//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Low frequency commands //----------------------------------------------------------------------------- #include #include #include #include #include "proxmark3.h" #include "data.h" #include "graph.h" #include "ui.h" #include "cmdparser.h" #include "cmdmain.h" #include "cmddata.h" #include "util.h" #include "cmdlf.h" #include "cmdlfhid.h" #include "cmdlfti.h" #include "cmdlfem4x.h" #include "cmdlfhitag.h" #include "cmdlft55xx.h" #include "cmdlfpcf7931.h" #include "cmdlfio.h" #include "lfdemod.h" static int CmdHelp(const char *Cmd); /* send a command before reading */ int CmdLFCommandRead(const char *Cmd) { static char dummy[3]; dummy[0]= ' '; UsbCommand c = {CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K}; sscanf(Cmd, "%"lli" %"lli" %"lli" %s %s", &c.arg[0], &c.arg[1], &c.arg[2],(char*)(&c.d.asBytes),(char*)(&dummy+1)); // in case they specified 'h' strcpy((char *)&c.d.asBytes + strlen((char *)c.d.asBytes), dummy); SendCommand(&c); return 0; } int CmdFlexdemod(const char *Cmd) { int i; for (i = 0; i < GraphTraceLen; ++i) { if (GraphBuffer[i] < 0) { GraphBuffer[i] = -1; } else { GraphBuffer[i] = 1; } } #define LONG_WAIT 100 int start; for (start = 0; start < GraphTraceLen - LONG_WAIT; start++) { int first = GraphBuffer[start]; for (i = start; i < start + LONG_WAIT; i++) { if (GraphBuffer[i] != first) { break; } } if (i == (start + LONG_WAIT)) { break; } } if (start == GraphTraceLen - LONG_WAIT) { PrintAndLog("nothing to wait for"); return 0; } GraphBuffer[start] = 2; GraphBuffer[start+1] = -2; uint8_t bits[64] = {0x00}; int bit, sum; i = start; for (bit = 0; bit < 64; bit++) { sum = 0; for (int j = 0; j < 16; j++) { sum += GraphBuffer[i++]; } bits[bit] = (sum > 0) ? 1 : 0; PrintAndLog("bit %d sum %d", bit, sum); } for (bit = 0; bit < 64; bit++) { int j; int sum = 0; for (j = 0; j < 16; j++) { sum += GraphBuffer[i++]; } if (sum > 0 && bits[bit] != 1) { PrintAndLog("oops1 at %d", bit); } if (sum < 0 && bits[bit] != 0) { PrintAndLog("oops2 at %d", bit); } } // HACK writing back to graphbuffer. GraphTraceLen = 32*64; i = 0; int phase = 0; for (bit = 0; bit < 64; bit++) { phase = (bits[bit] == 0) ? 0 : 1; int j; for (j = 0; j < 32; j++) { GraphBuffer[i++] = phase; phase = !phase; } } RepaintGraphWindow(); return 0; } int CmdIndalaDemod(const char *Cmd) { // Usage: recover 64bit UID by default, specify "224" as arg to recover a 224bit UID int state = -1; int count = 0; int i, j; // worst case with GraphTraceLen=64000 is < 4096 // under normal conditions it's < 2048 uint8_t rawbits[4096]; int rawbit = 0; int worst = 0, worstPos = 0; // PrintAndLog("Expecting a bit less than %d raw bits", GraphTraceLen / 32); for (i = 0; i < GraphTraceLen-1; i += 2) { count += 1; if ((GraphBuffer[i] > GraphBuffer[i + 1]) && (state != 1)) { if (state == 0) { for (j = 0; j < count - 8; j += 16) { rawbits[rawbit++] = 0; } if ((abs(count - j)) > worst) { worst = abs(count - j); worstPos = i; } } state = 1; count = 0; } else if ((GraphBuffer[i] < GraphBuffer[i + 1]) && (state != 0)) { if (state == 1) { for (j = 0; j < count - 8; j += 16) { rawbits[rawbit++] = 1; } if ((abs(count - j)) > worst) { worst = abs(count - j); worstPos = i; } } state = 0; count = 0; } } if (rawbit>0){ PrintAndLog("Recovered %d raw bits, expected: %d", rawbit, GraphTraceLen/32); PrintAndLog("worst metric (0=best..7=worst): %d at pos %d", worst, worstPos); } else { return 0; } // Finding the start of a UID int uidlen, long_wait; if (strcmp(Cmd, "224") == 0) { uidlen = 224; long_wait = 30; } else { uidlen = 64; long_wait = 29; } int start; int first = 0; for (start = 0; start <= rawbit - uidlen; start++) { first = rawbits[start]; for (i = start; i < start + long_wait; i++) { if (rawbits[i] != first) { break; } } if (i == (start + long_wait)) { break; } } if (start == rawbit - uidlen + 1) { PrintAndLog("nothing to wait for"); return 0; } // Inverting signal if needed if (first == 1) { for (i = start; i < rawbit; i++) { rawbits[i] = !rawbits[i]; } } // Dumping UID uint8_t bits[224] = {0x00}; char showbits[225] = {0x00}; int bit; i = start; int times = 0; if (uidlen > rawbit) { PrintAndLog("Warning: not enough raw bits to get a full UID"); for (bit = 0; bit < rawbit; bit++) { bits[bit] = rawbits[i++]; // As we cannot know the parity, let's use "." and "/" showbits[bit] = '.' + bits[bit]; } showbits[bit+1]='\0'; PrintAndLog("Partial UID=%s", showbits); return 0; } else { for (bit = 0; bit < uidlen; bit++) { bits[bit] = rawbits[i++]; showbits[bit] = '0' + bits[bit]; } times = 1; } //convert UID to HEX uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7; int idx; uid1 = uid2 = 0; if (uidlen==64){ for( idx=0; idx<64; idx++) { if (showbits[idx] == '0') { uid1=(uid1<<1)|(uid2>>31); uid2=(uid2<<1)|0; } else { uid1=(uid1<<1)|(uid2>>31); uid2=(uid2<<1)|1; } } PrintAndLog("UID=%s (%x%08x)", showbits, uid1, uid2); } else { uid3 = uid4 = uid5 = uid6 = uid7 = 0; for( idx=0; idx<224; idx++) { uid1=(uid1<<1)|(uid2>>31); uid2=(uid2<<1)|(uid3>>31); uid3=(uid3<<1)|(uid4>>31); uid4=(uid4<<1)|(uid5>>31); uid5=(uid5<<1)|(uid6>>31); uid6=(uid6<<1)|(uid7>>31); if (showbits[idx] == '0') uid7 = (uid7<<1) | 0; else uid7 = (uid7<<1) | 1; } PrintAndLog("UID=%s (%x%08x%08x%08x%08x%08x%08x)", showbits, uid1, uid2, uid3, uid4, uid5, uid6, uid7); } // Checking UID against next occurrences int failed = 0; for (; i + uidlen <= rawbit;) { failed = 0; for (bit = 0; bit < uidlen; bit++) { if (bits[bit] != rawbits[i++]) { failed = 1; break; } } if (failed == 1) { break; } times += 1; } PrintAndLog("Occurrences: %d (expected %d)", times, (rawbit - start) / uidlen); // Remodulating for tag cloning // HACK: 2015-01-04 this will have an impact on our new way of seening lf commands (demod) // since this changes graphbuffer data. GraphTraceLen = 32*uidlen; i = 0; int phase = 0; for (bit = 0; bit < uidlen; bit++) { if (bits[bit] == 0) { phase = 0; } else { phase = 1; } int j; for (j = 0; j < 32; j++) { GraphBuffer[i++] = phase; phase = !phase; } } RepaintGraphWindow(); return 1; } int CmdIndalaClone(const char *Cmd) { UsbCommand c; unsigned int uid1, uid2, uid3, uid4, uid5, uid6, uid7; uid1 = uid2 = uid3 = uid4 = uid5 = uid6 = uid7 = 0; int n = 0, i = 0; if (strchr(Cmd,'l') != 0) { while (sscanf(&Cmd[i++], "%1x", &n ) == 1) { uid1 = (uid1 << 4) | (uid2 >> 28); uid2 = (uid2 << 4) | (uid3 >> 28); uid3 = (uid3 << 4) | (uid4 >> 28); uid4 = (uid4 << 4) | (uid5 >> 28); uid5 = (uid5 << 4) | (uid6 >> 28); uid6 = (uid6 << 4) | (uid7 >> 28); uid7 = (uid7 << 4) | (n & 