proxmark3/armsrc/util.c
Merlokbr@gmail.com 8f51ddb0bd 1. fixed send manchester
2. emulator commands select, authenticate, read block, write block works
3. nested authentication - not working (maybe next release)
4. small bugfixes
5. mifare1ksim - in alpha state!!! code not so clear!!!
2011-06-16 14:43:49 +00:00

303 lines
7.5 KiB
C

//-----------------------------------------------------------------------------
// Jonathan Westhues, Sept 2005
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Utility functions used in many places, not specific to any piece of code.
//-----------------------------------------------------------------------------
#include "proxmark3.h"
#include "util.h"
#include "string.h"
void num_to_bytes(uint64_t n, size_t len, uint8_t* dest)
{
while (len--) {
dest[len] = (uint8_t) n;
n >>= 8;
}
}
uint64_t bytes_to_num(uint8_t* src, size_t len)
{
uint64_t num = 0;
while (len--)
{
num = (num << 8) | (*src);
src++;
}
return num;
}
void LEDsoff()
{
LED_A_OFF();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
}
// LEDs: R(C) O(A) G(B) -- R(D) [1, 2, 4 and 8]
void LED(int led, int ms)
{
if (led & LED_RED)
LED_C_ON();
if (led & LED_ORANGE)
LED_A_ON();
if (led & LED_GREEN)
LED_B_ON();
if (led & LED_RED2)
LED_D_ON();
if (!ms)
return;
SpinDelay(ms);
if (led & LED_RED)
LED_C_OFF();
if (led & LED_ORANGE)
LED_A_OFF();
if (led & LED_GREEN)
LED_B_OFF();
if (led & LED_RED2)
LED_D_OFF();
}
// Determine if a button is double clicked, single clicked,
// not clicked, or held down (for ms || 1sec)
// In general, don't use this function unless you expect a
// double click, otherwise it will waste 500ms -- use BUTTON_HELD instead
int BUTTON_CLICKED(int ms)
{
// Up to 500ms in between clicks to mean a double click
int ticks = (48000 * (ms ? ms : 1000)) >> 10;
// If we're not even pressed, forget about it!
if (!BUTTON_PRESS())
return BUTTON_NO_CLICK;
// Borrow a PWM unit for my real-time clock
AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
// 48 MHz / 1024 gives 46.875 kHz
AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
int letoff = 0;
for(;;)
{
uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
// We haven't let off the button yet
if (!letoff)
{
// We just let it off!
if (!BUTTON_PRESS())
{
letoff = 1;
// reset our timer for 500ms
start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
ticks = (48000 * (500)) >> 10;
}
// Still haven't let it off
else
// Have we held down a full second?
if (now == (uint16_t)(start + ticks))
return BUTTON_HOLD;
}
// We already let off, did we click again?
else
// Sweet, double click!
if (BUTTON_PRESS())
return BUTTON_DOUBLE_CLICK;
// Have we ran out of time to double click?
else
if (now == (uint16_t)(start + ticks))
// At least we did a single click
return BUTTON_SINGLE_CLICK;
WDT_HIT();
}
// We should never get here
return BUTTON_ERROR;
}
// Determine if a button is held down
int BUTTON_HELD(int ms)
{
// If button is held for one second
int ticks = (48000 * (ms ? ms : 1000)) >> 10;
// If we're not even pressed, forget about it!
if (!BUTTON_PRESS())
return BUTTON_NO_CLICK;
// Borrow a PWM unit for my real-time clock
AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
// 48 MHz / 1024 gives 46.875 kHz
AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
for(;;)
{
uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
// As soon as our button let go, we didn't hold long enough
if (!BUTTON_PRESS())
return BUTTON_SINGLE_CLICK;
// Have we waited the full second?
else
if (now == (uint16_t)(start + ticks))
return BUTTON_HOLD;
WDT_HIT();
}
// We should never get here
return BUTTON_ERROR;
}
// attempt at high resolution microsecond timer
// beware: timer counts in 21.3uS increments (1024/48Mhz)
void SpinDelayUs(int us)
{
int ticks = (48*us) >> 10;
// Borrow a PWM unit for my real-time clock
AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
// 48 MHz / 1024 gives 46.875 kHz
AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
for(;;) {
uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
if (now == (uint16_t)(start + ticks))
return;
WDT_HIT();
}
}
void SpinDelay(int ms)
{
// convert to uS and call microsecond delay function
SpinDelayUs(ms*1000);
}
/* Similar to FpgaGatherVersion this formats stored version information
* into a string representation. It takes a pointer to the struct version_information,
* verifies the magic properties, then stores a formatted string, prefixed by
* prefix in dst.
*/
void FormatVersionInformation(char *dst, int len, const char *prefix, void *version_information)
{
struct version_information *v = (struct version_information*)version_information;
dst[0] = 0;
strncat(dst, prefix, len);
if(v->magic != VERSION_INFORMATION_MAGIC) {
strncat(dst, "Missing/Invalid version information", len);
return;
}
if(v->versionversion != 1) {
strncat(dst, "Version information not understood", len);
return;
}
if(!v->present) {
strncat(dst, "Version information not available", len);
return;
}
strncat(dst, v->svnversion, len);
if(v->clean == 0) {
strncat(dst, "-unclean", len);
} else if(v->clean == 2) {
strncat(dst, "-suspect", len);
}
strncat(dst, " ", len);
strncat(dst, v->buildtime, len);
}
// -------------------------------------------------------------------------
// timer lib
// -------------------------------------------------------------------------
// test procedure:
//
// ti = GetTickCount();
// SpinDelay(1000);
// ti = GetTickCount() - ti;
// Dbprintf("timer(1s): %d t=%d", ti, GetTickCount());
void StartTickCount()
{
// must be 0x40, but on my cpu - included divider is optimal
// 0x20 - 1 ms / bit
// 0x40 - 2 ms / bit
AT91C_BASE_RTTC->RTTC_RTMR = AT91C_RTTC_RTTRST + 0x001D; // was 0x003B
}
/*
* Get the current count.
*/
uint32_t RAMFUNC GetTickCount(){
return AT91C_BASE_RTTC->RTTC_RTVR;// was * 2;
}
// -------------------------------------------------------------------------
// microseconds timer
// -------------------------------------------------------------------------
void StartCountUS()
{
AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
// AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC1XC1S_TIOA0;
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
// fast clock
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
AT91C_BASE_TC0->TC_RA = 1;
AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from timer 0
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN;
AT91C_BASE_TCB->TCB_BCR = 1;
}
uint32_t RAMFUNC GetCountUS(){
return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV / 15) * 10);
}
static uint32_t GlobalUsCounter = 0;
uint32_t RAMFUNC GetDeltaCountUS(){
uint32_t g_cnt = GetCountUS();
uint32_t g_res = g_cnt - GlobalUsCounter;
GlobalUsCounter = g_cnt;
return g_res;
}