proxmark3/client/cmdlf.c
marshmellow42 3fd7fce4ac new grid X offset calcs to fix some issues
also fixed a save_restore issue with grid alignments
now save_restoreGB() saves/restores offset values
added macro enumeration of SAVE vs RESTORE for save_restore commands.
2017-04-17 18:37:23 -04:00

1143 lines
32 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency commands
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <stdbool.h>
#include <stdint.h>
#include "proxmark3.h"
#include "cmdlf.h"
#include "lfdemod.h" // for psk2TOpsk1
#include "util.h" // for parsing cli command utils
#include "ui.h" // for show graph controls
#include "graph.h" // for graph data
#include "cmdparser.h" // for getting cli commands included in cmdmain.h
#include "cmdmain.h" // for sending cmds to device
#include "data.h" // for GetFromBigBuf
#include "cmddata.h" // for `lf search`
#include "cmdlfawid.h" // for awid menu
#include "cmdlfem4x.h" // for em4x menu
#include "cmdlfhid.h" // for hid menu
#include "cmdlfhitag.h" // for hitag menu
#include "cmdlfio.h" // for ioprox menu
#include "cmdlft55xx.h" // for t55xx menu
#include "cmdlfti.h" // for ti menu
#include "cmdlfpresco.h" // for presco menu
#include "cmdlfpcf7931.h"// for pcf7931 menu
#include "cmdlfpyramid.h"// for pyramid menu
#include "cmdlfviking.h" // for viking menu
#include "cmdlfcotag.h" // for COTAG menu
#include "cmdlfvisa2000.h" // for VISA2000 menu
#include "cmdlfindala.h" // for indala menu
#include "cmdlfgproxii.h"// for gproxii menu
#include "cmdlffdx.h" // for fdx-b menu
#include "cmdlfparadox.h"// for paradox menu
#include "cmdlfnexwatch.h"//for nexwatch menu
#include "cmdlfjablotron.h" //for jablotron menu
#include "cmdlfnoralsy.h"// for noralsy menu
#include "cmdlfsecurakey.h"//for securakey menu
bool g_lf_threshold_set = false;
static int CmdHelp(const char *Cmd);
int usage_lf_cmdread(void)
{
PrintAndLog("Usage: lf cmdread d <delay period> z <zero period> o <one period> c <cmdbytes> [H] ");
PrintAndLog("Options: ");
PrintAndLog(" h This help");
PrintAndLog(" L Low frequency (125 KHz)");
PrintAndLog(" H High frequency (134 KHz)");
PrintAndLog(" d <delay> delay OFF period");
PrintAndLog(" z <zero> time period ZERO");
PrintAndLog(" o <one> time period ONE");
PrintAndLog(" c <cmd> Command bytes");
PrintAndLog(" ************* All periods in microseconds");
PrintAndLog("Examples:");
PrintAndLog(" lf cmdread d 80 z 100 o 200 c 11000");
PrintAndLog(" lf cmdread d 80 z 100 o 100 c 11000 H");
return 0;
}
/* send a command before reading */
int CmdLFCommandRead(const char *Cmd)
{
static char dummy[3] = {0x20,0x00,0x00};
UsbCommand c = {CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K};
bool errors = false;
//uint8_t divisor = 95; //125khz
uint8_t cmdp = 0;
while(param_getchar(Cmd, cmdp) != 0x00)
{
switch(param_getchar(Cmd, cmdp))
{
case 'h':
return usage_lf_cmdread();
case 'H':
//divisor = 88;
dummy[1]='h';
cmdp++;
break;
case 'L':
cmdp++;
break;
case 'c':
param_getstr(Cmd, cmdp+1, (char *)&c.d.asBytes);
cmdp+=2;
break;
case 'd':
c.arg[0] = param_get32ex(Cmd, cmdp+1, 0, 10);
cmdp+=2;
break;
case 'z':
c.arg[1] = param_get32ex(Cmd, cmdp+1, 0, 10);
cmdp+=2;
break;
case 'o':
c.arg[2] = param_get32ex(Cmd, cmdp+1, 0, 10);
cmdp+=2;
break;
default:
PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = 1;
break;
}
if(errors) break;
}
// No args
if(cmdp == 0) errors = 1;
//Validations
if(errors) return usage_lf_cmdread();
// in case they specified 'H'
strcpy((char *)&c.d.asBytes + strlen((char *)c.d.asBytes), dummy);
clearCommandBuffer();
SendCommand(&c);
return 0;
}
int CmdFlexdemod(const char *Cmd)
{
int i;
for (i = 0; i < GraphTraceLen; ++i) {
if (GraphBuffer[i] < 0) {
GraphBuffer[i] = -1;
} else {
GraphBuffer[i] = 1;
}
}
#define LONG_WAIT 100
int start;
for (start = 0; start < GraphTraceLen - LONG_WAIT; start++) {
int first = GraphBuffer[start];
for (i = start; i < start + LONG_WAIT; i++) {
if (GraphBuffer[i] != first) {
break;
}
}
if (i == (start + LONG_WAIT)) {
break;
}
}
if (start == GraphTraceLen - LONG_WAIT) {
PrintAndLog("nothing to wait for");
return 0;
}
GraphBuffer[start] = 2;
GraphBuffer[start+1] = -2;
uint8_t bits[64] = {0x00};
int bit, sum;
i = start;
for (bit = 0; bit < 64; bit++) {
sum = 0;
for (int j = 0; j < 16; j++) {
sum += GraphBuffer[i++];
}
bits[bit] = (sum > 0) ? 1 : 0;
PrintAndLog("bit %d sum %d", bit, sum);
}
for (bit = 0; bit < 64; bit++) {
int j;
int sum = 0;
for (j = 0; j < 16; j++) {
sum += GraphBuffer[i++];
}
if (sum > 0 && bits[bit] != 1) {
PrintAndLog("oops1 at %d", bit);
}
if (sum < 0 && bits[bit] != 0) {
PrintAndLog("oops2 at %d", bit);
}
}
// HACK writing back to graphbuffer.
GraphTraceLen = 32*64;
i = 0;
int phase = 0;
for (bit = 0; bit < 64; bit++) {
phase = (bits[bit] == 0) ? 0 : 1;
int j;
for (j = 0; j < 32; j++) {
GraphBuffer[i++] = phase;
phase = !phase;
}
}
RepaintGraphWindow();
return 0;
}
int usage_lf_read(void)
{
PrintAndLog("Usage: lf read");
PrintAndLog("Options: ");
PrintAndLog(" h This help");
PrintAndLog(" s silent run no printout");
PrintAndLog(" [# samples] # samples to collect (optional)");
PrintAndLog("Use 'lf config' to set parameters.");
return 0;
}
int usage_lf_snoop(void)
{
PrintAndLog("Usage: lf snoop");
PrintAndLog("Options: ");
PrintAndLog(" h This help");
PrintAndLog("This function takes no arguments. ");
PrintAndLog("Use 'lf config' to set parameters.");
return 0;
}
int usage_lf_config(void)
{
PrintAndLog("Usage: lf config [H|<divisor>] [b <bps>] [d <decim>] [a 0|1]");
PrintAndLog("Options: ");
PrintAndLog(" h This help");
PrintAndLog(" L Low frequency (125 KHz)");
PrintAndLog(" H High frequency (134 KHz)");
PrintAndLog(" q <divisor> Manually set divisor. 88-> 134KHz, 95-> 125 Hz");
PrintAndLog(" b <bps> Sets resolution of bits per sample. Default (max): 8");
PrintAndLog(" d <decim> Sets decimation. A value of N saves only 1 in N samples. Default: 1");
PrintAndLog(" a [0|1] Averaging - if set, will average the stored sample value when decimating. Default: 1");
PrintAndLog(" t <threshold> Sets trigger threshold. 0 means no threshold (range: 0-128)");
PrintAndLog("Examples:");
PrintAndLog(" lf config b 8 L");
PrintAndLog(" Samples at 125KHz, 8bps.");
PrintAndLog(" lf config H b 4 d 3");
PrintAndLog(" Samples at 134KHz, averages three samples into one, stored with ");
PrintAndLog(" a resolution of 4 bits per sample.");
PrintAndLog(" lf read");
PrintAndLog(" Performs a read (active field)");
PrintAndLog(" lf snoop");
PrintAndLog(" Performs a snoop (no active field)");
return 0;
}
int CmdLFSetConfig(const char *Cmd)
{
uint8_t divisor = 0;//Frequency divisor
uint8_t bps = 0; // Bits per sample
uint8_t decimation = 0; //How many to keep
bool averaging = 1; // Defaults to true
bool errors = false;
int trigger_threshold =-1;//Means no change
uint8_t unsigned_trigg = 0;
uint8_t cmdp =0;
while(param_getchar(Cmd, cmdp) != 0x00)
{
switch(param_getchar(Cmd, cmdp))
{
case 'h':
return usage_lf_config();
case 'H':
divisor = 88;
cmdp++;
break;
case 'L':
divisor = 95;
cmdp++;
break;
case 'q':
errors |= param_getdec(Cmd,cmdp+1,&divisor);
cmdp+=2;
break;
case 't':
errors |= param_getdec(Cmd,cmdp+1,&unsigned_trigg);
cmdp+=2;
if(!errors) {
trigger_threshold = unsigned_trigg;
if (trigger_threshold > 0) g_lf_threshold_set = true;
}
break;
case 'b':
errors |= param_getdec(Cmd,cmdp+1,&bps);
cmdp+=2;
break;
case 'd':
errors |= param_getdec(Cmd,cmdp+1,&decimation);
cmdp+=2;
break;
case 'a':
averaging = param_getchar(Cmd,cmdp+1) == '1';
cmdp+=2;
break;
default:
PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = 1;
break;
}
if(errors) break;
}
if(cmdp == 0)
{
errors = 1;// No args
}
//Validations
if(errors)
{
return usage_lf_config();
}
//Bps is limited to 8, so fits in lower half of arg1
if(bps >> 4) bps = 8;
sample_config config = {
decimation,bps,averaging,divisor,trigger_threshold
};
//Averaging is a flag on high-bit of arg[1]
UsbCommand c = {CMD_SET_LF_SAMPLING_CONFIG};
memcpy(c.d.asBytes,&config,sizeof(sample_config));
clearCommandBuffer();
SendCommand(&c);
return 0;
}
bool lf_read(bool silent, uint32_t samples) {
if (offline) return false;
UsbCommand c = {CMD_ACQUIRE_RAW_ADC_SAMPLES_125K, {silent,samples,0}};
clearCommandBuffer();
//And ship it to device
SendCommand(&c);
UsbCommand resp;
if (g_lf_threshold_set) {
WaitForResponse(CMD_ACK,&resp);
} else {
if ( !WaitForResponseTimeout(CMD_ACK,&resp,2500) ) {
PrintAndLog("command execution time out");
return false;
}
}
getSamples(resp.arg[0], silent);
return true;
}
int CmdLFRead(const char *Cmd)
{
uint8_t cmdp = 0;
bool silent = false;
if (param_getchar(Cmd, cmdp) == 'h')
{
return usage_lf_read();
}
if (param_getchar(Cmd, cmdp) == 's') {
silent = true; //suppress print
cmdp++;
}
uint32_t samples = param_get32ex(Cmd, cmdp, 0, 10);
return lf_read(silent, samples);
}
int CmdLFSnoop(const char *Cmd)
{
uint8_t cmdp =0;
if(param_getchar(Cmd, cmdp) == 'h')
{
return usage_lf_snoop();
}
UsbCommand c = {CMD_LF_SNOOP_RAW_ADC_SAMPLES};
clearCommandBuffer();
SendCommand(&c);
WaitForResponse(CMD_ACK,NULL);
getSamples(0, true);
return 0;
}
static void ChkBitstream(const char *str)
{
int i;
/* convert to bitstream if necessary */
for (i = 0; i < (int)(GraphTraceLen / 2); i++){
if (GraphBuffer[i] > 1 || GraphBuffer[i] < 0) {
CmdGetBitStream("");
break;
}
}
}
//Attempt to simulate any wave in buffer (one bit per output sample)
// converts GraphBuffer to bitstream (based on zero crossings) if needed.
int CmdLFSim(const char *Cmd)
{
int i,j;
static int gap;
sscanf(Cmd, "%i", &gap);
// convert to bitstream if necessary
ChkBitstream(Cmd);
//can send only 512 bits at a time (1 byte sent per bit...)
printf("Sending [%d bytes]", GraphTraceLen);
for (i = 0; i < GraphTraceLen; i += USB_CMD_DATA_SIZE) {
UsbCommand c={CMD_DOWNLOADED_SIM_SAMPLES_125K, {i, 0, 0}};
for (j = 0; j < USB_CMD_DATA_SIZE; j++) {
c.d.asBytes[j] = GraphBuffer[i+j];
}
SendCommand(&c);
WaitForResponse(CMD_ACK,NULL);
printf(".");
}
printf("\n");
PrintAndLog("Starting to simulate");
UsbCommand c = {CMD_SIMULATE_TAG_125K, {GraphTraceLen, gap, 0}};
clearCommandBuffer();
SendCommand(&c);
return 0;
}
int usage_lf_simfsk(void)
{
//print help
PrintAndLog("Usage: lf simfsk [c <clock>] [i] [H <fcHigh>] [L <fcLow>] [d <hexdata>]");
PrintAndLog("Options: ");
PrintAndLog(" h This help");
PrintAndLog(" c <clock> Manually set clock - can autodetect if using DemodBuffer");
PrintAndLog(" i invert data");
PrintAndLog(" H <fcHigh> Manually set the larger Field Clock");
PrintAndLog(" L <fcLow> Manually set the smaller Field Clock");
//PrintAndLog(" s TBD- -to enable a gap between playback repetitions - default: no gap");
PrintAndLog(" d <hexdata> Data to sim as hex - omit to sim from DemodBuffer");
PrintAndLog("\n NOTE: if you set one clock manually set them all manually");
return 0;
}
int usage_lf_simask(void)
{
//print help
PrintAndLog("Usage: lf simask [c <clock>] [i] [b|m|r] [s] [d <raw hex to sim>]");
PrintAndLog("Options: ");
PrintAndLog(" h This help");
PrintAndLog(" c <clock> Manually set clock - can autodetect if using DemodBuffer");
PrintAndLog(" i invert data");
PrintAndLog(" b sim ask/biphase");
PrintAndLog(" m sim ask/manchester - Default");
PrintAndLog(" r sim ask/raw");
PrintAndLog(" s add t55xx Sequence Terminator gap - default: no gaps (only manchester)");
PrintAndLog(" d <hexdata> Data to sim as hex - omit to sim from DemodBuffer");
return 0;
}
int usage_lf_simpsk(void)
{
//print help
PrintAndLog("Usage: lf simpsk [1|2|3] [c <clock>] [i] [r <carrier>] [d <raw hex to sim>]");
PrintAndLog("Options: ");
PrintAndLog(" h This help");
PrintAndLog(" c <clock> Manually set clock - can autodetect if using DemodBuffer");
PrintAndLog(" i invert data");
PrintAndLog(" 1 set PSK1 (default)");
PrintAndLog(" 2 set PSK2");
PrintAndLog(" 3 set PSK3");
PrintAndLog(" r <carrier> 2|4|8 are valid carriers: default = 2");
PrintAndLog(" d <hexdata> Data to sim as hex - omit to sim from DemodBuffer");
return 0;
}
// by marshmellow - sim fsk data given clock, fcHigh, fcLow, invert
// - allow pull data from DemodBuffer
int CmdLFfskSim(const char *Cmd)
{
//might be able to autodetect FCs and clock from Graphbuffer if using demod buffer
// otherwise will need FChigh, FClow, Clock, and bitstream
uint8_t fcHigh=0, fcLow=0, clk=0;
uint8_t invert=0;
bool errors = false;
char hexData[32] = {0x00}; // store entered hex data
uint8_t data[255] = {0x00};
int dataLen = 0;
uint8_t cmdp = 0;
while(param_getchar(Cmd, cmdp) != 0x00)
{
switch(param_getchar(Cmd, cmdp))
{
case 'h':
return usage_lf_simfsk();
case 'i':
invert = 1;
cmdp++;
break;
case 'c':
errors |= param_getdec(Cmd,cmdp+1,&clk);
cmdp+=2;
break;
case 'H':
errors |= param_getdec(Cmd,cmdp+1,&fcHigh);
cmdp+=2;
break;
case 'L':
errors |= param_getdec(Cmd,cmdp+1,&fcLow);
cmdp+=2;
break;
//case 's':
// separator=1;
// cmdp++;
// break;
case 'd':
dataLen = param_getstr(Cmd, cmdp+1, hexData);
if (dataLen==0) {
errors=true;
} else {
dataLen = hextobinarray((char *)data, hexData);
}
if (dataLen==0) errors=true;
if (errors) PrintAndLog ("Error getting hex data");
cmdp+=2;
break;
default:
PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if(errors) break;
}
if(cmdp == 0 && DemodBufferLen == 0)
{
errors = true;// No args
}
//Validations
if(errors)
{
return usage_lf_simfsk();
}
int firstClockEdge = 0;
if (dataLen == 0){ //using DemodBuffer
if (clk==0 || fcHigh==0 || fcLow==0){ //manual settings must set them all
uint8_t ans = fskClocks(&fcHigh, &fcLow, &clk, 0, &firstClockEdge);
if (ans==0){
if (!fcHigh) fcHigh=10;
if (!fcLow) fcLow=8;
if (!clk) clk=50;
}
}
} else {
setDemodBuf(data, dataLen, 0);
}
//default if not found
if (clk == 0) clk = 50;
if (fcHigh == 0) fcHigh = 10;
if (fcLow == 0) fcLow = 8;
uint16_t arg1, arg2;
arg1 = fcHigh << 8 | fcLow;
arg2 = invert << 8 | clk;
size_t size = DemodBufferLen;
if (size > USB_CMD_DATA_SIZE) {
PrintAndLog("DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE);
size = USB_CMD_DATA_SIZE;
}
UsbCommand c = {CMD_FSK_SIM_TAG, {arg1, arg2, size}};
memcpy(c.d.asBytes, DemodBuffer, size);
clearCommandBuffer();
SendCommand(&c);
return 0;
}
// by marshmellow - sim ask data given clock, invert, manchester or raw, separator
// - allow pull data from DemodBuffer
int CmdLFaskSim(const char *Cmd)
{
//autodetect clock from Graphbuffer if using demod buffer
// needs clock, invert, manchester/raw as m or r, separator as s, and bitstream
uint8_t encoding = 1, separator = 0;
uint8_t clk=0, invert=0;
bool errors = false;
char hexData[32] = {0x00};
uint8_t data[255]= {0x00}; // store entered hex data
int dataLen = 0;
uint8_t cmdp = 0;
while(param_getchar(Cmd, cmdp) != 0x00)
{
switch(param_getchar(Cmd, cmdp))
{
case 'h':
return usage_lf_simask();
case 'i':
invert = 1;
cmdp++;
break;
case 'c':
errors |= param_getdec(Cmd,cmdp+1,&clk);
cmdp+=2;
break;
case 'b':
encoding=2; //biphase
cmdp++;
break;
case 'm':
encoding=1;
cmdp++;
break;
case 'r':
encoding=0;
cmdp++;
break;
case 's':
separator=1;
cmdp++;
break;
case 'd':
dataLen = param_getstr(Cmd, cmdp+1, hexData);
if (dataLen==0) {
errors=true;
} else {
dataLen = hextobinarray((char *)data, hexData);
}
if (dataLen==0) errors=true;
if (errors) PrintAndLog ("Error getting hex data, datalen: %d",dataLen);
cmdp+=2;
break;
default:
PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if(errors) break;
}
if(cmdp == 0 && DemodBufferLen == 0)
{
errors = true;// No args
}
//Validations
if(errors)
{
return usage_lf_simask();
}
if (dataLen == 0){ //using DemodBuffer
if (clk == 0) clk = GetAskClock("0", false, false);
} else {
setDemodBuf(data, dataLen, 0);
}
if (clk == 0) clk = 64;
if (encoding == 0) clk = clk/2; //askraw needs to double the clock speed
uint16_t arg1, arg2;
size_t size=DemodBufferLen;
arg1 = clk << 8 | encoding;
arg2 = invert << 8 | separator;
if (size > USB_CMD_DATA_SIZE) {
PrintAndLog("DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE);
size = USB_CMD_DATA_SIZE;
}
UsbCommand c = {CMD_ASK_SIM_TAG, {arg1, arg2, size}};
PrintAndLog("preparing to sim ask data: %d bits", size);
memcpy(c.d.asBytes, DemodBuffer, size);
clearCommandBuffer();
SendCommand(&c);
return 0;
}
// by marshmellow - sim psk data given carrier, clock, invert
// - allow pull data from DemodBuffer or parameters
int CmdLFpskSim(const char *Cmd)
{
//might be able to autodetect FC and clock from Graphbuffer if using demod buffer
//will need carrier, Clock, and bitstream
uint8_t carrier=0, clk=0;
uint8_t invert=0;
bool errors = false;
char hexData[32] = {0x00}; // store entered hex data
uint8_t data[255] = {0x00};
int dataLen = 0;
uint8_t cmdp = 0;
uint8_t pskType = 1;
while(param_getchar(Cmd, cmdp) != 0x00)
{
switch(param_getchar(Cmd, cmdp))
{
case 'h':
return usage_lf_simpsk();
case 'i':
invert = 1;
cmdp++;
break;
case 'c':
errors |= param_getdec(Cmd,cmdp+1,&clk);
cmdp+=2;
break;
case 'r':
errors |= param_getdec(Cmd,cmdp+1,&carrier);
cmdp+=2;
break;
case '1':
pskType=1;
cmdp++;
break;
case '2':
pskType=2;
cmdp++;
break;
case '3':
pskType=3;
cmdp++;
break;
case 'd':
dataLen = param_getstr(Cmd, cmdp+1, hexData);
if (dataLen==0) {
errors=true;
} else {
dataLen = hextobinarray((char *)data, hexData);
}
if (dataLen==0) errors=true;
if (errors) PrintAndLog ("Error getting hex data");
cmdp+=2;
break;
default:
PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if (errors) break;
}
if (cmdp == 0 && DemodBufferLen == 0)
{
errors = true;// No args
}
//Validations
if (errors)
{
return usage_lf_simpsk();
}
if (dataLen == 0){ //using DemodBuffer
PrintAndLog("Getting Clocks");
if (clk==0) clk = GetPskClock("", false, false);
PrintAndLog("clk: %d",clk);
if (!carrier) carrier = GetPskCarrier("", false, false);
PrintAndLog("carrier: %d", carrier);
} else {
setDemodBuf(data, dataLen, 0);
}
if (clk <= 0) clk = 32;
if (carrier == 0) carrier = 2;
if (pskType != 1){
if (pskType == 2){
//need to convert psk2 to psk1 data before sim
psk2TOpsk1(DemodBuffer, DemodBufferLen);
} else {
PrintAndLog("Sorry, PSK3 not yet available");
}
}
uint16_t arg1, arg2;
arg1 = clk << 8 | carrier;
arg2 = invert;
size_t size=DemodBufferLen;
if (size > USB_CMD_DATA_SIZE) {
PrintAndLog("DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE);
size=USB_CMD_DATA_SIZE;
}
UsbCommand c = {CMD_PSK_SIM_TAG, {arg1, arg2, size}};
PrintAndLog("DEBUG: Sending DemodBuffer Length: %d", size);
memcpy(c.d.asBytes, DemodBuffer, size);
clearCommandBuffer();
SendCommand(&c);
return 0;
}
int CmdLFSimBidir(const char *Cmd)
{
// Set ADC to twice the carrier for a slight supersampling
// HACK: not implemented in ARMSRC.
PrintAndLog("Not implemented yet.");
UsbCommand c = {CMD_LF_SIMULATE_BIDIR, {47, 384, 0}};
SendCommand(&c);
return 0;
}
int CmdVchDemod(const char *Cmd)
{
// Is this the entire sync pattern, or does this also include some
// data bits that happen to be the same everywhere? That would be
// lovely to know.
static const int SyncPattern[] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
};
// So first, we correlate for the sync pattern, and mark that.
int bestCorrel = 0, bestPos = 0;
int i;
// It does us no good to find the sync pattern, with fewer than
// 2048 samples after it...
for (i = 0; i < (GraphTraceLen-2048); i++) {
int sum = 0;
int j;
for (j = 0; j < arraylen(SyncPattern); j++) {
sum += GraphBuffer[i+j]*SyncPattern[j];
}
if (sum > bestCorrel) {
bestCorrel = sum;
bestPos = i;
}
}
PrintAndLog("best sync at %d [metric %d]", bestPos, bestCorrel);
char bits[257];
bits[256] = '\0';
int worst = INT_MAX;
int worstPos = 0;
for (i = 0; i < 2048; i += 8) {
int sum = 0;
int j;
for (j = 0; j < 8; j++) {
sum += GraphBuffer[bestPos+i+j];
}
if (sum < 0) {
bits[i/8] = '.';
} else {
bits[i/8] = '1';
}
if(abs(sum) < worst) {
worst = abs(sum);
worstPos = i;
}
}
PrintAndLog("bits:");
PrintAndLog("%s", bits);
PrintAndLog("worst metric: %d at pos %d", worst, worstPos);
if (strcmp(Cmd, "clone")==0) {
GraphTraceLen = 0;
char *s;
for(s = bits; *s; s++) {
int j;
for(j = 0; j < 16; j++) {
GraphBuffer[GraphTraceLen++] = (*s == '1') ? 1 : 0;
}
}
RepaintGraphWindow();
}
return 0;
}
//by marshmellow
int CheckChipType(char cmdp) {
uint32_t wordData = 0;
if (offline || cmdp == '1') return 0;
save_restoreGB(GRAPH_SAVE);
save_restoreDB(GRAPH_SAVE);
//check for em4x05/em4x69 chips first
if (EM4x05Block0Test(&wordData)) {
PrintAndLog("\nValid EM4x05/EM4x69 Chip Found\nTry lf em 4x05... commands\n");
save_restoreGB(GRAPH_RESTORE);
save_restoreDB(GRAPH_RESTORE);
return 1;
}
//check for t55xx chip...
if (tryDetectP1(true)) {
PrintAndLog("\nValid T55xx Chip Found\nTry lf t55xx ... commands\n");
save_restoreGB(GRAPH_RESTORE);
save_restoreDB(GRAPH_RESTORE);
return 1;
}
save_restoreGB(GRAPH_RESTORE);
save_restoreDB(GRAPH_RESTORE);
return 0;
}
//by marshmellow
int CmdLFfind(const char *Cmd)
{
uint32_t wordData = 0;
int ans=0;
size_t minLength = 1000;
char cmdp = param_getchar(Cmd, 0);
char testRaw = param_getchar(Cmd, 1);
if (strlen(Cmd) > 3 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: lf search <0|1> [u]");
PrintAndLog(" <use data from Graphbuffer> , if not set, try reading data from tag.");
PrintAndLog(" [Search for Unknown tags] , if not set, reads only known tags.");
PrintAndLog("");
PrintAndLog(" sample: lf search = try reading data from tag & search for known tags");
PrintAndLog(" : lf search 1 = use data from GraphBuffer & search for known tags");
PrintAndLog(" : lf search u = try reading data from tag & search for known and unknown tags");
PrintAndLog(" : lf search 1 u = use data from GraphBuffer & search for known and unknown tags");
return 0;
}
if (!offline && (cmdp != '1')) {
lf_read(true, 30000);
} else if (GraphTraceLen < minLength) {
PrintAndLog("Data in Graphbuffer was too small.");
return 0;
}
if (cmdp == 'u' || cmdp == 'U') testRaw = 'u';
PrintAndLog("NOTE: some demods output possible binary\n if it finds something that looks like a tag");
PrintAndLog("False Positives ARE possible\n");
PrintAndLog("\nChecking for known tags:\n");
size_t testLen = minLength;
// only run if graphbuffer is just noise as it should be for hitag/cotag
if (graphJustNoise(GraphBuffer, testLen)) {
// only run these tests if we are in online mode
if (!offline && (cmdp != '1')) {
// test for em4x05 in reader talk first mode.
if (EM4x05Block0Test(&wordData)) {
PrintAndLog("\nValid EM4x05/EM4x69 Chip Found\nUse lf em 4x05readword/dump commands to read\n");
return 1;
}
ans=CmdLFHitagReader("26");
if (ans==0) {
return 1;
}
ans=CmdCOTAGRead("");
if (ans>0) {
PrintAndLog("\nValid COTAG ID Found!");
return 1;
}
}
return 0;
}
// TODO test for modulation then only test formats that use that modulation
ans=CmdFSKdemodIO("");
if (ans>0) {
PrintAndLog("\nValid IO Prox ID Found!");
return CheckChipType(cmdp);
}
ans=CmdFSKdemodPyramid("");
if (ans>0) {
PrintAndLog("\nValid Pyramid ID Found!");
return CheckChipType(cmdp);
}
ans=CmdFSKdemodParadox("");
if (ans>0) {
PrintAndLog("\nValid Paradox ID Found!");
return CheckChipType(cmdp);
}
ans=CmdFSKdemodAWID("");
if (ans>0) {
PrintAndLog("\nValid AWID ID Found!");
return CheckChipType(cmdp);
}
ans=CmdFSKdemodHID("");
if (ans>0) {
PrintAndLog("\nValid HID Prox ID Found!");
return CheckChipType(cmdp);
}
ans=CmdAskEM410xDemod("");
if (ans>0) {
PrintAndLog("\nValid EM410x ID Found!");
return CheckChipType(cmdp);
}
ans=CmdVisa2kDemod("");
if (ans>0) {
PrintAndLog("\nValid Visa2000 ID Found!");
return CheckChipType(cmdp);
}
ans=CmdG_Prox_II_Demod("");
if (ans>0) {
PrintAndLog("\nValid G Prox II ID Found!");
return CheckChipType(cmdp);
}
ans=CmdFdxDemod(""); //biphase
if (ans>0) {
PrintAndLog("\nValid FDX-B ID Found!");
return CheckChipType(cmdp);
}
ans=EM4x50Read("", false); //ask
if (ans>0) {
PrintAndLog("\nValid EM4x50 ID Found!");
return 1;
}
ans=CmdJablotronDemod("");
if (ans>0) {
PrintAndLog("\nValid Jablotron ID Found!");
return CheckChipType(cmdp);
}
ans=CmdNoralsyDemod("");
if (ans>0) {
PrintAndLog("\nValid Noralsy ID Found!");
return CheckChipType(cmdp);
}
ans=CmdSecurakeyDemod("");
if (ans>0) {
PrintAndLog("\nValid Securakey ID Found!");
return CheckChipType(cmdp);
}
ans=CmdVikingDemod("");
if (ans>0) {
PrintAndLog("\nValid Viking ID Found!");
return CheckChipType(cmdp);
}
ans=CmdIndalaDecode(""); //psk
if (ans>0) {
PrintAndLog("\nValid Indala ID Found!");
return CheckChipType(cmdp);
}
ans=CmdPSKNexWatch("");
if (ans>0) {
PrintAndLog("\nValid NexWatch ID Found!");
return CheckChipType(cmdp);
}
PrintAndLog("\nNo Known Tags Found!\n");
if (testRaw=='u' || testRaw=='U') {
//ans=CheckChipType(cmdp);
//test unknown tag formats (raw mode)0
PrintAndLog("\nChecking for Unknown tags:\n");
ans=AutoCorrelate(GraphBuffer, GraphBuffer, GraphTraceLen, 4000, false, false);
if (ans > 0) PrintAndLog("Possible Auto Correlation of %d repeating samples",ans);
ans=GetFskClock("",false,false);
if (ans != 0) { //fsk
ans=FSKrawDemod("",true);
if (ans>0) {
PrintAndLog("\nUnknown FSK Modulated Tag Found!");
return CheckChipType(cmdp);
}
}
bool st = true;
ans=ASKDemod_ext("0 0 0",true,false,1,&st);
if (ans>0) {
PrintAndLog("\nUnknown ASK Modulated and Manchester encoded Tag Found!");
PrintAndLog("\nif it does not look right it could instead be ASK/Biphase - try 'data rawdemod ab'");
return CheckChipType(cmdp);
}
ans=CmdPSK1rawDemod("");
if (ans>0) {
PrintAndLog("Possible unknown PSK1 Modulated Tag Found above!\n\nCould also be PSK2 - try 'data rawdemod p2'");
PrintAndLog("\nCould also be PSK3 - [currently not supported]");
PrintAndLog("\nCould also be NRZ - try 'data nrzrawdemod'");
return CheckChipType(cmdp);
}
ans = CheckChipType(cmdp);
PrintAndLog("\nNo Data Found!\n");
}
return 0;
}
static command_t CommandTable[] =
{
{"help", CmdHelp, 1, "This help"},
{"awid", CmdLFAWID, 1, "{ AWID RFIDs... }"},
{"cotag", CmdLFCOTAG, 1, "{ COTAG CHIPs... }"},
{"em", CmdLFEM4X, 1, "{ EM4X CHIPs & RFIDs... }"},
{"fdx", CmdLFFdx, 1, "{ FDX-B RFIDs... }"},
{"gproxii", CmdLF_G_Prox_II, 1, "{ G Prox II RFIDs... }"},
{"hid", CmdLFHID, 1, "{ HID RFIDs... }"},
{"hitag", CmdLFHitag, 1, "{ Hitag CHIPs... }"},
{"io", CmdLFIO, 1, "{ ioProx RFIDs... }"},
{"indala", CmdLFINDALA, 1, "{ Indala RFIDs... }"},
{"jablotron", CmdLFJablotron, 1, "{ Jablotron RFIDs... }"},
{"nexwatch", CmdLFNexWatch, 1, "{ NexWatch RFIDs... }"},
{"noralsy", CmdLFNoralsy, 1, "{ Noralsy RFIDs... }"},
{"paradox", CmdLFParadox, 1, "{ Paradox RFIDs... }"},
{"presco", CmdLFPresco, 1, "{ Presco RFIDs... }"},
{"pcf7931", CmdLFPCF7931, 1, "{ PCF7931 CHIPs... }"},
{"pyramid", CmdLFPyramid, 1, "{ Farpointe/Pyramid RFIDs... }"},
{"securakey", CmdLFSecurakey, 1, "{ Securakey RFIDs... }"},
{"t55xx", CmdLFT55XX, 1, "{ T55xx CHIPs... }"},
{"ti", CmdLFTI, 1, "{ TI CHIPs... }"},
{"viking", CmdLFViking, 1, "{ Viking RFIDs... }"},
{"visa2000", CmdLFVisa2k, 1, "{ Visa2000 RFIDs... }"},
{"cmdread", CmdLFCommandRead, 0, "<d period> <z period> <o period> <c command> ['H'] -- Modulate LF reader field to send command before read (all periods in microseconds) (option 'H' for 134)"},
{"config", CmdLFSetConfig, 0, "Set config for LF sampling, bit/sample, decimation, frequency"},
{"flexdemod", CmdFlexdemod, 1, "Demodulate samples for FlexPass"},
{"read", CmdLFRead, 0, "['s' silent] Read 125/134 kHz LF ID-only tag. Do 'lf read h' for help"},
{"search", CmdLFfind, 1, "[offline] ['u'] Read and Search for valid known tag (in offline mode it you can load first then search) - 'u' to search for unknown tags"},
{"sim", CmdLFSim, 0, "[GAP] -- Simulate LF tag from buffer with optional GAP (in microseconds)"},
{"simask", CmdLFaskSim, 0, "[clock] [invert <1|0>] [biphase/manchester/raw <'b'|'m'|'r'>] [msg separator 's'] [d <hexdata>] -- Simulate LF ASK tag from demodbuffer or input"},
{"simfsk", CmdLFfskSim, 0, "[c <clock>] [i] [H <fcHigh>] [L <fcLow>] [d <hexdata>] -- Simulate LF FSK tag from demodbuffer or input"},
{"simpsk", CmdLFpskSim, 0, "[1|2|3] [c <clock>] [i] [r <carrier>] [d <raw hex to sim>] -- Simulate LF PSK tag from demodbuffer or input"},
{"simbidir", CmdLFSimBidir, 0, "Simulate LF tag (with bidirectional data transmission between reader and tag)"},
{"snoop", CmdLFSnoop, 0, "['l'|'h'|<divisor>] [trigger threshold]-- Snoop LF (l:125khz, h:134khz)"},
{"vchdemod", CmdVchDemod, 1, "['clone'] -- Demodulate samples for VeriChip"},
{NULL, NULL, 0, NULL}
};
int CmdLF(const char *Cmd)
{
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd)
{
CmdsHelp(CommandTable);
return 0;
}