proxmark3/armsrc/iclass.c
pwpiwi 6a5d4e17f4
rework iso14443b device functions including FPGA I/Q signal transfer (#669)
* rework iso14443b device functions
* hf_read_rx_xcorr.v: transfer i/q pair in one 16bit frame
* hi_read_tx.v: invert ssp_dout. When nothing is transferred (ssp_dout=0), this results in no modulation (carrier on)
* adjust arm sources accordingly
* iso14443b.c: switch off carrier after hf 14b sri512read and hf 14b srix4kread
* iso14443b.c: fix DMA circular buffer handling
2018-09-16 00:53:28 +02:00

2065 lines
57 KiB
C

//-----------------------------------------------------------------------------
// Gerhard de Koning Gans - May 2008
// Hagen Fritsch - June 2010
// Gerhard de Koning Gans - May 2011
// Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to support iClass.
//-----------------------------------------------------------------------------
// Based on ISO14443a implementation. Still in experimental phase.
// Contribution made during a security research at Radboud University Nijmegen
//
// Please feel free to contribute and extend iClass support!!
//-----------------------------------------------------------------------------
//
// FIX:
// ====
// We still have sometimes a demodulation error when snooping iClass communication.
// The resulting trace of a read-block-03 command may look something like this:
//
// + 22279: : 0c 03 e8 01
//
// ...with an incorrect answer...
//
// + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
//
// We still left the error signalling bytes in the traces like 0xbb
//
// A correct trace should look like this:
//
// + 21112: : 0c 03 e8 01
// + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
//
//-----------------------------------------------------------------------------
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "string.h"
#include "common.h"
#include "cmd.h"
#include "iso14443a.h"
// Needed for CRC in emulation mode;
// same construction as in ISO 14443;
// different initial value (CRC_ICLASS)
#include "iso14443crc.h"
#include "iso15693tools.h"
#include "protocols.h"
#include "optimized_cipher.h"
#include "usb_cdc.h" // for usb_poll_validate_length
static int timeout = 4096;
static int SendIClassAnswer(uint8_t *resp, int respLen, int delay);
//-----------------------------------------------------------------------------
// The software UART that receives commands from the reader, and its state
// variables.
//-----------------------------------------------------------------------------
static struct {
enum {
STATE_UNSYNCD,
STATE_START_OF_COMMUNICATION,
STATE_RECEIVING
} state;
uint16_t shiftReg;
int bitCnt;
int byteCnt;
int byteCntMax;
int posCnt;
int nOutOfCnt;
int OutOfCnt;
int syncBit;
int samples;
int highCnt;
int swapper;
int counter;
int bitBuffer;
int dropPosition;
uint8_t *output;
} Uart;
static RAMFUNC int OutOfNDecoding(int bit)
{
//int error = 0;
int bitright;
if(!Uart.bitBuffer) {
Uart.bitBuffer = bit ^ 0xFF0;
return false;
}
else {
Uart.bitBuffer <<= 4;
Uart.bitBuffer ^= bit;
}
/*if(Uart.swapper) {
Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
Uart.byteCnt++;
Uart.swapper = 0;
if(Uart.byteCnt > 15) { return true; }
}
else {
Uart.swapper = 1;
}*/
if(Uart.state != STATE_UNSYNCD) {
Uart.posCnt++;
if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
bit = 0x00;
}
else {
bit = 0x01;
}
if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
bitright = 0x00;
}
else {
bitright = 0x01;
}
if(bit != bitright) { bit = bitright; }
// So, now we only have to deal with *bit*, lets see...
if(Uart.posCnt == 1) {
// measurement first half bitperiod
if(!bit) {
// Drop in first half means that we are either seeing
// an SOF or an EOF.
if(Uart.nOutOfCnt == 1) {
// End of Communication
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
if(Uart.byteCnt == 0) {
// Its not straightforward to show single EOFs
// So just leave it and do not return true
Uart.output[0] = 0xf0;
Uart.byteCnt++;
}
else {
return true;
}
}
else if(Uart.state != STATE_START_OF_COMMUNICATION) {
// When not part of SOF or EOF, it is an error
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
//error = 4;
}
}
}
else {
// measurement second half bitperiod
// Count the bitslot we are in... (ISO 15693)
Uart.nOutOfCnt++;
if(!bit) {
if(Uart.dropPosition) {
if(Uart.state == STATE_START_OF_COMMUNICATION) {
//error = 1;
}
else {
//error = 7;
}
// It is an error if we already have seen a drop in current frame
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
}
else {
Uart.dropPosition = Uart.nOutOfCnt;
}
}
Uart.posCnt = 0;
if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
Uart.nOutOfCnt = 0;
if(Uart.state == STATE_START_OF_COMMUNICATION) {
if(Uart.dropPosition == 4) {
Uart.state = STATE_RECEIVING;
Uart.OutOfCnt = 256;
}
else if(Uart.dropPosition == 3) {
Uart.state = STATE_RECEIVING;
Uart.OutOfCnt = 4;
//Uart.output[Uart.byteCnt] = 0xdd;
//Uart.byteCnt++;
}
else {
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
}
Uart.dropPosition = 0;
}
else {
// RECEIVING DATA
// 1 out of 4
if(!Uart.dropPosition) {
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
//error = 9;
}
else {
Uart.shiftReg >>= 2;
// Swap bit order
Uart.dropPosition--;
//if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
//else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6);
Uart.bitCnt += 2;
Uart.dropPosition = 0;
if(Uart.bitCnt == 8) {
Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
Uart.byteCnt++;
Uart.bitCnt = 0;
Uart.shiftReg = 0;
}
}
}
}
else if(Uart.nOutOfCnt == Uart.OutOfCnt) {
// RECEIVING DATA
// 1 out of 256
if(!Uart.dropPosition) {
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
//error = 3;
}
else {
Uart.dropPosition--;
Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
Uart.byteCnt++;
Uart.bitCnt = 0;
Uart.shiftReg = 0;
Uart.nOutOfCnt = 0;
Uart.dropPosition = 0;
}
}
/*if(error) {
Uart.output[Uart.byteCnt] = 0xAA;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = error & 0xFF;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = 0xAA;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = 0xAA;
Uart.byteCnt++;
return true;
}*/
}
}
else {
bit = Uart.bitBuffer & 0xf0;
bit >>= 4;
bit ^= 0x0F; // drops become 1s ;-)
if(bit) {
// should have been high or at least (4 * 128) / fc
// according to ISO this should be at least (9 * 128 + 20) / fc
if(Uart.highCnt == 8) {
// we went low, so this could be start of communication
// it turns out to be safer to choose a less significant
// syncbit... so we check whether the neighbour also represents the drop
Uart.posCnt = 1; // apparently we are busy with our first half bit period
Uart.syncBit = bit & 8;
Uart.samples = 3;
if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
if(Uart.syncBit && (Uart.bitBuffer & 8)) {
Uart.syncBit = 8;
// the first half bit period is expected in next sample
Uart.posCnt = 0;
Uart.samples = 3;
}
}
else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
Uart.syncBit <<= 4;
Uart.state = STATE_START_OF_COMMUNICATION;
Uart.bitCnt = 0;
Uart.byteCnt = 0;
Uart.nOutOfCnt = 0;
Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256
Uart.dropPosition = 0;
Uart.shiftReg = 0;
//error = 0;
}
else {
Uart.highCnt = 0;
}
}
else {
if(Uart.highCnt < 8) {
Uart.highCnt++;
}
}
}
return false;
}
//=============================================================================
// Manchester
//=============================================================================
static struct {
enum {
DEMOD_UNSYNCD,
DEMOD_START_OF_COMMUNICATION,
DEMOD_START_OF_COMMUNICATION2,
DEMOD_START_OF_COMMUNICATION3,
DEMOD_SOF_COMPLETE,
DEMOD_MANCHESTER_D,
DEMOD_MANCHESTER_E,
DEMOD_END_OF_COMMUNICATION,
DEMOD_END_OF_COMMUNICATION2,
DEMOD_MANCHESTER_F,
DEMOD_ERROR_WAIT
} state;
int bitCount;
int posCount;
int syncBit;
uint16_t shiftReg;
int buffer;
int buffer2;
int buffer3;
int buff;
int samples;
int len;
enum {
SUB_NONE,
SUB_FIRST_HALF,
SUB_SECOND_HALF,
SUB_BOTH
} sub;
uint8_t *output;
} Demod;
static RAMFUNC int ManchesterDecoding(int v)
{
int bit;
int modulation;
int error = 0;
bit = Demod.buffer;
Demod.buffer = Demod.buffer2;
Demod.buffer2 = Demod.buffer3;
Demod.buffer3 = v;
if(Demod.buff < 3) {
Demod.buff++;
return false;
}
if(Demod.state==DEMOD_UNSYNCD) {
Demod.output[Demod.len] = 0xfa;
Demod.syncBit = 0;
//Demod.samples = 0;
Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
if(bit & 0x08) {
Demod.syncBit = 0x08;
}
if(bit & 0x04) {
if(Demod.syncBit) {
bit <<= 4;
}
Demod.syncBit = 0x04;
}
if(bit & 0x02) {
if(Demod.syncBit) {
bit <<= 2;
}
Demod.syncBit = 0x02;
}
if(bit & 0x01 && Demod.syncBit) {
Demod.syncBit = 0x01;
}
if(Demod.syncBit) {
Demod.len = 0;
Demod.state = DEMOD_START_OF_COMMUNICATION;
Demod.sub = SUB_FIRST_HALF;
Demod.bitCount = 0;
Demod.shiftReg = 0;
Demod.samples = 0;
if(Demod.posCount) {
//if(trigger) LED_A_OFF(); // Not useful in this case...
switch(Demod.syncBit) {
case 0x08: Demod.samples = 3; break;
case 0x04: Demod.samples = 2; break;
case 0x02: Demod.samples = 1; break;
case 0x01: Demod.samples = 0; break;
}
// SOF must be long burst... otherwise stay unsynced!!!
if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
Demod.state = DEMOD_UNSYNCD;
}
}
else {
// SOF must be long burst... otherwise stay unsynced!!!
if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
Demod.state = DEMOD_UNSYNCD;
error = 0x88;
}
}
error = 0;
}
}
else {
modulation = bit & Demod.syncBit;
modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
Demod.samples += 4;
if(Demod.posCount==0) {
Demod.posCount = 1;
if(modulation) {
Demod.sub = SUB_FIRST_HALF;
}
else {
Demod.sub = SUB_NONE;
}
}
else {
Demod.posCount = 0;
/*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
if(Demod.state!=DEMOD_ERROR_WAIT) {
Demod.state = DEMOD_ERROR_WAIT;
Demod.output[Demod.len] = 0xaa;
error = 0x01;
}
}*/
//else if(modulation) {
if(modulation) {
if(Demod.sub == SUB_FIRST_HALF) {
Demod.sub = SUB_BOTH;
}
else {
Demod.sub = SUB_SECOND_HALF;
}
}
else if(Demod.sub == SUB_NONE) {
if(Demod.state == DEMOD_SOF_COMPLETE) {
Demod.output[Demod.len] = 0x0f;
Demod.len++;
Demod.state = DEMOD_UNSYNCD;
// error = 0x0f;
return true;
}
else {
Demod.state = DEMOD_ERROR_WAIT;
error = 0x33;
}
/*if(Demod.state!=DEMOD_ERROR_WAIT) {
Demod.state = DEMOD_ERROR_WAIT;
Demod.output[Demod.len] = 0xaa;
error = 0x01;
}*/
}
switch(Demod.state) {
case DEMOD_START_OF_COMMUNICATION:
if(Demod.sub == SUB_BOTH) {
//Demod.state = DEMOD_MANCHESTER_D;
Demod.state = DEMOD_START_OF_COMMUNICATION2;
Demod.posCount = 1;
Demod.sub = SUB_NONE;
}
else {
Demod.output[Demod.len] = 0xab;
Demod.state = DEMOD_ERROR_WAIT;
error = 0xd2;
}
break;
case DEMOD_START_OF_COMMUNICATION2:
if(Demod.sub == SUB_SECOND_HALF) {
Demod.state = DEMOD_START_OF_COMMUNICATION3;
}
else {
Demod.output[Demod.len] = 0xab;
Demod.state = DEMOD_ERROR_WAIT;
error = 0xd3;
}
break;
case DEMOD_START_OF_COMMUNICATION3:
if(Demod.sub == SUB_SECOND_HALF) {
// Demod.state = DEMOD_MANCHESTER_D;
Demod.state = DEMOD_SOF_COMPLETE;
//Demod.output[Demod.len] = Demod.syncBit & 0xFF;
//Demod.len++;
}
else {
Demod.output[Demod.len] = 0xab;
Demod.state = DEMOD_ERROR_WAIT;
error = 0xd4;
}
break;
case DEMOD_SOF_COMPLETE:
case DEMOD_MANCHESTER_D:
case DEMOD_MANCHESTER_E:
// OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
// 00001111 = 1 (0 in 14443)
if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
Demod.bitCount++;
Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
Demod.state = DEMOD_MANCHESTER_D;
}
else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
Demod.bitCount++;
Demod.shiftReg >>= 1;
Demod.state = DEMOD_MANCHESTER_E;
}
else if(Demod.sub == SUB_BOTH) {
Demod.state = DEMOD_MANCHESTER_F;
}
else {
Demod.state = DEMOD_ERROR_WAIT;
error = 0x55;
}
break;
case DEMOD_MANCHESTER_F:
// Tag response does not need to be a complete byte!
if(Demod.len > 0 || Demod.bitCount > 0) {
if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
Demod.shiftReg >>= (9 - Demod.bitCount); // right align data
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
Demod.len++;
}
Demod.state = DEMOD_UNSYNCD;
return true;
}
else {
Demod.output[Demod.len] = 0xad;
Demod.state = DEMOD_ERROR_WAIT;
error = 0x03;
}
break;
case DEMOD_ERROR_WAIT:
Demod.state = DEMOD_UNSYNCD;
break;
default:
Demod.output[Demod.len] = 0xdd;
Demod.state = DEMOD_UNSYNCD;
break;
}
/*if(Demod.bitCount>=9) {
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
Demod.len++;
Demod.parityBits <<= 1;
Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
Demod.bitCount = 0;
Demod.shiftReg = 0;
}*/
if(Demod.bitCount>=8) {
Demod.shiftReg >>= 1;
Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
Demod.len++;
Demod.bitCount = 0;
Demod.shiftReg = 0;
}
if(error) {
Demod.output[Demod.len] = 0xBB;
Demod.len++;
Demod.output[Demod.len] = error & 0xFF;
Demod.len++;
Demod.output[Demod.len] = 0xBB;
Demod.len++;
Demod.output[Demod.len] = bit & 0xFF;
Demod.len++;
Demod.output[Demod.len] = Demod.buffer & 0xFF;
Demod.len++;
// Look harder ;-)
Demod.output[Demod.len] = Demod.buffer2 & 0xFF;
Demod.len++;
Demod.output[Demod.len] = Demod.syncBit & 0xFF;
Demod.len++;
Demod.output[Demod.len] = 0xBB;
Demod.len++;
return true;
}
}
} // end (state != UNSYNCED)
return false;
}
//=============================================================================
// Finally, a `sniffer' for iClass communication
// Both sides of communication!
//=============================================================================
//-----------------------------------------------------------------------------
// Record the sequence of commands sent by the reader to the tag, with
// triggering so that we start recording at the point that the tag is moved
// near the reader.
//-----------------------------------------------------------------------------
void RAMFUNC SnoopIClass(void)
{
// We won't start recording the frames that we acquire until we trigger;
// a good trigger condition to get started is probably when we see a
// response from the tag.
//int triggered = false; // false to wait first for card
// The command (reader -> tag) that we're receiving.
// The length of a received command will in most cases be no more than 18 bytes.
// So 32 should be enough!
#define ICLASS_BUFFER_SIZE 32
uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE];
// The response (tag -> reader) that we're receiving.
uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE];
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// free all BigBuf memory
BigBuf_free();
// The DMA buffer, used to stream samples from the FPGA
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
set_tracing(true);
clear_trace();
iso14a_set_trigger(false);
int lastRxCounter;
uint8_t *upTo;
int smpl;
int maxBehindBy = 0;
// Count of samples received so far, so that we can include timing
// information in the trace buffer.
int samples = 0;
rsamples = 0;
// Set up the demodulator for tag -> reader responses.
Demod.output = tagToReaderResponse;
Demod.len = 0;
Demod.state = DEMOD_UNSYNCD;
// Setup for the DMA.
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
upTo = dmaBuf;
lastRxCounter = DMA_BUFFER_SIZE;
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
// And the reader -> tag commands
memset(&Uart, 0, sizeof(Uart));
Uart.output = readerToTagCmd;
Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
Uart.state = STATE_UNSYNCD;
// And put the FPGA in the appropriate mode
// Signal field is off with the appropriate LED
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
uint32_t time_0 = GetCountSspClk();
uint32_t time_start = 0;
uint32_t time_stop = 0;
int div = 0;
//int div2 = 0;
int decbyte = 0;
int decbyter = 0;
// And now we loop, receiving samples.
for(;;) {
LED_A_ON();
WDT_HIT();
int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
(DMA_BUFFER_SIZE-1);
if(behindBy > maxBehindBy) {
maxBehindBy = behindBy;
if(behindBy > (9 * DMA_BUFFER_SIZE / 10)) {
Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
goto done;
}
}
if(behindBy < 1) continue;
LED_A_OFF();
smpl = upTo[0];
upTo++;
lastRxCounter -= 1;
if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
upTo -= DMA_BUFFER_SIZE;
lastRxCounter += DMA_BUFFER_SIZE;
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
}
//samples += 4;
samples += 1;
if(smpl & 0xF) {
decbyte ^= (1 << (3 - div));
}
// FOR READER SIDE COMMUMICATION...
decbyter <<= 2;
decbyter ^= (smpl & 0x30);
div++;
if((div + 1) % 2 == 0) {
smpl = decbyter;
if(OutOfNDecoding((smpl & 0xF0) >> 4)) {
rsamples = samples - Uart.samples;
time_stop = (GetCountSspClk()-time_0) << 4;
LED_C_ON();
//if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
//if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
if(tracing) {
uint8_t parity[MAX_PARITY_SIZE];
GetParity(Uart.output, Uart.byteCnt, parity);
LogTrace(Uart.output,Uart.byteCnt, time_start, time_stop, parity, true);
}
/* And ready to receive another command. */
Uart.state = STATE_UNSYNCD;
/* And also reset the demod code, which might have been */
/* false-triggered by the commands from the reader. */
Demod.state = DEMOD_UNSYNCD;
LED_B_OFF();
Uart.byteCnt = 0;
}else{
time_start = (GetCountSspClk()-time_0) << 4;
}
decbyter = 0;
}
if(div > 3) {
smpl = decbyte;
if(ManchesterDecoding(smpl & 0x0F)) {
time_stop = (GetCountSspClk()-time_0) << 4;
rsamples = samples - Demod.samples;
LED_B_ON();
if(tracing) {
uint8_t parity[MAX_PARITY_SIZE];
GetParity(Demod.output, Demod.len, parity);
LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, false);
}
// And ready to receive another response.
memset(&Demod, 0, sizeof(Demod));
Demod.output = tagToReaderResponse;
Demod.state = DEMOD_UNSYNCD;
LED_C_OFF();
}else{
time_start = (GetCountSspClk()-time_0) << 4;
}
div = 0;
decbyte = 0x00;
}
//}
if(BUTTON_PRESS()) {
DbpString("cancelled_a");
goto done;
}
}
DbpString("COMMAND FINISHED");
Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
done:
AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
LED_A_OFF();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
}
void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
int i;
for(i = 0; i < 8; i++) {
rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5);
}
}
//-----------------------------------------------------------------------------
// Wait for commands from reader
// Stop when button is pressed
// Or return true when command is captured
//-----------------------------------------------------------------------------
static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen)
{
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
// only, since we are receiving, not transmitting).
// Signal field is off with the appropriate LED
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
// Now run a `software UART' on the stream of incoming samples.
Uart.output = received;
Uart.byteCntMax = maxLen;
Uart.state = STATE_UNSYNCD;
for(;;) {
WDT_HIT();
if(BUTTON_PRESS()) return false;
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if(OutOfNDecoding(b & 0x0f)) {
*len = Uart.byteCnt;
return true;
}
}
}
}
static uint8_t encode4Bits(const uint8_t b)
{
uint8_t c = b & 0xF;
// OTA, the least significant bits first
// The columns are
// 1 - Bit value to send
// 2 - Reversed (big-endian)
// 3 - Encoded
// 4 - Hex values
switch(c){
// 1 2 3 4
case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
}
}
//-----------------------------------------------------------------------------
// Prepare tag messages
//-----------------------------------------------------------------------------
static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
{
/*
* SOF comprises 3 parts;
* * An unmodulated time of 56.64 us
* * 24 pulses of 423.75 KHz (fc/32)
* * A logic 1, which starts with an unmodulated time of 18.88us
* followed by 8 pulses of 423.75kHz (fc/32)
*
*
* EOF comprises 3 parts:
* - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
* time of 18.88us.
* - 24 pulses of fc/32
* - An unmodulated time of 56.64 us
*
*
* A logic 0 starts with 8 pulses of fc/32
* followed by an unmodulated time of 256/fc (~18,88us).
*
* A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
* 8 pulses of fc/32 (also 18.88us)
*
* The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
* works like this.
* - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
* - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us
*
* In this mode the SOF can be written as 00011101 = 0x1D
* The EOF can be written as 10111000 = 0xb8
* A logic 1 is 01
* A logic 0 is 10
*
* */
int i;
ToSendReset();
// Send SOF
ToSend[++ToSendMax] = 0x1D;
for(i = 0; i < len; i++) {
uint8_t b = cmd[i];
ToSend[++ToSendMax] = encode4Bits(b & 0xF); //Least significant half
ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF);//Most significant half
}
// Send EOF
ToSend[++ToSendMax] = 0xB8;
//lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
// Convert from last byte pos to length
ToSendMax++;
}
// Only SOF
static void CodeIClassTagSOF()
{
//So far a dummy implementation, not used
//int lastProxToAirDuration =0;
ToSendReset();
// Send SOF
ToSend[++ToSendMax] = 0x1D;
// lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
// Convert from last byte pos to length
ToSendMax++;
}
#define MODE_SIM_CSN 0
#define MODE_EXIT_AFTER_MAC 1
#define MODE_FULLSIM 2
int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf);
/**
* @brief SimulateIClass simulates an iClass card.
* @param arg0 type of simulation
* - 0 uses the first 8 bytes in usb data as CSN
* - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
* in the usb data. This mode collects MAC from the reader, in order to do an offline
* attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
* - Other : Uses the default CSN (031fec8af7ff12e0)
* @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
* @param arg2
* @param datain
*/
void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
{
uint32_t simType = arg0;
uint32_t numberOfCSNS = arg1;
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Enable and clear the trace
set_tracing(true);
clear_trace();
//Use the emulator memory for SIM
uint8_t *emulator = BigBuf_get_EM_addr();
if(simType == 0) {
// Use the CSN from commandline
memcpy(emulator, datain, 8);
doIClassSimulation(MODE_SIM_CSN,NULL);
}else if(simType == 1)
{
//Default CSN
uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
// Use the CSN from commandline
memcpy(emulator, csn_crc, 8);
doIClassSimulation(MODE_SIM_CSN,NULL);
}
else if(simType == 2)
{
uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 };
Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
// In this mode, a number of csns are within datain. We'll simulate each one, one at a time
// in order to collect MAC's from the reader. This can later be used in an offlne-attack
// in order to obtain the keys, as in the "dismantling iclass"-paper.
int i = 0;
for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++)
{
// The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
memcpy(emulator, datain+(i*8), 8);
if(doIClassSimulation(MODE_EXIT_AFTER_MAC,mac_responses+i*8))
{
cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
return; // Button pressed
}
}
cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
}else if(simType == 3){
//This is 'full sim' mode, where we use the emulator storage for data.
doIClassSimulation(MODE_FULLSIM, NULL);
}
else{
// We may want a mode here where we hardcode the csns to use (from proxclone).
// That will speed things up a little, but not required just yet.
Dbprintf("The mode is not implemented, reserved for future use");
}
Dbprintf("Done...");
}
void AppendCrc(uint8_t* data, int len)
{
ComputeCrc14443(CRC_ICLASS,data,len,data+len,data+len+1);
}
/**
* @brief Does the actual simulation
* @param csn - csn to use
* @param breakAfterMacReceived if true, returns after reader MAC has been received.
*/
int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
{
// free eventually allocated BigBuf memory
BigBuf_free_keep_EM();
State cipher_state;
// State cipher_state_reserve;
uint8_t *csn = BigBuf_get_EM_addr();
uint8_t *emulator = csn;
uint8_t sof_data[] = { 0x0F} ;
// CSN followed by two CRC bytes
uint8_t anticoll_data[10] = { 0 };
uint8_t csn_data[10] = { 0 };
memcpy(csn_data,csn,sizeof(csn_data));
Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
// Construct anticollision-CSN
rotateCSN(csn_data,anticoll_data);
// Compute CRC on both CSNs
ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]);
ComputeCrc14443(CRC_ICLASS, csn_data, 8, &csn_data[8], &csn_data[9]);
uint8_t diversified_key[8] = { 0 };
// e-Purse
uint8_t card_challenge_data[8] = { 0x00 };
if(simulationMode == MODE_FULLSIM)
{
//The diversified key should be stored on block 3
//Get the diversified key from emulator memory
memcpy(diversified_key, emulator+(8*3),8);
//Card challenge, a.k.a e-purse is on block 2
memcpy(card_challenge_data,emulator + (8 * 2) , 8);
//Precalculate the cipher state, feeding it the CC
cipher_state = opt_doTagMAC_1(card_challenge_data,diversified_key);
}
int exitLoop = 0;
// Reader 0a
// Tag 0f
// Reader 0c
// Tag anticoll. CSN
// Reader 81 anticoll. CSN
// Tag CSN
uint8_t *modulated_response;
int modulated_response_size = 0;
uint8_t* trace_data = NULL;
int trace_data_size = 0;
// Respond SOF -- takes 1 bytes
uint8_t *resp_sof = BigBuf_malloc(2);
int resp_sof_Len;
// Anticollision CSN (rotated CSN)
// 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
uint8_t *resp_anticoll = BigBuf_malloc(28);
int resp_anticoll_len;
// CSN
// 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
uint8_t *resp_csn = BigBuf_malloc(30);
int resp_csn_len;
// e-Purse
// 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
uint8_t *resp_cc = BigBuf_malloc(20);
int resp_cc_len;
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
int len;
// Prepare card messages
ToSendMax = 0;
// First card answer: SOF
CodeIClassTagSOF();
memcpy(resp_sof, ToSend, ToSendMax); resp_sof_Len = ToSendMax;
// Anticollision CSN
CodeIClassTagAnswer(anticoll_data, sizeof(anticoll_data));
memcpy(resp_anticoll, ToSend, ToSendMax); resp_anticoll_len = ToSendMax;
// CSN
CodeIClassTagAnswer(csn_data, sizeof(csn_data));
memcpy(resp_csn, ToSend, ToSendMax); resp_csn_len = ToSendMax;
// e-Purse
CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data));
memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax;
//This is used for responding to READ-block commands or other data which is dynamically generated
//First the 'trace'-data, not encoded for FPGA
uint8_t *data_generic_trace = BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer
//Then storage for the modulated data
//Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes)
uint8_t *data_response = BigBuf_malloc( (8+2) * 2 + 2);
// Start from off (no field generated)
//FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
//SpinDelay(200);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
SpinDelay(100);
StartCountSspClk();
// We need to listen to the high-frequency, peak-detected path.
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
// To control where we are in the protocol
int cmdsRecvd = 0;
uint32_t time_0 = GetCountSspClk();
uint32_t t2r_time =0;
uint32_t r2t_time =0;
LED_A_ON();
bool buttonPressed = false;
uint8_t response_delay = 1;
while(!exitLoop) {
response_delay = 1;
LED_B_OFF();
//Signal tracer
// Can be used to get a trigger for an oscilloscope..
LED_C_OFF();
if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
buttonPressed = true;
break;
}
r2t_time = GetCountSspClk();
//Signal tracer
LED_C_ON();
// Okay, look at the command now.
if(receivedCmd[0] == ICLASS_CMD_ACTALL ) {
// Reader in anticollission phase
modulated_response = resp_sof; modulated_response_size = resp_sof_Len; //order = 1;
trace_data = sof_data;
trace_data_size = sizeof(sof_data);
} else if(receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) {
// Reader asks for anticollission CSN
modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; //order = 2;
trace_data = anticoll_data;
trace_data_size = sizeof(anticoll_data);
//DbpString("Reader requests anticollission CSN:");
} else if(receivedCmd[0] == ICLASS_CMD_SELECT) {
// Reader selects anticollission CSN.
// Tag sends the corresponding real CSN
modulated_response = resp_csn; modulated_response_size = resp_csn_len; //order = 3;
trace_data = csn_data;
trace_data_size = sizeof(csn_data);
//DbpString("Reader selects anticollission CSN:");
} else if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD) {
// Read e-purse (88 02)
modulated_response = resp_cc; modulated_response_size = resp_cc_len; //order = 4;
trace_data = card_challenge_data;
trace_data_size = sizeof(card_challenge_data);
LED_B_ON();
} else if(receivedCmd[0] == ICLASS_CMD_CHECK) {
// Reader random and reader MAC!!!
if(simulationMode == MODE_FULLSIM)
{
//NR, from reader, is in receivedCmd +1
opt_doTagMAC_2(cipher_state,receivedCmd+1,data_generic_trace,diversified_key);
trace_data = data_generic_trace;
trace_data_size = 4;
CodeIClassTagAnswer(trace_data , trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
response_delay = 0;//We need to hurry here...
//exitLoop = true;
}else
{ //Not fullsim, we don't respond
// We do not know what to answer, so lets keep quiet
modulated_response = resp_sof; modulated_response_size = 0;
trace_data = NULL;
trace_data_size = 0;
if (simulationMode == MODE_EXIT_AFTER_MAC){
// dbprintf:ing ...
Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len,
receivedCmd[0], receivedCmd[1], receivedCmd[2],
receivedCmd[3], receivedCmd[4], receivedCmd[5],
receivedCmd[6], receivedCmd[7], receivedCmd[8]);
if (reader_mac_buf != NULL)
{
memcpy(reader_mac_buf,receivedCmd+1,8);
}
exitLoop = true;
}
}
} else if(receivedCmd[0] == ICLASS_CMD_HALT && len == 1) {
// Reader ends the session
modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
trace_data = NULL;
trace_data_size = 0;
} else if(simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4){
//Read block
uint16_t blk = receivedCmd[1];
//Take the data...
memcpy(data_generic_trace, emulator+(blk << 3),8);
//Add crc
AppendCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
CodeIClassTagAnswer(trace_data , trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
}else if(receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM)
{//Probably the reader wants to update the nonce. Let's just ignore that for now.
// OBS! If this is implemented, don't forget to regenerate the cipher_state
//We're expected to respond with the data+crc, exactly what's already in the receivedcmd
//receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b|
//Take the data...
memcpy(data_generic_trace, receivedCmd+2,8);
//Add crc
AppendCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
trace_data_size = 10;
CodeIClassTagAnswer(trace_data , trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
}
else if(receivedCmd[0] == ICLASS_CMD_PAGESEL)
{//Pagesel
//Pagesel enables to select a page in the selected chip memory and return its configuration block
//Chips with a single page will not answer to this command
// It appears we're fine ignoring this.
//Otherwise, we should answer 8bytes (block) + 2bytes CRC
}
else {
//#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
// Never seen this command before
Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
len,
receivedCmd[0], receivedCmd[1], receivedCmd[2],
receivedCmd[3], receivedCmd[4], receivedCmd[5],
receivedCmd[6], receivedCmd[7], receivedCmd[8]);
// Do not respond
modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
trace_data = NULL;
trace_data_size = 0;
}
if(cmdsRecvd > 100) {
//DbpString("100 commands later...");
//break;
}
else {
cmdsRecvd++;
}
/**
A legit tag has about 380us delay between reader EOT and tag SOF.
**/
if(modulated_response_size > 0) {
SendIClassAnswer(modulated_response, modulated_response_size, response_delay);
t2r_time = GetCountSspClk();
}
if (tracing) {
uint8_t parity[MAX_PARITY_SIZE];
GetParity(receivedCmd, len, parity);
LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, true);
if (trace_data != NULL) {
GetParity(trace_data, trace_data_size, parity);
LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, false);
}
if(!tracing) {
DbpString("Trace full");
//break;
}
}
}
//Dbprintf("%x", cmdsRecvd);
LED_A_OFF();
LED_B_OFF();
LED_C_OFF();
if(buttonPressed)
{
DbpString("Button pressed");
}
return buttonPressed;
}
static int SendIClassAnswer(uint8_t *resp, int respLen, int delay)
{
int i = 0, d=0;//, u = 0, d = 0;
uint8_t b = 0;
//FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT);
AT91C_BASE_SSC->SSC_THR = 0x00;
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
while(!BUTTON_PRESS()) {
if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){
b = AT91C_BASE_SSC->SSC_RHR; (void) b;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){
b = 0x00;
if(d < delay) {
d++;
}
else {
if( i < respLen){
b = resp[i];
//Hack
//b = 0xAC;
}
i++;
}
AT91C_BASE_SSC->SSC_THR = b;
}
// if (i > respLen +4) break;
if (i > respLen +1) break;
}
return 0;
}
/// THE READER CODE
//-----------------------------------------------------------------------------
// Transmit the command (to the tag) that was placed in ToSend[].
//-----------------------------------------------------------------------------
static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait)
{
int c;
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
AT91C_BASE_SSC->SSC_THR = 0x00;
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
if (wait)
{
if(*wait < 10) *wait = 10;
for(c = 0; c < *wait;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
c++;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
(void)r;
}
WDT_HIT();
}
}
uint8_t sendbyte;
bool firstpart = true;
c = 0;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
// DOUBLE THE SAMPLES!
if(firstpart) {
sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
}
else {
sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
c++;
}
if(sendbyte == 0xff) {
sendbyte = 0xfe;
}
AT91C_BASE_SSC->SSC_THR = sendbyte;
firstpart = !firstpart;
if(c >= len) {
break;
}
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
(void)r;
}
WDT_HIT();
}
if (samples && wait) *samples = (c + *wait) << 3;
}
//-----------------------------------------------------------------------------
// Prepare iClass reader command to send to FPGA
//-----------------------------------------------------------------------------
void CodeIClassCommand(const uint8_t * cmd, int len)
{
int i, j, k;
uint8_t b;
ToSendReset();
// Start of Communication: 1 out of 4
ToSend[++ToSendMax] = 0xf0;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0x0f;
ToSend[++ToSendMax] = 0x00;
// Modulate the bytes
for (i = 0; i < len; i++) {
b = cmd[i];
for(j = 0; j < 4; j++) {
for(k = 0; k < 4; k++) {
if(k == (b & 3)) {
ToSend[++ToSendMax] = 0xf0;
}
else {
ToSend[++ToSendMax] = 0x00;
}
}
b >>= 2;
}
}
// End of Communication
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0x00;
ToSend[++ToSendMax] = 0xf0;
ToSend[++ToSendMax] = 0x00;
// Convert from last character reference to length
ToSendMax++;
}
void ReaderTransmitIClass(uint8_t* frame, int len)
{
int wait = 0;
int samples = 0;
// This is tied to other size changes
CodeIClassCommand(frame,len);
// Select the card
TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
if(trigger)
LED_A_ON();
// Store reader command in buffer
if (tracing) {
uint8_t par[MAX_PARITY_SIZE];
GetParity(frame, len, par);
LogTrace(frame, len, rsamples, rsamples, par, true);
}
}
//-----------------------------------------------------------------------------
// Wait a certain time for tag response
// If a response is captured return true
// If it takes too long return false
//-----------------------------------------------------------------------------
static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
{
// buffer needs to be 512 bytes
int c;
// Set FPGA mode to "reader listen mode", no modulation (listen
// only, since we are receiving, not transmitting).
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
// Now get the answer from the card
Demod.output = receivedResponse;
Demod.len = 0;
Demod.state = DEMOD_UNSYNCD;
uint8_t b;
if (elapsed) *elapsed = 0;
bool skip = false;
c = 0;
for(;;) {
WDT_HIT();
if(BUTTON_PRESS()) return false;
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
if (elapsed) (*elapsed)++;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
if(c < timeout) { c++; } else { return false; }
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
skip = !skip;
if(skip) continue;
if(ManchesterDecoding(b & 0x0f)) {
*samples = c << 3;
return true;
}
}
}
}
int ReaderReceiveIClass(uint8_t* receivedAnswer)
{
int samples = 0;
if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return false;
rsamples += samples;
if (tracing) {
uint8_t parity[MAX_PARITY_SIZE];
GetParity(receivedAnswer, Demod.len, parity);
LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,false);
}
if(samples == 0) return false;
return Demod.len;
}
void setupIclassReader()
{
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Reset trace buffer
set_tracing(true);
clear_trace();
// Setup SSC
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
// Start from off (no field generated)
// Signal field is off with the appropriate LED
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(200);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Now give it time to spin up.
// Signal field is on with the appropriate LED
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
SpinDelay(200);
LED_A_ON();
}
bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries)
{
while(retries-- > 0)
{
ReaderTransmitIClass(command, cmdsize);
if(expected_size == ReaderReceiveIClass(resp)){
return true;
}
}
return false;//Error
}
/**
* @brief Talks to an iclass tag, sends the commands to get CSN and CC.
* @param card_data where the CSN and CC are stored for return
* @return 0 = fail
* 1 = Got CSN
* 2 = Got CSN and CC
*/
uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key)
{
static uint8_t act_all[] = { 0x0a };
//static uint8_t identify[] = { 0x0c };
static uint8_t identify[] = { 0x0c, 0x00, 0x73, 0x33 };
static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
static uint8_t readcheck_cc[]= { 0x88, 0x02 };
if (use_credit_key)
readcheck_cc[0] = 0x18;
else
readcheck_cc[0] = 0x88;
uint8_t resp[ICLASS_BUFFER_SIZE];
uint8_t read_status = 0;
// Send act_all
ReaderTransmitIClass(act_all, 1);
// Card present?
if(!ReaderReceiveIClass(resp)) return read_status;//Fail
//Send Identify
ReaderTransmitIClass(identify, 1);
//We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
uint8_t len = ReaderReceiveIClass(resp);
if(len != 10) return read_status;//Fail
//Copy the Anti-collision CSN to our select-packet
memcpy(&select[1],resp,8);
//Select the card
ReaderTransmitIClass(select, sizeof(select));
//We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
len = ReaderReceiveIClass(resp);
if(len != 10) return read_status;//Fail
//Success - level 1, we got CSN
//Save CSN in response data
memcpy(card_data,resp,8);
//Flag that we got to at least stage 1, read CSN
read_status = 1;
// Card selected, now read e-purse (cc) (only 8 bytes no CRC)
ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
if(ReaderReceiveIClass(resp) == 8) {
//Save CC (e-purse) in response data
memcpy(card_data+8,resp,8);
read_status++;
}
return read_status;
}
uint8_t handshakeIclassTag(uint8_t *card_data) {
return handshakeIclassTag_ext(card_data, false);
}
// Reader iClass Anticollission
void ReaderIClass(uint8_t arg0) {
uint8_t card_data[6 * 8]={0};
memset(card_data, 0xFF, sizeof(card_data));
uint8_t last_csn[8]={0,0,0,0,0,0,0,0};
uint8_t resp[ICLASS_BUFFER_SIZE];
memset(resp, 0xFF, sizeof(resp));
//Read conf block CRC(0x01) => 0xfa 0x22
uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x01, 0xfa, 0x22};
//Read App Issuer Area block CRC(0x05) => 0xde 0x64
uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x05, 0xde, 0x64};
int read_status= 0;
uint8_t result_status = 0;
// flag to read until one tag is found successfully
bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE;
// flag to only try 5 times to find one tag then return
bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY;
// if neither abort_after_read nor try_once then continue reading until button pressed.
bool use_credit_key = arg0 & FLAG_ICLASS_READER_CEDITKEY;
// test flags for what blocks to be sure to read
uint8_t flagReadConfig = arg0 & FLAG_ICLASS_READER_CONF;
uint8_t flagReadCC = arg0 & FLAG_ICLASS_READER_CC;
uint8_t flagReadAA = arg0 & FLAG_ICLASS_READER_AA;
set_tracing(true);
setupIclassReader();
uint16_t tryCnt=0;
bool userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
while(!userCancelled)
{
// if only looking for one card try 2 times if we missed it the first time
if (try_once && tryCnt > 2) break;
tryCnt++;
if(!tracing) {
DbpString("Trace full");
break;
}
WDT_HIT();
read_status = handshakeIclassTag_ext(card_data, use_credit_key);
if(read_status == 0) continue;
if(read_status == 1) result_status = FLAG_ICLASS_READER_CSN;
if(read_status == 2) result_status = FLAG_ICLASS_READER_CSN|FLAG_ICLASS_READER_CC;
// handshakeIclass returns CSN|CC, but the actual block
// layout is CSN|CONFIG|CC, so here we reorder the data,
// moving CC forward 8 bytes
memcpy(card_data+16,card_data+8, 8);
//Read block 1, config
if(flagReadConfig) {
if(sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 10))
{
result_status |= FLAG_ICLASS_READER_CONF;
memcpy(card_data+8, resp, 8);
} else {
Dbprintf("Failed to dump config block");
}
}
//Read block 5, AA
if(flagReadAA) {
if(sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 10))
{
result_status |= FLAG_ICLASS_READER_AA;
memcpy(card_data+(8*5), resp, 8);
} else {
//Dbprintf("Failed to dump AA block");
}
}
// 0 : CSN
// 1 : Configuration
// 2 : e-purse
// (3,4 write-only, kc and kd)
// 5 Application issuer area
//
//Then we can 'ship' back the 8 * 6 bytes of data,
// with 0xFF:s in block 3 and 4.
LED_B_ON();
//Send back to client, but don't bother if we already sent this -
// only useful if looping in arm (not try_once && not abort_after_read)
if(memcmp(last_csn, card_data, 8) != 0)
{
// If caller requires that we get Conf, CC, AA, continue until we got it
if( (result_status ^ FLAG_ICLASS_READER_CSN ^ flagReadConfig ^ flagReadCC ^ flagReadAA) == 0) {
cmd_send(CMD_ACK,result_status,0,0,card_data,sizeof(card_data));
if(abort_after_read) {
LED_A_OFF();
LED_B_OFF();
return;
}
//Save that we already sent this....
memcpy(last_csn, card_data, 8);
}
}
LED_B_OFF();
userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
}
if (userCancelled) {
cmd_send(CMD_ACK,0xFF,0,0,card_data, 0);
} else {
cmd_send(CMD_ACK,0,0,0,card_data, 0);
}
LED_A_OFF();
}
void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
uint8_t card_data[USB_CMD_DATA_SIZE]={0};
uint16_t block_crc_LUT[255] = {0};
{//Generate a lookup table for block crc
for(int block = 0; block < 255; block++){
char bl = block;
block_crc_LUT[block] = iclass_crc16(&bl ,1);
}
}
//Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
uint16_t crc = 0;
uint8_t cardsize=0;
uint8_t mem=0;
static struct memory_t{
int k16;
int book;
int k2;
int lockauth;
int keyaccess;
} memory;
uint8_t resp[ICLASS_BUFFER_SIZE];
setupIclassReader();
set_tracing(true);
while(!BUTTON_PRESS()) {
WDT_HIT();
if(!tracing) {
DbpString("Trace full");
break;
}
uint8_t read_status = handshakeIclassTag(card_data);
if(read_status < 2) continue;
//for now replay captured auth (as cc not updated)
memcpy(check+5,MAC,4);
if(!sendCmdGetResponseWithRetries(check, sizeof(check),resp, 4, 5))
{
Dbprintf("Error: Authentication Fail!");
continue;
}
//first get configuration block (block 1)
crc = block_crc_LUT[1];
read[1]=1;
read[2] = crc >> 8;
read[3] = crc & 0xff;
if(!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10))
{
Dbprintf("Dump config (block 1) failed");
continue;
}
mem=resp[5];
memory.k16= (mem & 0x80);
memory.book= (mem & 0x20);
memory.k2= (mem & 0x8);
memory.lockauth= (mem & 0x2);
memory.keyaccess= (mem & 0x1);
cardsize = memory.k16 ? 255 : 32;
WDT_HIT();
//Set card_data to all zeroes, we'll fill it with data
memset(card_data,0x0,USB_CMD_DATA_SIZE);
uint8_t failedRead =0;
uint32_t stored_data_length =0;
//then loop around remaining blocks
for(int block=0; block < cardsize; block++){
read[1]= block;
crc = block_crc_LUT[block];
read[2] = crc >> 8;
read[3] = crc & 0xff;
if(sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10))
{
Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
block, resp[0], resp[1], resp[2],
resp[3], resp[4], resp[5],
resp[6], resp[7]);
//Fill up the buffer
memcpy(card_data+stored_data_length,resp,8);
stored_data_length += 8;
if(stored_data_length +8 > USB_CMD_DATA_SIZE)
{//Time to send this off and start afresh
cmd_send(CMD_ACK,
stored_data_length,//data length
failedRead,//Failed blocks?
0,//Not used ATM
card_data, stored_data_length);
//reset
stored_data_length = 0;
failedRead = 0;
}
}else{
failedRead = 1;
stored_data_length +=8;//Otherwise, data becomes misaligned
Dbprintf("Failed to dump block %d", block);
}
}
//Send off any remaining data
if(stored_data_length > 0)
{
cmd_send(CMD_ACK,
stored_data_length,//data length
failedRead,//Failed blocks?
0,//Not used ATM
card_data, stored_data_length);
}
//If we got here, let's break
break;
}
//Signal end of transmission
cmd_send(CMD_ACK,
0,//data length
0,//Failed blocks?
0,//Not used ATM
card_data, 0);
LED_A_OFF();
}
void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType) {
uint8_t readcheck[] = { keyType, blockNo };
uint8_t resp[] = {0,0,0,0,0,0,0,0};
size_t isOK = 0;
isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 6);
cmd_send(CMD_ACK,isOK,0,0,0,0);
}
void iClass_Authentication(uint8_t *MAC) {
uint8_t check[] = { ICLASS_CMD_CHECK, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t resp[ICLASS_BUFFER_SIZE];
memcpy(check+5,MAC,4);
bool isOK;
isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6);
cmd_send(CMD_ACK,isOK,0,0,0,0);
}
bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) {
uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
char bl = blockNo;
uint16_t rdCrc = iclass_crc16(&bl, 1);
readcmd[2] = rdCrc >> 8;
readcmd[3] = rdCrc & 0xff;
uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
bool isOK = false;
//readcmd[1] = blockNo;
isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, 10, 10);
memcpy(readdata, resp, sizeof(resp));
return isOK;
}
void iClass_ReadBlk(uint8_t blockno) {
uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0};
bool isOK = false;
isOK = iClass_ReadBlock(blockno, readblockdata);
cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8);
}
void iClass_Dump(uint8_t blockno, uint8_t numblks) {
uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0};
bool isOK = false;
uint8_t blkCnt = 0;
BigBuf_free();
uint8_t *dataout = BigBuf_malloc(255*8);
if (dataout == NULL){
Dbprintf("out of memory");
OnError(1);
return;
}
memset(dataout,0xFF,255*8);
for (;blkCnt < numblks; blkCnt++) {
isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again
isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
if (!isOK) {
Dbprintf("Block %02X failed to read", blkCnt+blockno);
break;
}
}
memcpy(dataout+(blkCnt*8),readblockdata,8);
}
//return pointer to dump memory in arg3
cmd_send(CMD_ACK,isOK,blkCnt,BigBuf_max_traceLen(),0,0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
BigBuf_free();
}
bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) {
uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
//uint8_t readblockdata[10];
//write[1] = blockNo;
memcpy(write+2, data, 12); // data + mac
char *wrCmd = (char *)(write+1);
uint16_t wrCrc = iclass_crc16(wrCmd, 13);
write[14] = wrCrc >> 8;
write[15] = wrCrc & 0xff;
uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
bool isOK = false;
isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10);
if (isOK) { //if reader responded correctly
//Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
if (memcmp(write+2,resp,8)) { //if response is not equal to write values
if (blockNo != 3 && blockNo != 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
//error try again
isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10);
}
}
}
return isOK;
}
void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) {
bool isOK = iClass_WriteBlock_ext(blockNo, data);
if (isOK){
Dbprintf("Write block [%02x] successful",blockNo);
} else {
Dbprintf("Write block [%02x] failed",blockNo);
}
cmd_send(CMD_ACK,isOK,0,0,0,0);
}
void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) {
int i;
int written = 0;
int total_block = (endblock - startblock) + 1;
for (i = 0; i < total_block;i++){
// block number
if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){
Dbprintf("Write block [%02x] successful",i + startblock);
written++;
} else {
if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){
Dbprintf("Write block [%02x] successful",i + startblock);
written++;
} else {
Dbprintf("Write block [%02x] failed",i + startblock);
}
}
}
if (written == total_block)
Dbprintf("Clone complete");
else
Dbprintf("Clone incomplete");
cmd_send(CMD_ACK,1,0,0,0,0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}