0xf); } PrintAndLog("Cloning 224bit tag with UID %x%08x%08x%08x%08x%08x%08x", uid1, uid2, uid3, uid4, uid5, uid6, uid7); c.cmd = CMD_INDALA_CLONE_TAG_L; c.d.asDwords[0] = uid1; c.d.asDwords[1] = uid2; c.d.asDwords[2] = uid3; c.d.asDwords[3] = uid4; c.d.asDwords[4] = uid5; c.d.asDwords[5] = uid6; c.d.asDwords[6] = uid7; } else { while (sscanf(&Cmd[i++], "%1x", &n ) == 1) { uid1 = (uid1 << 4) | (uid2 >> 28); uid2 = (uid2 << 4) | (n & 0xf); } PrintAndLog("Cloning 64bit tag with UID %x%08x", uid1, uid2); c.cmd = CMD_INDALA_CLONE_TAG; c.arg[0] = uid1; c.arg[1] = uid2; } SendCommand(&c); return 0; } int usage_lf_read() { PrintAndLog("Usage: lf read"); PrintAndLog("Options: "); PrintAndLog(" h This help"); PrintAndLog("This function takes no arguments. "); PrintAndLog("Use 'lf config' to set parameters."); return 0; } int usage_lf_snoop() { PrintAndLog("Usage: lf snoop"); PrintAndLog("Options: "); PrintAndLog(" h This help"); PrintAndLog("This function takes no arguments. "); PrintAndLog("Use 'lf config' to set parameters."); return 0; } int usage_lf_config() { PrintAndLog("Usage: lf config [H|] [b ] [d ] [a 0|1]"); PrintAndLog("Options: "); PrintAndLog(" h This help"); PrintAndLog(" L Low frequency (125 KHz)"); PrintAndLog(" H High frequency (134 KHz)"); PrintAndLog(" q Manually set divisor. 88-> 134KHz, 95-> 125 Hz"); PrintAndLog(" b Sets resolution of bits per sample. Default (max): 8"); PrintAndLog(" d Sets decimation. A value of N saves only 1 in N samples. Default: 1"); PrintAndLog(" a [0|1] Averaging - if set, will average the stored sample value when decimating. Default: 1"); PrintAndLog(" t Sets trigger threshold. 0 means no threshold"); PrintAndLog("Examples:"); PrintAndLog(" lf config b 8 L"); PrintAndLog(" Samples at 125KHz, 8bps."); PrintAndLog(" lf config H b 4 d 3"); PrintAndLog(" Samples at 134KHz, averages three samples into one, stored with "); PrintAndLog(" a resolution of 4 bits per sample."); PrintAndLog(" lf read"); PrintAndLog(" Performs a read (active field)"); PrintAndLog(" lf snoop"); PrintAndLog(" Performs a snoop (no active field)"); return 0; } int CmdLFSetConfig(const char *Cmd) { uint8_t divisor = 0;//Frequency divisor uint8_t bps = 0; // Bits per sample uint8_t decimation = 0; //How many to keep bool averaging = 1; // Defaults to true bool errors = FALSE; int trigger_threshold =-1;//Means no change uint8_t unsigned_trigg = 0; uint8_t cmdp =0; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'h': return usage_lf_config(); case 'H': divisor = 88; cmdp++; break; case 'L': divisor = 95; cmdp++; break; case 'q': errors |= param_getdec(Cmd,cmdp+1,&divisor); cmdp+=2; break; case 't': errors |= param_getdec(Cmd,cmdp+1,&unsigned_trigg); cmdp+=2; if(!errors) trigger_threshold = unsigned_trigg; break; case 'b': errors |= param_getdec(Cmd,cmdp+1,&bps); cmdp+=2; break; case 'd': errors |= param_getdec(Cmd,cmdp+1,&decimation); cmdp+=2; break; case 'a': averaging = param_getchar(Cmd,cmdp+1) == '1'; cmdp+=2; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = 1; break; } if(errors) break; } if(cmdp == 0) { errors = 1;// No args } //Validations if(errors) { return usage_lf_config(); } //Bps is limited to 8, so fits in lower half of arg1 if(bps >> 8) bps = 8; sample_config config = { decimation,bps,averaging,divisor,trigger_threshold }; //Averaging is a flag on high-bit of arg[1] UsbCommand c = {CMD_SET_LF_SAMPLING_CONFIG}; memcpy(c.d.asBytes,&config,sizeof(sample_config)); SendCommand(&c); return 0; } int CmdLFRead(const char *Cmd) { uint8_t cmdp =0; if(param_getchar(Cmd, cmdp) == 'h') { return usage_lf_read(); } //And ship it to device UsbCommand c = {CMD_ACQUIRE_RAW_ADC_SAMPLES_125K}; SendCommand(&c); WaitForResponse(CMD_ACK,NULL); return 0; } int CmdLFSnoop(const char *Cmd) { uint8_t cmdp =0; if(param_getchar(Cmd, cmdp) == 'h') { return usage_lf_snoop(); } UsbCommand c = {CMD_LF_SNOOP_RAW_ADC_SAMPLES}; SendCommand(&c); WaitForResponse(CMD_ACK,NULL); return 0; } static void ChkBitstream(const char *str) { int i; /* convert to bitstream if necessary */ for (i = 0; i < (int)(GraphTraceLen / 2); i++){ if (GraphBuffer[i] > 1 || GraphBuffer[i] < 0) { CmdBitstream(str); break; } } } //appears to attempt to simulate manchester int CmdLFSim(const char *Cmd) { int i,j; static int gap; sscanf(Cmd, "%i", &gap); /* convert to bitstream if necessary */ ChkBitstream(Cmd); //can send 512 bits at a time (1 byte sent per bit...) printf("Sending [%d bytes]", GraphTraceLen); for (i = 0; i < GraphTraceLen; i += USB_CMD_DATA_SIZE) { UsbCommand c={CMD_DOWNLOADED_SIM_SAMPLES_125K, {i, 0, 0}}; for (j = 0; j < USB_CMD_DATA_SIZE; j++) { c.d.asBytes[j] = GraphBuffer[i+j]; } SendCommand(&c); WaitForResponse(CMD_ACK,NULL); printf("."); } printf("\n"); PrintAndLog("Starting to simulate"); UsbCommand c = {CMD_SIMULATE_TAG_125K, {GraphTraceLen, gap, 0}}; SendCommand(&c); return 0; } int usage_lf_simfsk(void) { //print help PrintAndLog("Usage: lf simfsk [c ] [i] [H ] [L ] [d ]"); PrintAndLog("Options: "); PrintAndLog(" h This help"); PrintAndLog(" c Manually set clock - can autodetect if using DemodBuffer"); PrintAndLog(" i invert data"); PrintAndLog(" H Manually set the larger Field Clock"); PrintAndLog(" L Manually set the smaller Field Clock"); //PrintAndLog(" s TBD- -to enable a gap between playback repetitions - default: no gap"); PrintAndLog(" d Data to sim as hex - omit to sim from DemodBuffer"); PrintAndLog("\n NOTE: if you set one clock manually set them all manually"); return 0; } int usage_lf_simask(void) { //print help PrintAndLog("Usage: lf simask [c ] [i] [m|r] [s] [d ]"); PrintAndLog("Options: "); PrintAndLog(" h This help"); PrintAndLog(" c Manually set clock - can autodetect if using DemodBuffer"); PrintAndLog(" i invert data"); PrintAndLog(" m sim ask/manchester"); PrintAndLog(" r sim ask/raw"); PrintAndLog(" s TBD- -to enable a gap between playback repetitions - default: no gap"); PrintAndLog(" d Data to sim as hex - omit to sim from DemodBuffer"); return 0; } int usage_lf_simpsk(void) { //print help PrintAndLog("Usage: lf simpsk [1|2|3] [c ] [i] [r ] [d ]"); PrintAndLog("Options: "); PrintAndLog(" h This help"); PrintAndLog(" c Manually set clock - can autodetect if using DemodBuffer"); PrintAndLog(" i invert data"); PrintAndLog(" 1 set PSK1 (default)"); PrintAndLog(" 2 set PSK2"); PrintAndLog(" 3 set PSK3"); PrintAndLog(" r 2|4|8 are valid carriers: default = 2"); PrintAndLog(" d Data to sim as hex - omit to sim from DemodBuffer"); return 0; } // by marshmellow - sim ask data given clock, fcHigh, fcLow, invert // - allow pull data from DemodBuffer int CmdLFfskSim(const char *Cmd) { //might be able to autodetect FC and clock from Graphbuffer if using demod buffer //will need FChigh, FClow, Clock, and bitstream uint8_t fcHigh=0, fcLow=0, clk=0; uint8_t invert=0; bool errors = FALSE; char hexData[32] = {0x00}; // store entered hex data uint8_t data[255] = {0x00}; int dataLen = 0; uint8_t cmdp = 0; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'h': return usage_lf_simfsk(); case 'i': invert = 1; cmdp++; break; case 'c': errors |= param_getdec(Cmd,cmdp+1,&clk); cmdp+=2; break; case 'H': errors |= param_getdec(Cmd,cmdp+1,&fcHigh); cmdp+=2; break; case 'L': errors |= param_getdec(Cmd,cmdp+1,&fcLow); cmdp+=2; break; //case 's': // separator=1; // cmdp++; // break; case 'd': dataLen = param_getstr(Cmd, cmdp+1, hexData); if (dataLen==0) { errors=TRUE; } else { dataLen = hextobinarray((char *)data, hexData); } if (dataLen==0) errors=TRUE; if (errors) PrintAndLog ("Error getting hex data"); cmdp+=2; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = TRUE; break; } if(errors) break; } if(cmdp == 0 && DemodBufferLen == 0) { errors = TRUE;// No args } //Validations if(errors) { return usage_lf_simfsk(); } if (dataLen == 0){ //using DemodBuffer if (clk==0 || fcHigh==0 || fcLow==0){ //manual settings must set them all uint8_t ans = fskClocks(&fcHigh, &fcLow, &clk, 0); if (ans==0){ if (!fcHigh) fcHigh=10; if (!fcLow) fcLow=8; if (!clk) clk=50; } } } else { setDemodBuf(data, dataLen, 0); } if (clk == 0) clk = 50; if (fcHigh == 0) fcHigh = 10; if (fcLow == 0) fcLow = 8; uint16_t arg1, arg2; arg1 = fcHigh << 8 | fcLow; arg2 = invert << 8 | clk; UsbCommand c = {CMD_FSK_SIM_TAG, {arg1, arg2, DemodBufferLen}}; if (DemodBufferLen > USB_CMD_DATA_SIZE) { PrintAndLog("DemodBuffer too long for current implementation - length: %d - max: %d", DemodBufferLen, USB_CMD_DATA_SIZE); } memcpy(c.d.asBytes, DemodBuffer, DemodBufferLen); SendCommand(&c); return 0; } // by marshmellow - sim ask data given clock, invert, manchester or raw, separator // - allow pull data from DemodBuffer int CmdLFaskSim(const char *Cmd) { //autodetect clock from Graphbuffer if using demod buffer //will need clock, invert, manchester/raw as m or r, separator as s, and bitstream uint8_t manchester = 1, separator = 0; //char cmdp = Cmd[0], par3='m', par4=0; uint8_t clk=0, invert=0; bool errors = FALSE; char hexData[32] = {0x00}; uint8_t data[255]= {0x00}; // store entered hex data int dataLen = 0; uint8_t cmdp = 0; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'h': return usage_lf_simask(); case 'i': invert = 1; cmdp++; break; case 'c': errors |= param_getdec(Cmd,cmdp+1,&clk); cmdp+=2; break; case 'm': manchester=1; cmdp++; break; case 'r': manchester=0; cmdp++; break; case 's': separator=1; cmdp++; break; case 'd': dataLen = param_getstr(Cmd, cmdp+1, hexData); if (dataLen==0) { errors=TRUE; } else { dataLen = hextobinarray((char *)data, hexData); } if (dataLen==0) errors=TRUE; if (errors) PrintAndLog ("Error getting hex data, datalen: %d",dataLen); cmdp+=2; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = TRUE; break; } if(errors) break; } if(cmdp == 0 && DemodBufferLen == 0) { errors = TRUE;// No args } //Validations if(errors) { return usage_lf_simask(); } if (dataLen == 0){ //using DemodBuffer if (clk == 0) clk = GetAskClock("0", false, false); } else { setDemodBuf(data, dataLen, 0); } if (clk == 0) clk = 64; if (manchester == 0) clk = clk/2; //askraw needs to double the clock speed uint16_t arg1, arg2; size_t size=DemodBufferLen; arg1 = clk << 8 | manchester; arg2 = invert << 8 | separator; if (size > USB_CMD_DATA_SIZE) { PrintAndLog("DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE); size = USB_CMD_DATA_SIZE; } UsbCommand c = {CMD_ASK_SIM_TAG, {arg1, arg2, size}}; PrintAndLog("preparing to sim ask data: %d bits", size); memcpy(c.d.asBytes, DemodBuffer, size); SendCommand(&c); return 0; } // by marshmellow - sim psk data given carrier, clock, invert // - allow pull data from DemodBuffer or parameters int CmdLFpskSim(const char *Cmd) { //might be able to autodetect FC and clock from Graphbuffer if using demod buffer //will need carrier, Clock, and bitstream uint8_t carrier=0, clk=0; uint8_t invert=0; bool errors = FALSE; char hexData[32] = {0x00}; // store entered hex data uint8_t data[255] = {0x00}; int dataLen = 0; uint8_t cmdp = 0; uint8_t pskType = 1; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'h': return usage_lf_simpsk(); case 'i': invert = 1; cmdp++; break; case 'c': errors |= param_getdec(Cmd,cmdp+1,&clk); cmdp+=2; break; case 'r': errors |= param_getdec(Cmd,cmdp+1,&carrier); cmdp+=2; break; case '1': pskType=1; cmdp++; break; case '2': pskType=2; cmdp++; break; case '3': pskType=3; cmdp++; break; case 'd': dataLen = param_getstr(Cmd, cmdp+1, hexData); if (dataLen==0) { errors=TRUE; } else { dataLen = hextobinarray((char *)data, hexData); } if (dataLen==0) errors=TRUE; if (errors) PrintAndLog ("Error getting hex data"); cmdp+=2; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = TRUE; break; } if (errors) break; } if (cmdp == 0 && DemodBufferLen == 0) { errors = TRUE;// No args } //Validations if (errors) { return usage_lf_simpsk(); } if (dataLen == 0){ //using DemodBuffer PrintAndLog("Getting Clocks"); if (clk==0) clk = GetPskClock("", FALSE, FALSE); PrintAndLog("clk: %d",clk); if (!carrier) carrier = GetPskCarrier("", FALSE, FALSE); PrintAndLog("carrier: %d", carrier); } else { setDemodBuf(data, dataLen, 0); } if (clk <= 0) clk = 32; if (carrier == 0) carrier = 2; if (pskType != 1){ if (pskType == 2){ //need to convert psk2 to psk1 data before sim psk2TOpsk1(DemodBuffer, DemodBufferLen); } else { PrintAndLog("Sorry, PSK3 not yet available"); } } uint16_t arg1, arg2; arg1 = clk << 8 | carrier; arg2 = invert; UsbCommand c = {CMD_PSK_SIM_TAG, {arg1, arg2, DemodBufferLen}}; if (DemodBufferLen > USB_CMD_DATA_SIZE) { PrintAndLog("DemodBuffer too long for current implementation - length: %d - max: %d", DemodBufferLen, USB_CMD_DATA_SIZE); } PrintAndLog("DEBUG: Sending DemodBuffer Length: %d", DemodBufferLen); memcpy(c.d.asBytes, DemodBuffer, DemodBufferLen); SendCommand(&c); return 0; } int CmdLFSimBidir(const char *Cmd) { // Set ADC to twice the carrier for a slight supersampling // HACK: not implemented in ARMSRC. PrintAndLog("Not implemented yet."); UsbCommand c = {CMD_LF_SIMULATE_BIDIR, {47, 384, 0}}; SendCommand(&c); return 0; } /* simulate an LF Manchester encoded tag with specified bitstream, clock rate and inter-id gap */ int CmdLFSimManchester(const char *Cmd) { static int clock, gap; static char data[1024], gapstring[8]; sscanf(Cmd, "%i %s %i", &clock, &data[0], &gap); ClearGraph(0); for (int i = 0; i < strlen(data) ; ++i) AppendGraph(0, clock, data[i]- '0'); CmdManchesterMod(""); RepaintGraphWindow(); sprintf(&gapstring[0], "%i", gap); CmdLFSim(gapstring); return 0; } int CmdVchDemod(const char *Cmd) { // Is this the entire sync pattern, or does this also include some // data bits that happen to be the same everywhere? That would be // lovely to know. static const int SyncPattern[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, }; // So first, we correlate for the sync pattern, and mark that. int bestCorrel = 0, bestPos = 0; int i; // It does us no good to find the sync pattern, with fewer than // 2048 samples after it... for (i = 0; i < (GraphTraceLen-2048); i++) { int sum = 0; int j; for (j = 0; j < arraylen(SyncPattern); j++) { sum += GraphBuffer[i+j]*SyncPattern[j]; } if (sum > bestCorrel) { bestCorrel = sum; bestPos = i; } } PrintAndLog("best sync at %d [metric %d]", bestPos, bestCorrel); char bits[257]; bits[256] = '\0'; int worst = INT_MAX; int worstPos = 0; for (i = 0; i < 2048; i += 8) { int sum = 0; int j; for (j = 0; j < 8; j++) { sum += GraphBuffer[bestPos+i+j]; } if (sum < 0) { bits[i/8] = '.'; } else { bits[i/8] = '1'; } if(abs(sum) < worst) { worst = abs(sum); worstPos = i; } } PrintAndLog("bits:"); PrintAndLog("%s", bits); PrintAndLog("worst metric: %d at pos %d", worst, worstPos); if (strcmp(Cmd, "clone")==0) { GraphTraceLen = 0; char *s; for(s = bits; *s; s++) { int j; for(j = 0; j < 16; j++) { GraphBuffer[GraphTraceLen++] = (*s == '1') ? 1 : 0; } } RepaintGraphWindow(); } return 0; } //by marshmellow int CmdLFfind(const char *Cmd) { int ans=0; char cmdp = param_getchar(Cmd, 0); char testRaw = param_getchar(Cmd, 1); if (strlen(Cmd) > 2 || cmdp == 'h' || cmdp == 'H') { PrintAndLog("Usage: lf search <0|1> [u]"); PrintAndLog(" , if not set, try reading data from tag."); PrintAndLog(" [Search for Unknown tags] , if not set, reads only known tags."); PrintAndLog(""); PrintAndLog(" sample: lf search = try reading data from tag & search for known tags"); PrintAndLog(" : lf search 1 = use data from GraphBuffer & search for known tags"); PrintAndLog(" : lf search u = try reading data from tag & search for known and unknown tags"); PrintAndLog(" : lf search 1 u = use data from GraphBuffer & search for known and unknown tags"); return 0; } if (!offline && (cmdp != '1')){ ans=CmdLFRead(""); ans=CmdSamples("20000"); } else if (GraphTraceLen < 1000) { PrintAndLog("Data in Graphbuffer was too small."); return 0; } if (cmdp == 'u' || cmdp == 'U') testRaw = 'u'; PrintAndLog("NOTE: some demods output possible binary\n if it finds something that looks like a tag"); PrintAndLog("False Positives ARE possible\n"); PrintAndLog("\nChecking for known tags:\n"); ans=CmdFSKdemodIO(""); if (ans>0) { PrintAndLog("\nValid IO Prox ID Found!"); return 1; } ans=CmdFSKdemodPyramid(""); if (ans>0) { PrintAndLog("\nValid Pyramid ID Found!"); return 1; } ans=CmdFSKdemodParadox(""); if (ans>0) { PrintAndLog("\nValid Paradox ID Found!"); return 1; } ans=CmdFSKdemodAWID(""); if (ans>0) { PrintAndLog("\nValid AWID ID Found!"); return 1; } ans=CmdFSKdemodHID(""); if (ans>0) { PrintAndLog("\nValid HID Prox ID Found!"); return 1; } //add psk and indala ans=CmdIndalaDecode(""); if (ans>0) { PrintAndLog("\nValid Indala ID Found!"); return 1; } ans=CmdAskEM410xDemod(""); if (ans>0) { PrintAndLog("\nValid EM410x ID Found!"); return 1; } ans=CmdG_Prox_II_Demod(""); if (ans>0) { PrintAndLog("\nValid G Prox II ID Found!"); return 1; } PrintAndLog("\nNo Known Tags Found!\n"); if (testRaw=='u' || testRaw=='U'){ //test unknown tag formats (raw mode) PrintAndLog("\nChecking for Unknown tags:\n"); ans=CmdDetectClockRate("f"); if (ans != 0){ //fsk ans=CmdFSKrawdemod(""); if (ans>0) { PrintAndLog("\nUnknown FSK Modulated Tag Found!"); return 1; } } ans=Cmdaskmandemod(""); if (ans>0) { PrintAndLog("\nUnknown ASK Modulated and Manchester encoded Tag Found!"); return 1; } ans=CmdPSK1rawDemod(""); if (ans>0) { PrintAndLog("Possible unknown PSK1 Modulated Tag Found above!\n\nCould also be PSK2 - try 'data psk2rawdemod'"); PrintAndLog("\nCould also be PSK3 - [currently not supported]"); PrintAndLog("\nCould also be NRZ - try 'data nrzrawdemod"); return 1; } PrintAndLog("\nNo Data Found!\n"); } return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"cmdread", CmdLFCommandRead, 0, " <'0' period> <'1' period> ['h'] -- Modulate LF reader field to send command before read (all periods in microseconds) (option 'h' for 134)"}, {"em4x", CmdLFEM4X, 1, "{ EM4X RFIDs... }"}, {"config", CmdLFSetConfig, 0, "Set config for LF sampling, bit/sample, decimation, frequency"}, {"flexdemod", CmdFlexdemod, 1, "Demodulate samples for FlexPass"}, {"hid", CmdLFHID, 1, "{ HID RFIDs... }"}, {"io", CmdLFIO, 1, "{ ioProx tags... }"}, {"indalademod", CmdIndalaDemod, 1, "['224'] -- Demodulate samples for Indala 64 bit UID (option '224' for 224 bit)"}, {"indalaclone", CmdIndalaClone, 0, " ['l']-- Clone Indala to T55x7 (tag must be in antenna)(UID in HEX)(option 'l' for 224 UID"}, {"read", CmdLFRead, 0, "Read 125/134 kHz LF ID-only tag. Do 'lf read h' for help"}, {"search", CmdLFfind, 1, "[offline] ['u'] Read and Search for valid known tag (in offline mode it you can load first then search) - 'u' to search for unknown tags"}, {"sim", CmdLFSim, 0, "[GAP] -- Simulate LF tag from buffer with optional GAP (in microseconds)"}, {"simask", CmdLFaskSim, 0, "[clock] [invert <1|0>] [manchester/raw <'m'|'r'>] [trs separator 's'] [d ] -- Simulate LF ASK tag from demodbuffer or input"}, {"simfsk", CmdLFfskSim, 0, "[c ] [i] [H ] [L ] [d ] -- Simulate LF FSK tag from demodbuffer or input"}, {"simpsk", CmdLFpskSim, 0, "[1|2|3] [c ] [i] [r ] [d ] -- Simulate LF PSK tag from demodbuffer or input"}, {"simbidir", CmdLFSimBidir, 0, "Simulate LF tag (with bidirectional data transmission between reader and tag)"}, {"simman", CmdLFSimManchester, 0, " [GAP] Simulate arbitrary Manchester LF tag"}, {"snoop", CmdLFSnoop, 0, "['l'|'h'|] [trigger threshold]-- Snoop LF (l:125khz, h:134khz)"}, {"ti", CmdLFTI, 1, "{ TI RFIDs... }"}, {"hitag", CmdLFHitag, 1, "{ Hitag tags and transponders... }"}, {"vchdemod", CmdVchDemod, 1, "['clone'] -- Demodulate samples for VeriChip"}, {"t55xx", CmdLFT55XX, 1, "{ T55xx RFIDs... }"}, {"pcf7931", CmdLFPCF7931, 1, "{PCF7931 RFIDs...}"}, {NULL, NULL, 0, NULL} }; int CmdLF(const char *Cmd) { CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }