proxmark3/armsrc/util.c
Michael Farrell f9c1dcd9f6 Adds random nonce (r) option to hf mf sim.
This makes the PM3 generate pseudo-random nonces rather than sequential
nonces, to make it act a bit more like a "real" MFC card.  A reader would
otherwise be able to detect the PM3 probing based on the predictable nonces
and throw different authentication challenges (or refuse to authenticate at
all).

The code includes an implementation of a rand-like function (prand), similar
to the one from libc, which is seeded automatically based on the time it
takes between the PM3 starting up and the first call to the RNG.

This isn't cryptographically random, but should be "good enough" to be able
to evade basic detection.
2017-01-26 18:32:25 +11:00

450 lines
14 KiB
C

//-----------------------------------------------------------------------------
// Jonathan Westhues, Sept 2005
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Utility functions used in many places, not specific to any piece of code.
//-----------------------------------------------------------------------------
#include "proxmark3.h"
#include "util.h"
#include "string.h"
#include "apps.h"
#include "BigBuf.h"
void print_result(char *name, uint8_t *buf, size_t len) {
uint8_t *p = buf;
if ( len % 16 == 0 ) {
for(; p-buf < len; p += 16)
Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
name,
p-buf,
len,
p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]
);
}
else {
for(; p-buf < len; p += 8)
Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x", name, p-buf, len, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
}
}
size_t nbytes(size_t nbits) {
return (nbits >> 3)+((nbits % 8) > 0);
}
uint32_t SwapBits(uint32_t value, int nrbits) {
int i;
uint32_t newvalue = 0;
for(i = 0; i < nrbits; i++) {
newvalue ^= ((value >> i) & 1) << (nrbits - 1 - i);
}
return newvalue;
}
void num_to_bytes(uint64_t n, size_t len, uint8_t* dest)
{
while (len--) {
dest[len] = (uint8_t) n;
n >>= 8;
}
}
uint64_t bytes_to_num(uint8_t* src, size_t len)
{
uint64_t num = 0;
while (len--)
{
num = (num << 8) | (*src);
src++;
}
return num;
}
// RotateLeft - Ultralight, Desfire
void rol(uint8_t *data, const size_t len){
uint8_t first = data[0];
for (size_t i = 0; i < len-1; i++) {
data[i] = data[i+1];
}
data[len-1] = first;
}
void lsl (uint8_t *data, size_t len) {
for (size_t n = 0; n < len - 1; n++) {
data[n] = (data[n] << 1) | (data[n+1] >> 7);
}
data[len - 1] <<= 1;
}
int32_t le24toh (uint8_t data[3])
{
return (data[2] << 16) | (data[1] << 8) | data[0];
}
void LEDsoff()
{
LED_A_OFF();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
}
// LEDs: R(C) O(A) G(B) -- R(D) [1, 2, 4 and 8]
void LED(int led, int ms)
{
if (led & LED_RED)
LED_C_ON();
if (led & LED_ORANGE)
LED_A_ON();
if (led & LED_GREEN)
LED_B_ON();
if (led & LED_RED2)
LED_D_ON();
if (!ms)
return;
SpinDelay(ms);
if (led & LED_RED)
LED_C_OFF();
if (led & LED_ORANGE)
LED_A_OFF();
if (led & LED_GREEN)
LED_B_OFF();
if (led & LED_RED2)
LED_D_OFF();
}
// Determine if a button is double clicked, single clicked,
// not clicked, or held down (for ms || 1sec)
// In general, don't use this function unless you expect a
// double click, otherwise it will waste 500ms -- use BUTTON_HELD instead
int BUTTON_CLICKED(int ms)
{
// Up to 500ms in between clicks to mean a double click
int ticks = (48000 * (ms ? ms : 1000)) >> 10;
// If we're not even pressed, forget about it!
if (!BUTTON_PRESS())
return BUTTON_NO_CLICK;
// Borrow a PWM unit for my real-time clock
AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
// 48 MHz / 1024 gives 46.875 kHz
AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
int letoff = 0;
for(;;)
{
uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
// We haven't let off the button yet
if (!letoff)
{
// We just let it off!
if (!BUTTON_PRESS())
{
letoff = 1;
// reset our timer for 500ms
start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
ticks = (48000 * (500)) >> 10;
}
// Still haven't let it off
else
// Have we held down a full second?
if (now == (uint16_t)(start + ticks))
return BUTTON_HOLD;
}
// We already let off, did we click again?
else
// Sweet, double click!
if (BUTTON_PRESS())
return BUTTON_DOUBLE_CLICK;
// Have we ran out of time to double click?
else
if (now == (uint16_t)(start + ticks))
// At least we did a single click
return BUTTON_SINGLE_CLICK;
WDT_HIT();
}
// We should never get here
return BUTTON_ERROR;
}
// Determine if a button is held down
int BUTTON_HELD(int ms)
{
// If button is held for one second
int ticks = (48000 * (ms ? ms : 1000)) >> 10;
// If we're not even pressed, forget about it!
if (!BUTTON_PRESS())
return BUTTON_NO_CLICK;
// Borrow a PWM unit for my real-time clock
AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
// 48 MHz / 1024 gives 46.875 kHz
AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
for(;;)
{
uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
// As soon as our button let go, we didn't hold long enough
if (!BUTTON_PRESS())
return BUTTON_SINGLE_CLICK;
// Have we waited the full second?
else
if (now == (uint16_t)(start + ticks))
return BUTTON_HOLD;
WDT_HIT();
}
// We should never get here
return BUTTON_ERROR;
}
// attempt at high resolution microsecond timer
// beware: timer counts in 21.3uS increments (1024/48Mhz)
void SpinDelayUs(int us)
{
int ticks = (48*us) >> 10;
// Borrow a PWM unit for my real-time clock
AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
// 48 MHz / 1024 gives 46.875 kHz
AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
for(;;) {
uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
if (now == (uint16_t)(start + ticks))
return;
WDT_HIT();
}
}
void SpinDelay(int ms)
{
// convert to uS and call microsecond delay function
SpinDelayUs(ms*1000);
}
/* Similar to FpgaGatherVersion this formats stored version information
* into a string representation. It takes a pointer to the struct version_information,
* verifies the magic properties, then stores a formatted string, prefixed by
* prefix in dst.
*/
void FormatVersionInformation(char *dst, int len, const char *prefix, void *version_information)
{
struct version_information *v = (struct version_information*)version_information;
dst[0] = 0;
strncat(dst, prefix, len-1);
if(v->magic != VERSION_INFORMATION_MAGIC) {
strncat(dst, "Missing/Invalid version information\n", len - strlen(dst) - 1);
return;
}
if(v->versionversion != 1) {
strncat(dst, "Version information not understood\n", len - strlen(dst) - 1);
return;
}
if(!v->present) {
strncat(dst, "Version information not available\n", len - strlen(dst) - 1);
return;
}
strncat(dst, v->gitversion, len - strlen(dst) - 1);
if(v->clean == 0) {
strncat(dst, "-unclean", len - strlen(dst) - 1);
} else if(v->clean == 2) {
strncat(dst, "-suspect", len - strlen(dst) - 1);
}
strncat(dst, " ", len - strlen(dst) - 1);
strncat(dst, v->buildtime, len - strlen(dst) - 1);
strncat(dst, "\n", len - strlen(dst) - 1);
}
// -------------------------------------------------------------------------
// timer lib
// -------------------------------------------------------------------------
// test procedure:
//
// ti = GetTickCount();
// SpinDelay(1000);
// ti = GetTickCount() - ti;
// Dbprintf("timer(1s): %d t=%d", ti, GetTickCount());
void StartTickCount()
{
// This timer is based on the slow clock. The slow clock frequency is between 22kHz and 40kHz.
// We can determine the actual slow clock frequency by looking at the Main Clock Frequency Register.
uint16_t mainf = AT91C_BASE_PMC->PMC_MCFR & 0xffff; // = 16 * main clock frequency (16MHz) / slow clock frequency
// set RealTimeCounter divider to count at 1kHz:
AT91C_BASE_RTTC->RTTC_RTMR = AT91C_RTTC_RTTRST | ((256000 + (mainf/2)) / mainf);
// note: worst case precision is approx 2.5%
}
/*
* Get the current count.
*/
uint32_t RAMFUNC GetTickCount(){
return AT91C_BASE_RTTC->RTTC_RTVR;// was * 2;
}
// -------------------------------------------------------------------------
// microseconds timer
// -------------------------------------------------------------------------
void StartCountUS()
{
AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
// AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC1XC1S_TIOA0;
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
// fast clock
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
AT91C_BASE_TC0->TC_RA = 1;
AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from timer 0
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN;
AT91C_BASE_TCB->TCB_BCR = 1;
}
uint32_t RAMFUNC GetCountUS(){
return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV / 15) * 10);
}
static uint32_t GlobalUsCounter = 0;
uint32_t RAMFUNC GetDeltaCountUS(){
uint32_t g_cnt = GetCountUS();
uint32_t g_res = g_cnt - GlobalUsCounter;
GlobalUsCounter = g_cnt;
return g_res;
}
// -------------------------------------------------------------------------
// Timer for iso14443 commands. Uses ssp_clk from FPGA
// -------------------------------------------------------------------------
void StartCountSspClk()
{
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1) | (1 << AT91C_ID_TC2); // Enable Clock to all timers
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1
| AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none
| AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0
// configure TC1 to create a short pulse on TIOA1 when a rising edge on TIOB1 (= ssp_clk from FPGA) occurs:
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC1 Clock = MCK(48MHz)/2 = 24MHz
| AT91C_TC_CPCSTOP // Stop clock on RC compare
| AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event
| AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16)
| AT91C_TC_ENETRG // Enable external trigger event
| AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_AEEVT_SET // Set TIOA1 on external event
| AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare
AT91C_BASE_TC1->TC_RC = 0x04; // RC Compare value = 0x04
// use TC0 to count TIOA1 pulses
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_WAVESEL_UP // just count
| AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare
| AT91C_TC_ACPC_SET; // Set TIOA0 on RC Compare
AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2
AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow
// use TC2 to count TIOA0 pulses (giving us a 32bit counter (TC0/TC2) clocked by ssp_clk)
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2
AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_WAVESEL_UP; // just count
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; // enable TC0
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN; // enable TC1
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN; // enable TC2
//
// synchronize the counter with the ssp_frame signal. Note: FPGA must be in any iso14446 mode, otherwise the frame signal would not be present
//
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame)
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high
// note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame
// it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge
AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge)
// at the next (3rd) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0)
// at the next (4th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on,
// whenever the last three bits of our counter go 0, we can be sure to be in the middle of a frame transfer.
// (just started with the transfer of the 4th Bit).
// The high word of the counter (TC2) will not reset until the low word (TC0) overflows. Therefore need to wait quite some time before
// we can use the counter.
while (AT91C_BASE_TC0->TC_CV < 0xFFF0);
}
uint32_t RAMFUNC GetCountSspClk(){
uint32_t tmp_count;
tmp_count = (AT91C_BASE_TC2->TC_CV << 16) | AT91C_BASE_TC0->TC_CV;
if ((tmp_count & 0x0000ffff) == 0) { //small chance that we may have missed an increment in TC2
return (AT91C_BASE_TC2->TC_CV << 16);
}
else {
return tmp_count;
}
}
static uint64_t next_random = 1;
/* Generates a (non-cryptographically secure) 32-bit random number.
*
* We don't have an implementation of the "rand" function or a clock to seed it
* with, so we just call GetTickCount the first time to seed ourselves.
*/
uint32_t prand() {
if (next_random == 1) {
next_random = GetTickCount();
}
next_random = next_random * 6364136223846793005 + 1;
return (uint32_t)(next_random >> 32) % 0xffffffff;
}