mirror of
https://github.com/Proxmark/proxmark3.git
synced 2024-11-11 18:17:46 +08:00
3fd7fce4ac
also fixed a save_restore issue with grid alignments now save_restoreGB() saves/restores offset values added macro enumeration of SAVE vs RESTORE for save_restore commands.
1226 lines
37 KiB
C
1226 lines
37 KiB
C
//-----------------------------------------------------------------------------
|
|
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
|
|
//
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// Low frequency EM4x commands
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <inttypes.h>
|
|
#include "cmdlfem4x.h"
|
|
#include "proxmark3.h"
|
|
#include "ui.h"
|
|
#include "util.h"
|
|
#include "data.h"
|
|
#include "graph.h"
|
|
#include "cmdparser.h"
|
|
#include "cmddata.h"
|
|
#include "cmdlf.h"
|
|
#include "cmdmain.h"
|
|
#include "lfdemod.h"
|
|
#include "protocols.h"
|
|
|
|
uint64_t g_em410xId=0;
|
|
|
|
static int CmdHelp(const char *Cmd);
|
|
|
|
int CmdEMdemodASK(const char *Cmd)
|
|
{
|
|
char cmdp = param_getchar(Cmd, 0);
|
|
int findone = (cmdp == '1') ? 1 : 0;
|
|
UsbCommand c={CMD_EM410X_DEMOD};
|
|
c.arg[0]=findone;
|
|
SendCommand(&c);
|
|
return 0;
|
|
}
|
|
|
|
//by marshmellow
|
|
//print 64 bit EM410x ID in multiple formats
|
|
void printEM410x(uint32_t hi, uint64_t id)
|
|
{
|
|
if (id || hi){
|
|
uint64_t iii=1;
|
|
uint64_t id2lo=0;
|
|
uint32_t ii=0;
|
|
uint32_t i=0;
|
|
for (ii=5; ii>0;ii--){
|
|
for (i=0;i<8;i++){
|
|
id2lo=(id2lo<<1LL) | ((id & (iii << (i+((ii-1)*8)))) >> (i+((ii-1)*8)));
|
|
}
|
|
}
|
|
if (hi){
|
|
//output 88 bit em id
|
|
PrintAndLog("\nEM TAG ID : %06X%016" PRIX64, hi, id);
|
|
} else{
|
|
//output 40 bit em id
|
|
PrintAndLog("\nEM TAG ID : %010" PRIX64, id);
|
|
PrintAndLog("\nPossible de-scramble patterns");
|
|
PrintAndLog("Unique TAG ID : %010" PRIX64, id2lo);
|
|
PrintAndLog("HoneyWell IdentKey {");
|
|
PrintAndLog("DEZ 8 : %08" PRIu64,id & 0xFFFFFF);
|
|
PrintAndLog("DEZ 10 : %010" PRIu64,id & 0xFFFFFFFF);
|
|
PrintAndLog("DEZ 5.5 : %05lld.%05" PRIu64,(id>>16LL) & 0xFFFF,(id & 0xFFFF));
|
|
PrintAndLog("DEZ 3.5A : %03lld.%05" PRIu64,(id>>32ll),(id & 0xFFFF));
|
|
PrintAndLog("DEZ 3.5B : %03lld.%05" PRIu64,(id & 0xFF000000) >> 24,(id & 0xFFFF));
|
|
PrintAndLog("DEZ 3.5C : %03lld.%05" PRIu64,(id & 0xFF0000) >> 16,(id & 0xFFFF));
|
|
PrintAndLog("DEZ 14/IK2 : %014" PRIu64,id);
|
|
PrintAndLog("DEZ 15/IK3 : %015" PRIu64,id2lo);
|
|
PrintAndLog("DEZ 20/ZK : %02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64,
|
|
(id2lo & 0xf000000000) >> 36,
|
|
(id2lo & 0x0f00000000) >> 32,
|
|
(id2lo & 0x00f0000000) >> 28,
|
|
(id2lo & 0x000f000000) >> 24,
|
|
(id2lo & 0x0000f00000) >> 20,
|
|
(id2lo & 0x00000f0000) >> 16,
|
|
(id2lo & 0x000000f000) >> 12,
|
|
(id2lo & 0x0000000f00) >> 8,
|
|
(id2lo & 0x00000000f0) >> 4,
|
|
(id2lo & 0x000000000f)
|
|
);
|
|
uint64_t paxton = (((id>>32) << 24) | (id & 0xffffff)) + 0x143e00;
|
|
PrintAndLog("}\nOther : %05" PRIu64 "_%03" PRIu64 "_%08" PRIu64 "",(id&0xFFFF),((id>>16LL) & 0xFF),(id & 0xFFFFFF));
|
|
PrintAndLog("Pattern Paxton : %" PRIu64 " [0x%" PRIX64 "]", paxton, paxton);
|
|
|
|
uint32_t p1id = (id & 0xFFFFFF);
|
|
uint8_t arr[32] = {0x00};
|
|
int i =0;
|
|
int j = 23;
|
|
for (; i < 24; ++i, --j ){
|
|
arr[i] = (p1id >> i) & 1;
|
|
}
|
|
|
|
uint32_t p1 = 0;
|
|
|
|
p1 |= arr[23] << 21;
|
|
p1 |= arr[22] << 23;
|
|
p1 |= arr[21] << 20;
|
|
p1 |= arr[20] << 22;
|
|
|
|
p1 |= arr[19] << 18;
|
|
p1 |= arr[18] << 16;
|
|
p1 |= arr[17] << 19;
|
|
p1 |= arr[16] << 17;
|
|
|
|
p1 |= arr[15] << 13;
|
|
p1 |= arr[14] << 15;
|
|
p1 |= arr[13] << 12;
|
|
p1 |= arr[12] << 14;
|
|
|
|
p1 |= arr[11] << 6;
|
|
p1 |= arr[10] << 2;
|
|
p1 |= arr[9] << 7;
|
|
p1 |= arr[8] << 1;
|
|
|
|
p1 |= arr[7] << 0;
|
|
p1 |= arr[6] << 8;
|
|
p1 |= arr[5] << 11;
|
|
p1 |= arr[4] << 3;
|
|
|
|
p1 |= arr[3] << 10;
|
|
p1 |= arr[2] << 4;
|
|
p1 |= arr[1] << 5;
|
|
p1 |= arr[0] << 9;
|
|
PrintAndLog("Pattern 1 : %d [0x%X]", p1, p1);
|
|
|
|
uint16_t sebury1 = id & 0xFFFF;
|
|
uint8_t sebury2 = (id >> 16) & 0x7F;
|
|
uint32_t sebury3 = id & 0x7FFFFF;
|
|
PrintAndLog("Pattern Sebury : %d %d %d [0x%X 0x%X 0x%X]", sebury1, sebury2, sebury3, sebury1, sebury2, sebury3);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Read the ID of an EM410x tag.
|
|
* Format:
|
|
* 1111 1111 1 <-- standard non-repeatable header
|
|
* XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
|
|
* ....
|
|
* CCCC <-- each bit here is parity for the 10 bits above in corresponding column
|
|
* 0 <-- stop bit, end of tag
|
|
*/
|
|
int AskEm410xDecode(bool verbose, uint32_t *hi, uint64_t *lo )
|
|
{
|
|
size_t idx = 0;
|
|
uint8_t BitStream[512]={0};
|
|
size_t BitLen = sizeof(BitStream);
|
|
if ( !getDemodBuf(BitStream, &BitLen) ) return 0;
|
|
|
|
if (Em410xDecode(BitStream, &BitLen, &idx, hi, lo)) {
|
|
//set GraphBuffer for clone or sim command
|
|
setDemodBuf(DemodBuffer, (BitLen==40) ? 64 : 128, idx+1);
|
|
setClockGrid(g_DemodClock, g_DemodStartIdx + ((idx+1)*g_DemodClock));
|
|
|
|
if (g_debugMode) {
|
|
PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, BitLen);
|
|
printDemodBuff();
|
|
}
|
|
if (verbose) {
|
|
PrintAndLog("EM410x pattern found: ");
|
|
printEM410x(*hi, *lo);
|
|
g_em410xId = *lo;
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
//askdemod then call Em410xdecode
|
|
int AskEm410xDemod(const char *Cmd, uint32_t *hi, uint64_t *lo, bool verbose)
|
|
{
|
|
bool st = true;
|
|
if (!ASKDemod_ext(Cmd, false, false, 1, &st)) return 0;
|
|
return AskEm410xDecode(verbose, hi, lo);
|
|
}
|
|
|
|
//by marshmellow
|
|
//takes 3 arguments - clock, invert and maxErr as integers
|
|
//attempts to demodulate ask while decoding manchester
|
|
//prints binary found and saves in graphbuffer for further commands
|
|
int CmdAskEM410xDemod(const char *Cmd)
|
|
{
|
|
char cmdp = param_getchar(Cmd, 0);
|
|
if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
|
|
PrintAndLog("Usage: lf em 410xdemod [clock] <0|1> [maxError]");
|
|
PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
|
|
PrintAndLog(" <invert>, 1 for invert output");
|
|
PrintAndLog(" [set maximum allowed errors], default = 100.");
|
|
PrintAndLog("");
|
|
PrintAndLog(" sample: lf em 410xdemod = demod an EM410x Tag ID from GraphBuffer");
|
|
PrintAndLog(" : lf em 410xdemod 32 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32");
|
|
PrintAndLog(" : lf em 410xdemod 32 1 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32 and inverting data");
|
|
PrintAndLog(" : lf em 410xdemod 1 = demod an EM410x Tag ID from GraphBuffer while inverting data");
|
|
PrintAndLog(" : lf em 410xdemod 64 1 0 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/64 and inverting data and allowing 0 demod errors");
|
|
return 0;
|
|
}
|
|
uint64_t lo = 0;
|
|
uint32_t hi = 0;
|
|
return AskEm410xDemod(Cmd, &hi, &lo, true);
|
|
}
|
|
|
|
int usage_lf_em410x_sim(void) {
|
|
PrintAndLog("Simulating EM410x tag");
|
|
PrintAndLog("");
|
|
PrintAndLog("Usage: lf em 410xsim [h] <uid> <clock>");
|
|
PrintAndLog("Options:");
|
|
PrintAndLog(" h - this help");
|
|
PrintAndLog(" uid - uid (10 HEX symbols)");
|
|
PrintAndLog(" clock - clock (32|64) (optional)");
|
|
PrintAndLog("samples:");
|
|
PrintAndLog(" lf em 410xsim 0F0368568B");
|
|
PrintAndLog(" lf em 410xsim 0F0368568B 32");
|
|
return 0;
|
|
}
|
|
|
|
// emulate an EM410X tag
|
|
int CmdEM410xSim(const char *Cmd)
|
|
{
|
|
int i, n, j, binary[4], parity[4];
|
|
|
|
char cmdp = param_getchar(Cmd, 0);
|
|
uint8_t uid[5] = {0x00};
|
|
|
|
if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim();
|
|
/* clock is 64 in EM410x tags */
|
|
uint8_t clock = 64;
|
|
|
|
if (param_gethex(Cmd, 0, uid, 10)) {
|
|
PrintAndLog("UID must include 10 HEX symbols");
|
|
return 0;
|
|
}
|
|
param_getdec(Cmd,1, &clock);
|
|
|
|
PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
|
|
PrintAndLog("Press pm3-button to about simulation");
|
|
|
|
|
|
/* clear our graph */
|
|
ClearGraph(0);
|
|
|
|
/* write 9 start bits */
|
|
for (i = 0; i < 9; i++)
|
|
AppendGraph(0, clock, 1);
|
|
|
|
/* for each hex char */
|
|
parity[0] = parity[1] = parity[2] = parity[3] = 0;
|
|
for (i = 0; i < 10; i++)
|
|
{
|
|
/* read each hex char */
|
|
sscanf(&Cmd[i], "%1x", &n);
|
|
for (j = 3; j >= 0; j--, n/= 2)
|
|
binary[j] = n % 2;
|
|
|
|
/* append each bit */
|
|
AppendGraph(0, clock, binary[0]);
|
|
AppendGraph(0, clock, binary[1]);
|
|
AppendGraph(0, clock, binary[2]);
|
|
AppendGraph(0, clock, binary[3]);
|
|
|
|
/* append parity bit */
|
|
AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
|
|
|
|
/* keep track of column parity */
|
|
parity[0] ^= binary[0];
|
|
parity[1] ^= binary[1];
|
|
parity[2] ^= binary[2];
|
|
parity[3] ^= binary[3];
|
|
}
|
|
|
|
/* parity columns */
|
|
AppendGraph(0, clock, parity[0]);
|
|
AppendGraph(0, clock, parity[1]);
|
|
AppendGraph(0, clock, parity[2]);
|
|
AppendGraph(0, clock, parity[3]);
|
|
|
|
/* stop bit */
|
|
AppendGraph(1, clock, 0);
|
|
|
|
CmdLFSim("0"); //240 start_gap.
|
|
return 0;
|
|
}
|
|
|
|
/* Function is equivalent of lf read + data samples + em410xread
|
|
* looped until an EM410x tag is detected
|
|
*
|
|
* Why is CmdSamples("16000")?
|
|
* TBD: Auto-grow sample size based on detected sample rate. IE: If the
|
|
* rate gets lower, then grow the number of samples
|
|
* Changed by martin, 4000 x 4 = 16000,
|
|
* see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
|
|
*
|
|
* EDIT -- capture enough to get 2 complete preambles at the slowest data rate known to be used (rf/64) (64*64*2+9 = 8201) marshmellow
|
|
*/
|
|
int CmdEM410xWatch(const char *Cmd)
|
|
{
|
|
do {
|
|
if (ukbhit()) {
|
|
printf("\naborted via keyboard!\n");
|
|
break;
|
|
}
|
|
lf_read(true, 8201);
|
|
} while (!CmdAskEM410xDemod(""));
|
|
|
|
return 0;
|
|
}
|
|
|
|
//currently only supports manchester modulations
|
|
int CmdEM410xWatchnSpoof(const char *Cmd)
|
|
{
|
|
CmdEM410xWatch(Cmd);
|
|
PrintAndLog("# Replaying captured ID: %010"PRIx64, g_em410xId);
|
|
CmdLFaskSim("");
|
|
return 0;
|
|
}
|
|
|
|
int CmdEM410xWrite(const char *Cmd)
|
|
{
|
|
uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
|
|
int card = 0xFF; // invalid card value
|
|
unsigned int clock = 0; // invalid clock value
|
|
|
|
sscanf(Cmd, "%" SCNx64 " %d %d", &id, &card, &clock);
|
|
|
|
// Check ID
|
|
if (id == 0xFFFFFFFFFFFFFFFF) {
|
|
PrintAndLog("Error! ID is required.\n");
|
|
return 0;
|
|
}
|
|
if (id >= 0x10000000000) {
|
|
PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n");
|
|
return 0;
|
|
}
|
|
|
|
// Check Card
|
|
if (card == 0xFF) {
|
|
PrintAndLog("Error! Card type required.\n");
|
|
return 0;
|
|
}
|
|
if (card < 0) {
|
|
PrintAndLog("Error! Bad card type selected.\n");
|
|
return 0;
|
|
}
|
|
|
|
// Check Clock
|
|
// Default: 64
|
|
if (clock == 0)
|
|
clock = 64;
|
|
|
|
// Allowed clock rates: 16, 32, 40 and 64
|
|
if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) {
|
|
PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock);
|
|
return 0;
|
|
}
|
|
|
|
if (card == 1) {
|
|
PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock);
|
|
// NOTE: We really should pass the clock in as a separate argument, but to
|
|
// provide for backwards-compatibility for older firmware, and to avoid
|
|
// having to add another argument to CMD_EM410X_WRITE_TAG, we just store
|
|
// the clock rate in bits 8-15 of the card value
|
|
card = (card & 0xFF) | ((clock << 8) & 0xFF00);
|
|
} else if (card == 0) {
|
|
PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
|
|
card = (card & 0xFF) | ((clock << 8) & 0xFF00);
|
|
} else {
|
|
PrintAndLog("Error! Bad card type selected.\n");
|
|
return 0;
|
|
}
|
|
|
|
UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
|
|
SendCommand(&c);
|
|
|
|
return 0;
|
|
}
|
|
|
|
//**************** Start of EM4x50 Code ************************
|
|
bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
|
|
{
|
|
if (rows*cols>size) return false;
|
|
uint8_t colP=0;
|
|
//assume last col is a parity and do not test
|
|
for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
|
|
for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
|
|
colP ^= BitStream[(rowNum*cols)+colNum];
|
|
}
|
|
if (colP != pType) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
|
|
{
|
|
if (rows*cols>size) return false;
|
|
uint8_t rowP=0;
|
|
//assume last row is a parity row and do not test
|
|
for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
|
|
for (uint8_t colNum = 0; colNum < cols; colNum++) {
|
|
rowP ^= BitStream[(rowNum*cols)+colNum];
|
|
}
|
|
if (rowP != pType) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
|
|
{
|
|
if (size<45) return 0;
|
|
uint32_t code = bytebits_to_byte(BitStream,8);
|
|
code = code<<8 | bytebits_to_byte(BitStream+9,8);
|
|
code = code<<8 | bytebits_to_byte(BitStream+18,8);
|
|
code = code<<8 | bytebits_to_byte(BitStream+27,8);
|
|
if (verbose || g_debugMode){
|
|
for (uint8_t i = 0; i<5; i++){
|
|
if (i == 4) PrintAndLog(""); //parity byte spacer
|
|
PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x",
|
|
BitStream[i*9],
|
|
BitStream[i*9+1],
|
|
BitStream[i*9+2],
|
|
BitStream[i*9+3],
|
|
BitStream[i*9+4],
|
|
BitStream[i*9+5],
|
|
BitStream[i*9+6],
|
|
BitStream[i*9+7],
|
|
BitStream[i*9+8],
|
|
bytebits_to_byte(BitStream+i*9,8)
|
|
);
|
|
}
|
|
if (pTest)
|
|
PrintAndLog("Parity Passed");
|
|
else
|
|
PrintAndLog("Parity Failed");
|
|
}
|
|
return code;
|
|
}
|
|
/* Read the transmitted data of an EM4x50 tag from the graphbuffer
|
|
* Format:
|
|
*
|
|
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
|
|
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
|
|
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
|
|
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
|
|
* CCCCCCCC <- column parity bits
|
|
* 0 <- stop bit
|
|
* LW <- Listen Window
|
|
*
|
|
* This pattern repeats for every block of data being transmitted.
|
|
* Transmission starts with two Listen Windows (LW - a modulated
|
|
* pattern of 320 cycles each (32/32/128/64/64)).
|
|
*
|
|
* Note that this data may or may not be the UID. It is whatever data
|
|
* is stored in the blocks defined in the control word First and Last
|
|
* Word Read values. UID is stored in block 32.
|
|
*/
|
|
//completed by Marshmellow
|
|
int EM4x50Read(const char *Cmd, bool verbose)
|
|
{
|
|
uint8_t fndClk[] = {8,16,32,40,50,64,128};
|
|
int clk = 0;
|
|
int invert = 0;
|
|
int tol = 0;
|
|
int i, j, startblock, skip, block, start, end, low, high, minClk;
|
|
bool complete = false;
|
|
int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
|
|
uint32_t Code[6];
|
|
char tmp[6];
|
|
char tmp2[20];
|
|
int phaseoff;
|
|
high = low = 0;
|
|
memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
|
|
|
|
// get user entry if any
|
|
sscanf(Cmd, "%i %i", &clk, &invert);
|
|
|
|
// first get high and low values
|
|
for (i = 0; i < GraphTraceLen; i++) {
|
|
if (GraphBuffer[i] > high)
|
|
high = GraphBuffer[i];
|
|
else if (GraphBuffer[i] < low)
|
|
low = GraphBuffer[i];
|
|
}
|
|
|
|
i = 0;
|
|
j = 0;
|
|
minClk = 255;
|
|
// get to first full low to prime loop and skip incomplete first pulse
|
|
while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
|
|
++i;
|
|
while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
|
|
++i;
|
|
skip = i;
|
|
|
|
// populate tmpbuff buffer with pulse lengths
|
|
while (i < GraphTraceLen) {
|
|
// measure from low to low
|
|
while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
|
|
++i;
|
|
start= i;
|
|
while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
|
|
++i;
|
|
while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
|
|
++i;
|
|
if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
|
|
break;
|
|
}
|
|
tmpbuff[j++]= i - start;
|
|
if (i-start < minClk && i < GraphTraceLen) {
|
|
minClk = i - start;
|
|
}
|
|
}
|
|
// set clock
|
|
if (!clk) {
|
|
for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
|
|
tol = fndClk[clkCnt]/8;
|
|
if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
|
|
clk=fndClk[clkCnt];
|
|
break;
|
|
}
|
|
}
|
|
if (!clk) return 0;
|
|
} else tol = clk/8;
|
|
|
|
// look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
|
|
start = -1;
|
|
for (i= 0; i < j - 4 ; ++i) {
|
|
skip += tmpbuff[i];
|
|
if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
|
|
if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
|
|
if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
|
|
if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
|
|
{
|
|
start= i + 4;
|
|
break;
|
|
}
|
|
}
|
|
startblock = i + 4;
|
|
|
|
// skip over the remainder of LW
|
|
skip += tmpbuff[i+1] + tmpbuff[i+2] + clk;
|
|
if (tmpbuff[i+3]>clk)
|
|
phaseoff = tmpbuff[i+3]-clk;
|
|
else
|
|
phaseoff = 0;
|
|
// now do it again to find the end
|
|
end = skip;
|
|
for (i += 3; i < j - 4 ; ++i) {
|
|
end += tmpbuff[i];
|
|
if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
|
|
if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
|
|
if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
|
|
if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
|
|
{
|
|
complete= true;
|
|
break;
|
|
}
|
|
}
|
|
end = i;
|
|
// report back
|
|
if (verbose || g_debugMode) {
|
|
if (start >= 0) {
|
|
PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
|
|
} else {
|
|
PrintAndLog("No data found!, clock tried:%d",clk);
|
|
PrintAndLog("Try again with more samples.");
|
|
PrintAndLog(" or after a 'data askedge' command to clean up the read");
|
|
return 0;
|
|
}
|
|
} else if (start < 0) return 0;
|
|
start = skip;
|
|
snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47);
|
|
// save GraphBuffer - to restore it later
|
|
save_restoreGB(GRAPH_SAVE);
|
|
// get rid of leading crap
|
|
snprintf(tmp, sizeof(tmp), "%i", skip);
|
|
CmdLtrim(tmp);
|
|
bool pTest;
|
|
bool AllPTest = true;
|
|
// now work through remaining buffer printing out data blocks
|
|
block = 0;
|
|
i = startblock;
|
|
while (block < 6) {
|
|
if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block);
|
|
skip = phaseoff;
|
|
|
|
// look for LW before start of next block
|
|
for ( ; i < j - 4 ; ++i) {
|
|
skip += tmpbuff[i];
|
|
if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
|
|
if (tmpbuff[i+1] >= clk-tol)
|
|
break;
|
|
}
|
|
if (i >= j-4) break; //next LW not found
|
|
skip += clk;
|
|
if (tmpbuff[i+1]>clk)
|
|
phaseoff = tmpbuff[i+1]-clk;
|
|
else
|
|
phaseoff = 0;
|
|
i += 2;
|
|
if (ASKDemod(tmp2, false, false, 1) < 1) {
|
|
save_restoreGB(GRAPH_RESTORE);
|
|
return 0;
|
|
}
|
|
//set DemodBufferLen to just one block
|
|
DemodBufferLen = skip/clk;
|
|
//test parities
|
|
pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0);
|
|
pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0);
|
|
AllPTest &= pTest;
|
|
//get output
|
|
Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
|
|
if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk);
|
|
//skip to start of next block
|
|
snprintf(tmp,sizeof(tmp),"%i",skip);
|
|
CmdLtrim(tmp);
|
|
block++;
|
|
if (i >= end) break; //in case chip doesn't output 6 blocks
|
|
}
|
|
//print full code:
|
|
if (verbose || g_debugMode || AllPTest){
|
|
if (!complete) {
|
|
PrintAndLog("*** Warning!");
|
|
PrintAndLog("Partial data - no end found!");
|
|
PrintAndLog("Try again with more samples.");
|
|
}
|
|
PrintAndLog("Found data at sample: %i - using clock: %i", start, clk);
|
|
end = block;
|
|
for (block=0; block < end; block++){
|
|
PrintAndLog("Block %d: %08x",block,Code[block]);
|
|
}
|
|
if (AllPTest) {
|
|
PrintAndLog("Parities Passed");
|
|
} else {
|
|
PrintAndLog("Parities Failed");
|
|
PrintAndLog("Try cleaning the read samples with 'data askedge'");
|
|
}
|
|
}
|
|
|
|
//restore GraphBuffer
|
|
save_restoreGB(GRAPH_RESTORE);
|
|
return (int)AllPTest;
|
|
}
|
|
|
|
int CmdEM4x50Read(const char *Cmd)
|
|
{
|
|
return EM4x50Read(Cmd, true);
|
|
}
|
|
|
|
//**************** Start of EM4x05/EM4x69 Code ************************
|
|
int usage_lf_em_read(void) {
|
|
PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. ");
|
|
PrintAndLog("");
|
|
PrintAndLog("Usage: lf em 4x05readword [h] <address> <pwd>");
|
|
PrintAndLog("Options:");
|
|
PrintAndLog(" h - this help");
|
|
PrintAndLog(" address - memory address to read. (0-15)");
|
|
PrintAndLog(" pwd - password (hex) (optional)");
|
|
PrintAndLog("samples:");
|
|
PrintAndLog(" lf em 4x05readword 1");
|
|
PrintAndLog(" lf em 4x05readword 1 11223344");
|
|
return 0;
|
|
}
|
|
|
|
// for command responses from em4x05 or em4x69
|
|
// download samples from device and copy them to the Graphbuffer
|
|
bool downloadSamplesEM() {
|
|
// 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
|
|
uint8_t got[6000];
|
|
GetFromBigBuf(got, sizeof(got), 0);
|
|
if ( !WaitForResponseTimeout(CMD_ACK, NULL, 4000) ) {
|
|
PrintAndLog("command execution time out");
|
|
return false;
|
|
}
|
|
setGraphBuf(got, sizeof(got));
|
|
return true;
|
|
}
|
|
|
|
bool EM4x05testDemodReadData(uint32_t *word, bool readCmd) {
|
|
// em4x05/em4x69 command response preamble is 00001010
|
|
// skip first two 0 bits as they might have been missed in the demod
|
|
uint8_t preamble[] = {0,0,1,0,1,0};
|
|
size_t startIdx = 0;
|
|
|
|
// set size to 20 to only test first 14 positions for the preamble or less if not a read command
|
|
size_t size = (readCmd) ? 20 : 11;
|
|
// sanity check
|
|
size = (size > DemodBufferLen) ? DemodBufferLen : size;
|
|
// test preamble
|
|
if ( !preambleSearchEx(DemodBuffer, preamble, sizeof(preamble), &size, &startIdx, true) ) {
|
|
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", startIdx);
|
|
return false;
|
|
}
|
|
// if this is a readword command, get the read bytes and test the parities
|
|
if (readCmd) {
|
|
if (!EM_EndParityTest(DemodBuffer + startIdx + sizeof(preamble), 45, 5, 9, 0)) {
|
|
if (g_debugMode) PrintAndLog("DEBUG: Error - End Parity check failed");
|
|
return false;
|
|
}
|
|
// test for even parity bits and remove them. (leave out the end row of parities so 36 bits)
|
|
if ( removeParity(DemodBuffer, startIdx + sizeof(preamble),9,0,36) == 0 ) {
|
|
if (g_debugMode) PrintAndLog("DEBUG: Error - Parity not detected");
|
|
return false;
|
|
}
|
|
|
|
setDemodBuf(DemodBuffer, 32, 0);
|
|
//setClockGrid(0,0);
|
|
|
|
*word = bytebits_to_byteLSBF(DemodBuffer, 32);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE
|
|
// should cover 90% of known used configs
|
|
// the rest will need to be manually demoded for now...
|
|
int demodEM4x05resp(uint32_t *word, bool readCmd) {
|
|
int ans = 0;
|
|
|
|
// test for FSK wave (easiest to 99% ID)
|
|
if (GetFskClock("", false, false)) {
|
|
//valid fsk clocks found
|
|
ans = FSKrawDemod("0 0", false);
|
|
if (!ans) {
|
|
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: FSK Demod failed, ans: %d", ans);
|
|
} else {
|
|
if (EM4x05testDemodReadData(word, readCmd)) {
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
// PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... )
|
|
ans = GetPskClock("", false, false);
|
|
if (ans>0) {
|
|
//try psk1
|
|
ans = PSKDemod("0 0 6", false);
|
|
if (!ans) {
|
|
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
|
|
} else {
|
|
if (EM4x05testDemodReadData(word, readCmd)) {
|
|
return 1;
|
|
} else {
|
|
//try psk2
|
|
psk1TOpsk2(DemodBuffer, DemodBufferLen);
|
|
if (EM4x05testDemodReadData(word, readCmd)) {
|
|
return 1;
|
|
}
|
|
}
|
|
//try psk1 inverted
|
|
ans = PSKDemod("0 1 6", false);
|
|
if (!ans) {
|
|
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
|
|
} else {
|
|
if (EM4x05testDemodReadData(word, readCmd)) {
|
|
return 1;
|
|
} else {
|
|
//try psk2
|
|
psk1TOpsk2(DemodBuffer, DemodBufferLen);
|
|
if (EM4x05testDemodReadData(word, readCmd)) {
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// manchester is more common than biphase... try first
|
|
bool stcheck = false;
|
|
// try manchester - NOTE: ST only applies to T55x7 tags.
|
|
ans = ASKDemod_ext("0,0,1", false, false, 1, &stcheck);
|
|
if (!ans) {
|
|
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/Manchester Demod failed, ans: %d", ans);
|
|
} else {
|
|
if (EM4x05testDemodReadData(word, readCmd)) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
//try biphase
|
|
ans = ASKbiphaseDemod("0 0 1", false);
|
|
if (!ans) {
|
|
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
|
|
} else {
|
|
if (EM4x05testDemodReadData(word, readCmd)) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
//try diphase (differential biphase or inverted)
|
|
ans = ASKbiphaseDemod("0 1 1", false);
|
|
if (!ans) {
|
|
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
|
|
} else {
|
|
if (EM4x05testDemodReadData(word, readCmd)) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *wordData) {
|
|
UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}};
|
|
clearCommandBuffer();
|
|
SendCommand(&c);
|
|
UsbCommand resp;
|
|
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){
|
|
PrintAndLog("Command timed out");
|
|
return -1;
|
|
}
|
|
if ( !downloadSamplesEM() ) {
|
|
return -1;
|
|
}
|
|
int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000;
|
|
if (graphJustNoise(GraphBuffer, testLen)) {
|
|
PrintAndLog("no tag not found");
|
|
return -1;
|
|
}
|
|
//attempt demod:
|
|
return demodEM4x05resp(wordData, true);
|
|
}
|
|
|
|
int EM4x05ReadWord(uint8_t addr, uint32_t pwd, bool usePwd) {
|
|
uint32_t wordData = 0;
|
|
int success = EM4x05ReadWord_ext(addr, pwd, usePwd, &wordData);
|
|
if (success == 1)
|
|
PrintAndLog("%s Address %02d | %08X", (addr>13) ? "Lock":" Got",addr,wordData);
|
|
else
|
|
PrintAndLog("Read Address %02d | failed",addr);
|
|
|
|
return success;
|
|
}
|
|
|
|
int CmdEM4x05ReadWord(const char *Cmd) {
|
|
uint8_t addr;
|
|
uint32_t pwd;
|
|
bool usePwd = false;
|
|
uint8_t ctmp = param_getchar(Cmd, 0);
|
|
if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_read();
|
|
|
|
addr = param_get8ex(Cmd, 0, 50, 10);
|
|
// for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
|
|
pwd = param_get32ex(Cmd, 1, 1, 16);
|
|
|
|
if ( (addr > 15) ) {
|
|
PrintAndLog("Address must be between 0 and 15");
|
|
return 1;
|
|
}
|
|
if ( pwd == 1 ) {
|
|
PrintAndLog("Reading address %02u", addr);
|
|
} else {
|
|
usePwd = true;
|
|
PrintAndLog("Reading address %02u | password %08X", addr, pwd);
|
|
}
|
|
|
|
return EM4x05ReadWord(addr, pwd, usePwd);
|
|
}
|
|
|
|
int usage_lf_em_dump(void) {
|
|
PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. ");
|
|
PrintAndLog("");
|
|
PrintAndLog("Usage: lf em 4x05dump [h] <pwd>");
|
|
PrintAndLog("Options:");
|
|
PrintAndLog(" h - this help");
|
|
PrintAndLog(" pwd - password (hex) (optional)");
|
|
PrintAndLog("samples:");
|
|
PrintAndLog(" lf em 4x05dump");
|
|
PrintAndLog(" lf em 4x05dump 11223344");
|
|
return 0;
|
|
}
|
|
|
|
int CmdEM4x05dump(const char *Cmd) {
|
|
uint8_t addr = 0;
|
|
uint32_t pwd;
|
|
bool usePwd = false;
|
|
uint8_t ctmp = param_getchar(Cmd, 0);
|
|
if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
|
|
|
|
// for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
|
|
pwd = param_get32ex(Cmd, 0, 1, 16);
|
|
|
|
if ( pwd != 1 ) {
|
|
usePwd = true;
|
|
}
|
|
int success = 1;
|
|
for (; addr < 16; addr++) {
|
|
if (addr == 2) {
|
|
if (usePwd) {
|
|
PrintAndLog(" PWD Address %02u | %08X",addr,pwd);
|
|
} else {
|
|
PrintAndLog(" PWD Address 02 | cannot read");
|
|
}
|
|
} else {
|
|
success &= EM4x05ReadWord(addr, pwd, usePwd);
|
|
}
|
|
}
|
|
|
|
return success;
|
|
}
|
|
|
|
|
|
int usage_lf_em_write(void) {
|
|
PrintAndLog("Write EM4x05/EM4x69. Tag must be on antenna. ");
|
|
PrintAndLog("");
|
|
PrintAndLog("Usage: lf em 4x05writeword [h] a <address> d <data> p <pwd> [s] [i]");
|
|
PrintAndLog("Options:");
|
|
PrintAndLog(" h - this help");
|
|
PrintAndLog(" a <address> - memory address to write to. (0-15)");
|
|
PrintAndLog(" d <data> - data to write (hex)");
|
|
PrintAndLog(" p <pwd> - password (hex) (optional)");
|
|
PrintAndLog(" s - swap the data bit order before write");
|
|
PrintAndLog(" i - invert the data bits before write");
|
|
PrintAndLog("samples:");
|
|
PrintAndLog(" lf em 4x05writeword a 5 d 11223344");
|
|
PrintAndLog(" lf em 4x05writeword a 5 p deadc0de d 11223344 s i");
|
|
return 0;
|
|
}
|
|
|
|
// note: em4x05 doesn't have a way to invert data output so we must invert the data prior to writing
|
|
// it if invertion is needed. (example FSK2a vs FSK)
|
|
// also em4x05 requires swapping word data when compared to the data used for t55xx chips.
|
|
int EM4x05WriteWord(uint8_t addr, uint32_t data, uint32_t pwd, bool usePwd, bool swap, bool invert) {
|
|
if (swap) data = SwapBits(data, 32);
|
|
|
|
if (invert) data ^= 0xFFFFFFFF;
|
|
|
|
if ( (addr > 15) ) {
|
|
PrintAndLog("Address must be between 0 and 15");
|
|
return -1;
|
|
}
|
|
if ( !usePwd ) {
|
|
PrintAndLog("Writing address %d data %08X", addr, data);
|
|
} else {
|
|
PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd);
|
|
}
|
|
|
|
uint16_t flag = (addr << 8 ) | usePwd;
|
|
|
|
UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}};
|
|
clearCommandBuffer();
|
|
SendCommand(&c);
|
|
UsbCommand resp;
|
|
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){
|
|
PrintAndLog("Error occurred, device did not respond during write operation.");
|
|
return -1;
|
|
}
|
|
if ( !downloadSamplesEM() ) {
|
|
return -1;
|
|
}
|
|
//check response for 00001010 for write confirmation!
|
|
//attempt demod:
|
|
uint32_t dummy = 0;
|
|
int result = demodEM4x05resp(&dummy,false);
|
|
if (result == 1) {
|
|
PrintAndLog("Write Verified");
|
|
} else {
|
|
PrintAndLog("Write could not be verified");
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int CmdEM4x05WriteWord(const char *Cmd) {
|
|
bool errors = false;
|
|
bool usePwd = false;
|
|
uint32_t data = 0xFFFFFFFF;
|
|
uint32_t pwd = 0xFFFFFFFF;
|
|
bool swap = false;
|
|
bool invert = false;
|
|
uint8_t addr = 16; // default to invalid address
|
|
bool gotData = false;
|
|
char cmdp = 0;
|
|
while(param_getchar(Cmd, cmdp) != 0x00)
|
|
{
|
|
switch(param_getchar(Cmd, cmdp))
|
|
{
|
|
case 'h':
|
|
case 'H':
|
|
return usage_lf_em_write();
|
|
case 'a':
|
|
case 'A':
|
|
addr = param_get8ex(Cmd, cmdp+1, 16, 10);
|
|
cmdp += 2;
|
|
break;
|
|
case 'd':
|
|
case 'D':
|
|
data = param_get32ex(Cmd, cmdp+1, 0, 16);
|
|
gotData = true;
|
|
cmdp += 2;
|
|
break;
|
|
case 'i':
|
|
case 'I':
|
|
invert = true;
|
|
cmdp++;
|
|
break;
|
|
case 'p':
|
|
case 'P':
|
|
pwd = param_get32ex(Cmd, cmdp+1, 1, 16);
|
|
if (pwd == 1) {
|
|
PrintAndLog("invalid pwd");
|
|
errors = true;
|
|
}
|
|
usePwd = true;
|
|
cmdp += 2;
|
|
break;
|
|
case 's':
|
|
case 'S':
|
|
swap = true;
|
|
cmdp++;
|
|
break;
|
|
default:
|
|
PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
|
|
errors = true;
|
|
break;
|
|
}
|
|
if(errors) break;
|
|
}
|
|
//Validations
|
|
if(errors) return usage_lf_em_write();
|
|
|
|
if ( strlen(Cmd) == 0 ) return usage_lf_em_write();
|
|
|
|
if (!gotData) {
|
|
PrintAndLog("You must enter the data you want to write");
|
|
return usage_lf_em_write();
|
|
}
|
|
return EM4x05WriteWord(addr, data, pwd, usePwd, swap, invert);
|
|
}
|
|
|
|
void printEM4x05config(uint32_t wordData) {
|
|
uint16_t datarate = EM4x05_GET_BITRATE(wordData);
|
|
uint8_t encoder = ((wordData >> 6) & 0xF);
|
|
char enc[14];
|
|
memset(enc,0,sizeof(enc));
|
|
|
|
uint8_t PSKcf = (wordData >> 10) & 0x3;
|
|
char cf[10];
|
|
memset(cf,0,sizeof(cf));
|
|
uint8_t delay = (wordData >> 12) & 0x3;
|
|
char cdelay[33];
|
|
memset(cdelay,0,sizeof(cdelay));
|
|
uint8_t numblks = EM4x05_GET_NUM_BLOCKS(wordData);
|
|
uint8_t LWR = numblks+5-1; //last word read
|
|
switch (encoder) {
|
|
case 0: snprintf(enc,sizeof(enc),"NRZ"); break;
|
|
case 1: snprintf(enc,sizeof(enc),"Manchester"); break;
|
|
case 2: snprintf(enc,sizeof(enc),"Biphase"); break;
|
|
case 3: snprintf(enc,sizeof(enc),"Miller"); break;
|
|
case 4: snprintf(enc,sizeof(enc),"PSK1"); break;
|
|
case 5: snprintf(enc,sizeof(enc),"PSK2"); break;
|
|
case 6: snprintf(enc,sizeof(enc),"PSK3"); break;
|
|
case 7: snprintf(enc,sizeof(enc),"Unknown"); break;
|
|
case 8: snprintf(enc,sizeof(enc),"FSK1"); break;
|
|
case 9: snprintf(enc,sizeof(enc),"FSK2"); break;
|
|
default: snprintf(enc,sizeof(enc),"Unknown"); break;
|
|
}
|
|
|
|
switch (PSKcf) {
|
|
case 0: snprintf(cf,sizeof(cf),"RF/2"); break;
|
|
case 1: snprintf(cf,sizeof(cf),"RF/8"); break;
|
|
case 2: snprintf(cf,sizeof(cf),"RF/4"); break;
|
|
case 3: snprintf(cf,sizeof(cf),"unknown"); break;
|
|
}
|
|
|
|
switch (delay) {
|
|
case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
|
|
case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break;
|
|
case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break;
|
|
case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
|
|
}
|
|
uint8_t readLogin = (wordData & EM4x05_READ_LOGIN_REQ)>>18;
|
|
uint8_t readHKL = (wordData & EM4x05_READ_HK_LOGIN_REQ)>>19;
|
|
uint8_t writeLogin = (wordData & EM4x05_WRITE_LOGIN_REQ)>>20;
|
|
uint8_t writeHKL = (wordData & EM4x05_WRITE_HK_LOGIN_REQ)>>21;
|
|
uint8_t raw = (wordData & EM4x05_READ_AFTER_WRITE)>>22;
|
|
uint8_t disable = (wordData & EM4x05_DISABLE_ALLOWED)>>23;
|
|
uint8_t rtf = (wordData & EM4x05_READER_TALK_FIRST)>>24;
|
|
uint8_t pigeon = (wordData & (1<<26))>>26;
|
|
PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData);
|
|
PrintAndLog("Config Breakdown:");
|
|
PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate);
|
|
PrintAndLog(" Encoder: %u | %s", encoder, enc);
|
|
PrintAndLog(" PSK CF: %u | %s", PSKcf, cf);
|
|
PrintAndLog(" Delay: %u | %s", delay, cdelay);
|
|
PrintAndLog(" LastWordR: %02u | Address of last word for default read - meaning %u blocks are output", LWR, numblks);
|
|
PrintAndLog(" ReadLogin: %u | Read Login is %s", readLogin, readLogin ? "Required" : "Not Required");
|
|
PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", readHKL, readHKL ? "Required" : "Not Required");
|
|
PrintAndLog("WriteLogin: %u | Write Login is %s", writeLogin, writeLogin ? "Required" : "Not Required");
|
|
PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", writeHKL, writeHKL ? "Required" : "Not Required");
|
|
PrintAndLog(" R.A.W.: %u | Read After Write is %s", raw, raw ? "On" : "Off");
|
|
PrintAndLog(" Disable: %u | Disable Command is %s", disable, disable ? "Accepted" : "Not Accepted");
|
|
PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", rtf, rtf ? "Enabled" : "Disabled");
|
|
PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", pigeon, pigeon ? "Enabled" : "Disabled");
|
|
}
|
|
|
|
void printEM4x05info(uint8_t chipType, uint8_t cap, uint16_t custCode, uint32_t serial) {
|
|
switch (chipType) {
|
|
case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break;
|
|
case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break;
|
|
case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break;
|
|
//add more here when known
|
|
default: PrintAndLog(" Chip Type: %u Unknown", chipType); break;
|
|
}
|
|
|
|
switch (cap) {
|
|
case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break;
|
|
case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break;
|
|
case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break;
|
|
case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break;
|
|
default: PrintAndLog(" Cap Type: %u | unknown",cap); break;
|
|
}
|
|
|
|
PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown");
|
|
if (serial != 0) {
|
|
PrintAndLog("\n Serial #: %08X\n", serial);
|
|
}
|
|
}
|
|
|
|
void printEM4x05ProtectionBits(uint32_t wordData) {
|
|
for (uint8_t i = 0; i < 15; i++) {
|
|
PrintAndLog(" Word: %02u | %s", i, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
|
|
if (i==14) {
|
|
PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
|
|
}
|
|
}
|
|
}
|
|
|
|
//quick test for EM4x05/EM4x69 tag
|
|
bool EM4x05Block0Test(uint32_t *wordData) {
|
|
if (EM4x05ReadWord_ext(0,0,false,wordData) == 1) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int CmdEM4x05info(const char *Cmd) {
|
|
//uint8_t addr = 0;
|
|
uint32_t pwd;
|
|
uint32_t wordData = 0;
|
|
bool usePwd = false;
|
|
uint8_t ctmp = param_getchar(Cmd, 0);
|
|
if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
|
|
|
|
// for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
|
|
pwd = param_get32ex(Cmd, 0, 1, 16);
|
|
|
|
if ( pwd != 1 ) {
|
|
usePwd = true;
|
|
}
|
|
|
|
// read word 0 (chip info)
|
|
// block 0 can be read even without a password.
|
|
if ( !EM4x05Block0Test(&wordData) )
|
|
return -1;
|
|
|
|
uint8_t chipType = (wordData >> 1) & 0xF;
|
|
uint8_t cap = (wordData >> 5) & 3;
|
|
uint16_t custCode = (wordData >> 9) & 0x3FF;
|
|
|
|
// read word 1 (serial #) doesn't need pwd
|
|
wordData = 0;
|
|
if (EM4x05ReadWord_ext(1, 0, false, &wordData) != 1) {
|
|
//failed, but continue anyway...
|
|
}
|
|
printEM4x05info(chipType, cap, custCode, wordData);
|
|
|
|
// read word 4 (config block)
|
|
// needs password if one is set
|
|
wordData = 0;
|
|
if ( EM4x05ReadWord_ext(4, pwd, usePwd, &wordData) != 1 ) {
|
|
//failed
|
|
PrintAndLog("Config block read failed - might be password protected.");
|
|
return 0;
|
|
}
|
|
printEM4x05config(wordData);
|
|
|
|
// read word 14 and 15 to see which is being used for the protection bits
|
|
wordData = 0;
|
|
if ( EM4x05ReadWord_ext(14, pwd, usePwd, &wordData) != 1 ) {
|
|
//failed
|
|
return 0;
|
|
}
|
|
// if status bit says this is not the used protection word
|
|
if (!(wordData & 0x8000)) {
|
|
if ( EM4x05ReadWord_ext(15, pwd, usePwd, &wordData) != 1 ) {
|
|
//failed
|
|
return 0;
|
|
}
|
|
}
|
|
if (!(wordData & 0x8000)) {
|
|
//something went wrong
|
|
return 0;
|
|
}
|
|
printEM4x05ProtectionBits(wordData);
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
static command_t CommandTable[] =
|
|
{
|
|
{"help", CmdHelp, 1, "This help"},
|
|
{"410xread", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
|
|
{"410xdemod", CmdAskEM410xDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Demodulate an EM410x tag from GraphBuffer (args optional)"},
|
|
{"410xsim", CmdEM410xSim, 0, "<UID> [clock rate] -- Simulate EM410x tag"},
|
|
{"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
|
|
{"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
|
|
{"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
|
|
{"4x05dump", CmdEM4x05dump, 0, "(pwd) -- Read EM4x05/EM4x69 all word data"},
|
|
{"4x05info", CmdEM4x05info, 0, "(pwd) -- Get info from EM4x05/EM4x69 tag"},
|
|
{"4x05readword", CmdEM4x05ReadWord, 0, "<Word> (pwd) -- Read EM4x05/EM4x69 word data"},
|
|
{"4x05writeword", CmdEM4x05WriteWord, 0, "<Word> <data> (pwd) -- Write EM4x05/EM4x69 word data"},
|
|
{"4x50read", CmdEM4x50Read, 1, "demod data from EM4x50 tag from the graph buffer"},
|
|
{NULL, NULL, 0, NULL}
|
|
};
|
|
|
|
int CmdLFEM4X(const char *Cmd)
|
|
{
|
|
CmdsParse(CommandTable, Cmd);
|
|
return 0;
|
|
}
|
|
|
|
int CmdHelp(const char *Cmd)
|
|
{
|
|
CmdsHelp(CommandTable);
|
|
return 0;
|
|
}
|