d ] [a 0|1]"); PrintAndLog("Options: "); PrintAndLog(" h This help"); PrintAndLog(" L Low frequency (125 KHz)"); PrintAndLog(" H High frequency (134 KHz)"); PrintAndLog(" q Manually set divisor. 88-> 134KHz, 95-> 125 Hz"); PrintAndLog(" b Sets resolution of bits per sample. Default (max): 8"); PrintAndLog(" d Sets decimation. A value of N saves only 1 in N samples. Default: 1"); PrintAndLog(" a [0|1] Averaging - if set, will average the stored sample value when decimating. Default: 1"); PrintAndLog(" t Sets trigger threshold. 0 means no threshold (range: 0-128)"); PrintAndLog("Examples:"); PrintAndLog(" lf config b 8 L"); PrintAndLog(" Samples at 125KHz, 8bps."); PrintAndLog(" lf config H b 4 d 3"); PrintAndLog(" Samples at 134KHz, averages three samples into one, stored with "); PrintAndLog(" a resolution of 4 bits per sample."); PrintAndLog(" lf read"); PrintAndLog(" Performs a read (active field)"); PrintAndLog(" lf snoop"); PrintAndLog(" Performs a snoop (no active field)"); return 0; } int CmdLFSetConfig(const char *Cmd) { uint8_t divisor = 0;//Frequency divisor uint8_t bps = 0; // Bits per sample uint8_t decimation = 0; //How many to keep bool averaging = 1; // Defaults to true bool errors = false; int trigger_threshold =-1;//Means no change uint8_t unsigned_trigg = 0; uint8_t cmdp =0; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'h': return usage_lf_config(); case 'H': divisor = 88; cmdp++; break; case 'L': divisor = 95; cmdp++; break; case 'q': errors |= param_getdec(Cmd,cmdp+1,&divisor); cmdp+=2; break; case 't': errors |= param_getdec(Cmd,cmdp+1,&unsigned_trigg); cmdp+=2; if(!errors) { trigger_threshold = unsigned_trigg; if (trigger_threshold > 0) g_lf_threshold_set = true; } break; case 'b': errors |= param_getdec(Cmd,cmdp+1,&bps); cmdp+=2; break; case 'd': errors |= param_getdec(Cmd,cmdp+1,&decimation); cmdp+=2; break; case 'a': averaging = param_getchar(Cmd,cmdp+1) == '1'; cmdp+=2; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = 1; break; } if(errors) break; } if(cmdp == 0) { errors = 1;// No args } //Validations if(errors) { return usage_lf_config(); } //Bps is limited to 8, so fits in lower half of arg1 if(bps >> 4) bps = 8; sample_config config = { decimation,bps,averaging,divisor,trigger_threshold }; //Averaging is a flag on high-bit of arg[1] UsbCommand c = {CMD_SET_LF_SAMPLING_CONFIG}; memcpy(c.d.asBytes,&config,sizeof(sample_config)); clearCommandBuffer(); SendCommand(&c); return 0; } bool lf_read(bool silent, uint32_t samples) { if (offline) return false; UsbCommand c = {CMD_ACQUIRE_RAW_ADC_SAMPLES_125K, {silent,samples,0}}; clearCommandBuffer(); //And ship it to device SendCommand(&c); UsbCommand resp; if (g_lf_threshold_set) { WaitForResponse(CMD_ACK,&resp); } else { if ( !WaitForResponseTimeout(CMD_ACK,&resp,2500) ) { PrintAndLog("command execution time out"); return false; } } // resp.arg[0] is bits read not bytes read. getSamples(resp.arg[0]/8, silent); return true; } int CmdLFRead(const char *Cmd) { uint8_t cmdp = 0; bool silent = false; if (param_getchar(Cmd, cmdp) == 'h') { return usage_lf_read(); } if (param_getchar(Cmd, cmdp) == 's') { silent = true; //suppress print cmdp++; } uint32_t samples = param_get32ex(Cmd, cmdp, 0, 10); return lf_read(silent, samples); } int CmdLFSnoop(const char *Cmd) { uint8_t cmdp =0; if(param_getchar(Cmd, cmdp) == 'h') { return usage_lf_snoop(); } UsbCommand c = {CMD_LF_SNOOP_RAW_ADC_SAMPLES}; clearCommandBuffer(); SendCommand(&c); WaitForResponse(CMD_ACK,NULL); getSamples(0, true); return 0; } static void ChkBitstream(const char *str) { int i; /* convert to bitstream if necessary */ for (i = 0; i < (int)(GraphTraceLen / 2); i++){ if (GraphBuffer[i] > 1 || GraphBuffer[i] < 0) { CmdGetBitStream(""); break; } } } //Attempt to simulate any wave in buffer (one bit per output sample) // converts GraphBuffer to bitstream (based on zero crossings) if needed. int CmdLFSim(const char *Cmd) { int i,j; static int gap; sscanf(Cmd, "%i", &gap); // convert to bitstream if necessary ChkBitstream(Cmd); //can send only 512 bits at a time (1 byte sent per bit...) printf("Sending [%d bytes]", GraphTraceLen); for (i = 0; i < GraphTraceLen; i += USB_CMD_DATA_SIZE) { UsbCommand c = {CMD_DOWNLOADED_SIM_SAMPLES_125K, {i, 0, 0}}; for (j = 0; j < USB_CMD_DATA_SIZE; j++) { c.d.asBytes[j] = GraphBuffer[i+j]; } SendCommand(&c); WaitForResponse(CMD_ACK,NULL); printf("."); } printf("\n"); PrintAndLog("Starting to simulate"); UsbCommand c = {CMD_SIMULATE_TAG_125K, {GraphTraceLen, gap, 0}}; clearCommandBuffer(); SendCommand(&c); return 0; } int usage_lf_simfsk(void) { //print help PrintAndLog("Usage: lf simfsk [c ] [i] [H ] [L ] [d ]"); PrintAndLog("Options: "); PrintAndLog(" h This help"); PrintAndLog(" c Manually set clock - can autodetect if using DemodBuffer"); PrintAndLog(" i invert data"); PrintAndLog(" H Manually set the larger Field Clock"); PrintAndLog(" L Manually set the smaller Field Clock"); //PrintAndLog(" s TBD- -to enable a gap between playback repetitions - default: no gap"); PrintAndLog(" d Data to sim as hex - omit to sim from DemodBuffer"); PrintAndLog("\n NOTE: if you set one clock manually set them all manually"); return 0; } int usage_lf_simask(void) { //print help PrintAndLog("Usage: lf simask [c ] [i] [b|m|r] [s] [d ]"); PrintAndLog("Options: "); PrintAndLog(" h This help"); PrintAndLog(" c Manually set clock - can autodetect if using DemodBuffer"); PrintAndLog(" i invert data"); PrintAndLog(" b sim ask/biphase"); PrintAndLog(" m sim ask/manchester - Default"); PrintAndLog(" r sim ask/raw"); PrintAndLog(" s add t55xx Sequence Terminator gap - default: no gaps (only manchester)"); PrintAndLog(" d Data to sim as hex - omit to sim from DemodBuffer"); return 0; } int usage_lf_simpsk(void) { //print help PrintAndLog("Usage: lf simpsk [1|2|3] [c ] [i] [r ] [d ]"); PrintAndLog("Options: "); PrintAndLog(" h This help"); PrintAndLog(" c Manually set clock - can autodetect if using DemodBuffer"); PrintAndLog(" i invert data"); PrintAndLog(" 1 set PSK1 (default)"); PrintAndLog(" 2 set PSK2"); PrintAndLog(" 3 set PSK3"); PrintAndLog(" r 2|4|8 are valid carriers: default = 2"); PrintAndLog(" d Data to sim as hex - omit to sim from DemodBuffer"); return 0; } // by marshmellow - sim fsk data given clock, fcHigh, fcLow, invert // - allow pull data from DemodBuffer int CmdLFfskSim(const char *Cmd) { //might be able to autodetect FCs and clock from Graphbuffer if using demod buffer // otherwise will need FChigh, FClow, Clock, and bitstream uint8_t fcHigh=0, fcLow=0, clk=0; uint8_t invert=0; bool errors = false; char hexData[32] = {0x00}; // store entered hex data uint8_t data[255] = {0x00}; int dataLen = 0; uint8_t cmdp = 0; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'h': return usage_lf_simfsk(); case 'i': invert = 1; cmdp++; break; case 'c': errors |= param_getdec(Cmd,cmdp+1,&clk); cmdp+=2; break; case 'H': errors |= param_getdec(Cmd,cmdp+1,&fcHigh); cmdp+=2; break; case 'L': errors |= param_getdec(Cmd,cmdp+1,&fcLow); cmdp+=2; break; //case 's': // separator=1; // cmdp++; // break; case 'd': dataLen = param_getstr(Cmd, cmdp+1, hexData); if (dataLen==0) { errors=true; } else { dataLen = hextobinarray((char *)data, hexData); } if (dataLen==0) errors=true; if (errors) PrintAndLog ("Error getting hex data"); cmdp+=2; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } if(errors) break; } if(cmdp == 0 && DemodBufferLen == 0) { errors = true;// No args } //Validations if(errors) { return usage_lf_simfsk(); } int firstClockEdge = 0; if (dataLen == 0){ //using DemodBuffer if (clk==0 || fcHigh==0 || fcLow==0){ //manual settings must set them all uint8_t ans = fskClocks(&fcHigh, &fcLow, &clk, 0, &firstClockEdge); if (ans==0){ if (!fcHigh) fcHigh=10; if (!fcLow) fcLow=8; if (!clk) clk=50; } } } else { setDemodBuf(data, dataLen, 0); } //default if not found if (clk == 0) clk = 50; if (fcHigh == 0) fcHigh = 10; if (fcLow == 0) fcLow = 8; uint16_t arg1, arg2; arg1 = fcHigh << 8 | fcLow; arg2 = invert << 8 | clk; size_t size = DemodBufferLen; if (size > USB_CMD_DATA_SIZE) { PrintAndLog("DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE); size = USB_CMD_DATA_SIZE; } UsbCommand c = {CMD_FSK_SIM_TAG, {arg1, arg2, size}}; memcpy(c.d.asBytes, DemodBuffer, size); clearCommandBuffer(); SendCommand(&c); return 0; } // by marshmellow - sim ask data given clock, invert, manchester or raw, separator // - allow pull data from DemodBuffer int CmdLFaskSim(const char *Cmd) { //autodetect clock from Graphbuffer if using demod buffer // needs clock, invert, manchester/raw as m or r, separator as s, and bitstream uint8_t encoding = 1, separator = 0; uint8_t clk=0, invert=0; bool errors = false; char hexData[32] = {0x00}; uint8_t data[255]= {0x00}; // store entered hex data int dataLen = 0; uint8_t cmdp = 0; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'h': return usage_lf_simask(); case 'i': invert = 1; cmdp++; break; case 'c': errors |= param_getdec(Cmd,cmdp+1,&clk); cmdp+=2; break; case 'b': encoding=2; //biphase cmdp++; break; case 'm': encoding=1; cmdp++; break; case 'r': encoding=0; cmdp++; break; case 's': separator=1; cmdp++; break; case 'd': dataLen = param_getstr(Cmd, cmdp+1, hexData); if (dataLen==0) { errors=true; } else { dataLen = hextobinarray((char *)data, hexData); } if (dataLen==0) errors=true; if (errors) PrintAndLog ("Error getting hex data, datalen: %d",dataLen); cmdp+=2; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } if(errors) break; } if(cmdp == 0 && DemodBufferLen == 0) { errors = true;// No args } //Validations if(errors) { return usage_lf_simask(); } if (dataLen == 0){ //using DemodBuffer if (clk == 0) clk = GetAskClock("0", false, false); } else { setDemodBuf(data, dataLen, 0); } if (clk == 0) clk = 64; if (encoding == 0) clk = clk/2; //askraw needs to double the clock speed uint16_t arg1, arg2; size_t size=DemodBufferLen; arg1 = clk << 8 | encoding; arg2 = invert << 8 | separator; if (size > USB_CMD_DATA_SIZE) { PrintAndLog("DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE); size = USB_CMD_DATA_SIZE; } UsbCommand c = {CMD_ASK_SIM_TAG, {arg1, arg2, size}}; PrintAndLog("preparing to sim ask data: %d bits", size); memcpy(c.d.asBytes, DemodBuffer, size); clearCommandBuffer(); SendCommand(&c); return 0; } // by marshmellow - sim psk data given carrier, clock, invert // - allow pull data from DemodBuffer or parameters int CmdLFpskSim(const char *Cmd) { //might be able to autodetect FC and clock from Graphbuffer if using demod buffer //will need carrier, Clock, and bitstream uint8_t carrier=0, clk=0; uint8_t invert=0; bool errors = false; char hexData[32] = {0x00}; // store entered hex data uint8_t data[255] = {0x00}; int dataLen = 0; uint8_t cmdp = 0; uint8_t pskType = 1; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'h': return usage_lf_simpsk(); case 'i': invert = 1; cmdp++; break; case 'c': errors |= param_getdec(Cmd,cmdp+1,&clk); cmdp+=2; break; case 'r': errors |= param_getdec(Cmd,cmdp+1,&carrier); cmdp+=2; break; case '1': pskType=1; cmdp++; break; case '2': pskType=2; cmdp++; break; case '3': pskType=3; cmdp++; break; case 'd': dataLen = param_getstr(Cmd, cmdp+1, hexData); if (dataLen==0) { errors=true; } else { dataLen = hextobinarray((char *)data, hexData); } if (dataLen==0) errors=true; if (errors) PrintAndLog ("Error getting hex data"); cmdp+=2; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } if (errors) break; } if (cmdp == 0 && DemodBufferLen == 0) { errors = true;// No args } //Validations if (errors) { return usage_lf_simpsk(); } if (dataLen == 0){ //using DemodBuffer PrintAndLog("Getting Clocks"); if (clk==0) clk = GetPskClock("", false, false); PrintAndLog("clk: %d",clk); if (!carrier) carrier = GetPskCarrier("", false, false); PrintAndLog("carrier: %d", carrier); } else { setDemodBuf(data, dataLen, 0); } if (clk <= 0) clk = 32; if (carrier == 0) carrier = 2; if (pskType != 1){ if (pskType == 2){ //need to convert psk2 to psk1 data before sim psk2TOpsk1(DemodBuffer, DemodBufferLen); } else { PrintAndLog("Sorry, PSK3 not yet available"); } } uint16_t arg1, arg2; arg1 = clk << 8 | carrier; arg2 = invert; size_t size=DemodBufferLen; if (size > USB_CMD_DATA_SIZE) { PrintAndLog("DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE); size=USB_CMD_DATA_SIZE; } UsbCommand c = {CMD_PSK_SIM_TAG, {arg1, arg2, size}}; PrintAndLog("DEBUG: Sending DemodBuffer Length: %d", size); memcpy(c.d.asBytes, DemodBuffer, size); clearCommandBuffer(); SendCommand(&c); return 0; } int CmdLFSimBidir(const char *Cmd) { // Set ADC to twice the carrier for a slight supersampling // HACK: not implemented in ARMSRC. PrintAndLog("Not implemented yet."); UsbCommand c = {CMD_LF_SIMULATE_BIDIR, {47, 384, 0}}; SendCommand(&c); return 0; } int CmdVchDemod(const char *Cmd) { // Is this the entire sync pattern, or does this also include some // data bits that happen to be the same everywhere? That would be // lovely to know. static const int SyncPattern[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, }; // So first, we correlate for the sync pattern, and mark that. int bestCorrel = 0, bestPos = 0; int i; // It does us no good to find the sync pattern, with fewer than // 2048 samples after it... for (i = 0; i < (GraphTraceLen-2048); i++) { int sum = 0; int j; for (j = 0; j < arraylen(SyncPattern); j++) { sum += GraphBuffer[i+j]*SyncPattern[j]; } if (sum > bestCorrel) { bestCorrel = sum; bestPos = i; } } PrintAndLog("best sync at %d [metric %d]", bestPos, bestCorrel); char bits[257]; bits[256] = '\0'; int worst = INT_MAX; int worstPos = 0; for (i = 0; i < 2048; i += 8) { int sum = 0; int j; for (j = 0; j < 8; j++) { sum += GraphBuffer[bestPos+i+j]; } if (sum < 0) { bits[i/8] = '.'; } else { bits[i/8] = '1'; } if(abs(sum) < worst) { worst = abs(sum); worstPos = i; } } PrintAndLog("bits:"); PrintAndLog("%s", bits); PrintAndLog("worst metric: %d at pos %d", worst, worstPos); if (strcmp(Cmd, "clone")==0) { GraphTraceLen = 0; char *s; for(s = bits; *s; s++) { int j; for(j = 0; j < 16; j++) { GraphBuffer[GraphTraceLen++] = (*s == '1') ? 1 : 0; } } RepaintGraphWindow(); } return 0; } //by marshmellow int CheckChipType(char cmdp) { uint32_t wordData = 0; if (offline || cmdp == '1') return 0; save_restoreGB(GRAPH_SAVE); save_restoreDB(GRAPH_SAVE); //check for em4x05/em4x69 chips first if (EM4x05Block0Test(&wordData)) { PrintAndLog("\nValid EM4x05/EM4x69 Chip Found\nTry lf em 4x05... commands\n"); save_restoreGB(GRAPH_RESTORE); save_restoreDB(GRAPH_RESTORE); return 1; } //check for t55xx chip... if (tryDetectP1(true)) { PrintAndLog("\nValid T55xx Chip Found\nTry lf t55xx ... commands\n"); save_restoreGB(GRAPH_RESTORE); save_restoreDB(GRAPH_RESTORE); return 1; } save_restoreGB(GRAPH_RESTORE); save_restoreDB(GRAPH_RESTORE); return 0; } //by marshmellow int CmdLFfind(const char *Cmd) { uint32_t wordData = 0; int ans=0; size_t minLength = 1000; char cmdp = param_getchar(Cmd, 0); char testRaw = param_getchar(Cmd, 1); if (strlen(Cmd) > 3 || cmdp == 'h' || cmdp == 'H') { PrintAndLog("Usage: lf search <0|1> [u]"); PrintAndLog(" , if not set, try reading data from tag."); PrintAndLog(" [Search for Unknown tags] , if not set, reads only known tags."); PrintAndLog(""); PrintAndLog(" sample: lf search = try reading data from tag & search for known tags"); PrintAndLog(" : lf search 1 = use data from GraphBuffer & search for known tags"); PrintAndLog(" : lf search u = try reading data from tag & search for known and unknown tags"); PrintAndLog(" : lf search 1 u = use data from GraphBuffer & search for known and unknown tags"); return 0; } if (!offline && (cmdp != '1')) { lf_read(true, 30000); } else if (GraphTraceLen < minLength) { PrintAndLog("Data in Graphbuffer was too small."); return 0; } if (cmdp == 'u' || cmdp == 'U') testRaw = 'u'; PrintAndLog("NOTE: some demods output possible binary\n if it finds something that looks like a tag"); PrintAndLog("False Positives ARE possible\n"); PrintAndLog("\nChecking for known tags:\n"); size_t testLen = minLength; // only run if graphbuffer is just noise as it should be for hitag/cotag if (graphJustNoise(GraphBuffer, testLen)) { // only run these tests if we are in online mode if (!offline && (cmdp != '1')) { // test for em4x05 in reader talk first mode. if (EM4x05Block0Test(&wordData)) { PrintAndLog("\nValid EM4x05/EM4x69 Chip Found\nUse lf em 4x05readword/dump commands to read\n"); return 1; } ans=CmdLFHitagReader("26"); // 26 = RHT2F_UID_ONLY if (ans==0) { return 1; } ans=CmdCOTAGRead(""); if (ans>0) { PrintAndLog("\nValid COTAG ID Found!"); return 1; } } return 0; } // TODO test for modulation then only test formats that use that modulation ans=CmdFSKdemodIO(""); if (ans>0) { PrintAndLog("\nValid IO Prox ID Found!"); return CheckChipType(cmdp); } ans=CmdFSKdemodPyramid(""); if (ans>0) { PrintAndLog("\nValid Pyramid ID Found!"); return CheckChipType(cmdp); } ans=CmdFSKdemodParadox(""); if (ans>0) { PrintAndLog("\nValid Paradox ID Found!"); return CheckChipType(cmdp); } ans=CmdFSKdemodAWID(""); if (ans>0) { PrintAndLog("\nValid AWID ID Found!"); return CheckChipType(cmdp); } ans=CmdFSKdemodHID(""); if (ans>0) { PrintAndLog("\nValid HID Prox ID Found!"); return CheckChipType(cmdp); } ans=CmdAskEM410xDemod(""); if (ans>0) { PrintAndLog("\nValid EM410x ID Found!"); return CheckChipType(cmdp); } ans=CmdVisa2kDemod(""); if (ans>0) { PrintAndLog("\nValid Visa2000 ID Found!"); return CheckChipType(cmdp); } ans=CmdG_Prox_II_Demod(""); if (ans>0) { PrintAndLog("\nValid G Prox II ID Found!"); return CheckChipType(cmdp); } ans=CmdFdxDemod(""); //biphase if (ans>0) { PrintAndLog("\nValid FDX-B ID Found!"); return CheckChipType(cmdp); } ans=EM4x50Read("", false); //ask if (ans>0) { PrintAndLog("\nValid EM4x50 ID Found!"); return 1; } ans=CmdJablotronDemod(""); if (ans>0) { PrintAndLog("\nValid Jablotron ID Found!"); return CheckChipType(cmdp); } ans=CmdNoralsyDemod(""); if (ans>0) { PrintAndLog("\nValid Noralsy ID Found!"); return CheckChipType(cmdp); } ans=CmdSecurakeyDemod(""); if (ans>0) { PrintAndLog("\nValid Securakey ID Found!"); return CheckChipType(cmdp); } ans=CmdVikingDemod(""); if (ans>0) { PrintAndLog("\nValid Viking ID Found!"); return CheckChipType(cmdp); } ans=CmdIndalaDecode(""); //psk if (ans>0) { PrintAndLog("\nValid Indala ID Found!"); return CheckChipType(cmdp); } ans=CmdPSKNexWatch(""); if (ans>0) { PrintAndLog("\nValid NexWatch ID Found!"); return CheckChipType(cmdp); } ans=CmdPacDemod(""); if (ans>0) { PrintAndLog("\nValid PAC/Stanley ID Found!"); return CheckChipType(cmdp); } PrintAndLog("\nNo Known Tags Found!\n"); if (testRaw=='u' || testRaw=='U') { //ans=CheckChipType(cmdp); //test unknown tag formats (raw mode)0 PrintAndLog("\nChecking for Unknown tags:\n"); ans=AutoCorrelate(GraphBuffer, GraphBuffer, GraphTraceLen, 4000, false, false); if (ans > 0) PrintAndLog("Possible Auto Correlation of %d repeating samples",ans); ans=GetFskClock("",false,false); if (ans != 0) { //fsk ans=FSKrawDemod("",true); if (ans>0) { PrintAndLog("\nUnknown FSK Modulated Tag Found!"); return CheckChipType(cmdp); } } bool st = true; ans=ASKDemod_ext("0 0 0",true,false,1,&st); if (ans>0) { PrintAndLog("\nUnknown ASK Modulated and Manchester encoded Tag Found!"); PrintAndLog("\nif it does not look right it could instead be ASK/Biphase - try 'data rawdemod ab'"); return CheckChipType(cmdp); } ans=CmdPSK1rawDemod(""); if (ans>0) { PrintAndLog("Possible unknown PSK1 Modulated Tag Found above!\n\nCould also be PSK2 - try 'data rawdemod p2'"); PrintAndLog("\nCould also be PSK3 - [currently not supported]"); PrintAndLog("\nCould also be NRZ - try 'data rawdemod nr'"); return CheckChipType(cmdp); } ans = CheckChipType(cmdp); PrintAndLog("\nNo Data Found!\n"); } return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"awid", CmdLFAWID, 1, "{ AWID RFIDs... }"}, {"cotag", CmdLFCOTAG, 1, "{ COTAG CHIPs... }"}, {"em", CmdLFEM4X, 1, "{ EM4X CHIPs & RFIDs... }"}, {"fdx", CmdLFFdx, 1, "{ FDX-B RFIDs... }"}, {"gproxii", CmdLF_G_Prox_II, 1, "{ G Prox II RFIDs... }"}, {"hid", CmdLFHID, 1, "{ HID RFIDs... }"}, {"hitag", CmdLFHitag, 1, "{ Hitag CHIPs... }"}, {"io", CmdLFIO, 1, "{ ioProx RFIDs... }"}, {"indala", CmdLFINDALA, 1, "{ Indala RFIDs... }"}, {"jablotron", CmdLFJablotron, 1, "{ Jablotron RFIDs... }"}, {"nexwatch", CmdLFNexWatch, 1, "{ NexWatch RFIDs... }"}, {"noralsy", CmdLFNoralsy, 1, "{ Noralsy RFIDs... }"}, {"pac", CmdLFPac, 1, "{ PAC/Stanley RFIDs... }"}, {"paradox", CmdLFParadox, 1, "{ Paradox RFIDs... }"}, {"presco", CmdLFPresco, 1, "{ Presco RFIDs... }"}, {"pcf7931", CmdLFPCF7931, 1, "{ PCF7931 CHIPs... }"}, {"pyramid", CmdLFPyramid, 1, "{ Farpointe/Pyramid RFIDs... }"}, {"securakey", CmdLFSecurakey, 1, "{ Securakey RFIDs... }"}, {"t55xx", CmdLFT55XX, 1, "{ T55xx CHIPs... }"}, {"ti", CmdLFTI, 1, "{ TI CHIPs... }"}, {"viking", CmdLFViking, 1, "{ Viking RFIDs... }"}, {"visa2000", CmdLFVisa2k, 1, "{ Visa2000 RFIDs... }"}, {"cmdread", CmdLFCommandRead, 0, " ['H'] -- Modulate LF reader field to send command before read (all periods in microseconds) (option 'H' for 134)"}, {"config", CmdLFSetConfig, 0, "Set config for LF sampling, bit/sample, decimation, frequency"}, {"flexdemod", CmdFlexdemod, 1, "Demodulate samples for FlexPass"}, {"read", CmdLFRead, 0, "['s' silent] Read 125/134 kHz LF ID-only tag. Do 'lf read h' for help"}, {"search", CmdLFfind, 1, "[offline] ['u'] Read and Search for valid known tag (in offline mode it you can load first then search) - 'u' to search for unknown tags"}, {"sim", CmdLFSim, 0, "[GAP] -- Simulate LF tag from buffer with optional GAP (in microseconds)"}, {"simask", CmdLFaskSim, 0, "[clock] [invert <1|0>] [biphase/manchester/raw <'b'|'m'|'r'>] [msg separator 's'] [d ] -- Simulate LF ASK tag from demodbuffer or input"}, {"simfsk", CmdLFfskSim, 0, "[c ] [i] [H ] [L ] [d ] -- Simulate LF FSK tag from demodbuffer or input"}, {"simpsk", CmdLFpskSim, 0, "[1|2|3] [c ] [i] [r ] [d ] -- Simulate LF PSK tag from demodbuffer or input"}, {"simbidir", CmdLFSimBidir, 0, "Simulate LF tag (with bidirectional data transmission between reader and tag)"}, {"snoop", CmdLFSnoop, 0, "['l'|'h'|] [trigger threshold]-- Snoop LF (l:125khz, h:134khz)"}, {"vchdemod", CmdVchDemod, 1, "['clone'] -- Demodulate samples for VeriChip"}, {NULL, NULL, 0, NULL} }; int CmdLF(const char *Cmd) { CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }