proxmark3/armsrc/util.c
marshmellow42 e04475c421 Add @Iceman1001 s cotag read
also needed to include some of icemans timer additions.
2017-02-03 00:14:34 -05:00

515 lines
16 KiB
C

//-----------------------------------------------------------------------------
// Jonathan Westhues, Sept 2005
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Utility functions used in many places, not specific to any piece of code.
//-----------------------------------------------------------------------------
#include "proxmark3.h"
#include "util.h"
#include "string.h"
#include "apps.h"
#include "BigBuf.h"
void print_result(char *name, uint8_t *buf, size_t len) {
uint8_t *p = buf;
if ( len % 16 == 0 ) {
for(; p-buf < len; p += 16)
Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
name,
p-buf,
len,
p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]
);
}
else {
for(; p-buf < len; p += 8)
Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x", name, p-buf, len, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
}
}
size_t nbytes(size_t nbits) {
return (nbits >> 3)+((nbits % 8) > 0);
}
uint32_t SwapBits(uint32_t value, int nrbits) {
int i;
uint32_t newvalue = 0;
for(i = 0; i < nrbits; i++) {
newvalue ^= ((value >> i) & 1) << (nrbits - 1 - i);
}
return newvalue;
}
void num_to_bytes(uint64_t n, size_t len, uint8_t* dest)
{
while (len--) {
dest[len] = (uint8_t) n;
n >>= 8;
}
}
uint64_t bytes_to_num(uint8_t* src, size_t len)
{
uint64_t num = 0;
while (len--)
{
num = (num << 8) | (*src);
src++;
}
return num;
}
// RotateLeft - Ultralight, Desfire
void rol(uint8_t *data, const size_t len){
uint8_t first = data[0];
for (size_t i = 0; i < len-1; i++) {
data[i] = data[i+1];
}
data[len-1] = first;
}
void lsl (uint8_t *data, size_t len) {
for (size_t n = 0; n < len - 1; n++) {
data[n] = (data[n] << 1) | (data[n+1] >> 7);
}
data[len - 1] <<= 1;
}
int32_t le24toh (uint8_t data[3])
{
return (data[2] << 16) | (data[1] << 8) | data[0];
}
void LEDsoff()
{
LED_A_OFF();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
}
// LEDs: R(C) O(A) G(B) -- R(D) [1, 2, 4 and 8]
void LED(int led, int ms)
{
if (led & LED_RED)
LED_C_ON();
if (led & LED_ORANGE)
LED_A_ON();
if (led & LED_GREEN)
LED_B_ON();
if (led & LED_RED2)
LED_D_ON();
if (!ms)
return;
SpinDelay(ms);
if (led & LED_RED)
LED_C_OFF();
if (led & LED_ORANGE)
LED_A_OFF();
if (led & LED_GREEN)
LED_B_OFF();
if (led & LED_RED2)
LED_D_OFF();
}
// Determine if a button is double clicked, single clicked,
// not clicked, or held down (for ms || 1sec)
// In general, don't use this function unless you expect a
// double click, otherwise it will waste 500ms -- use BUTTON_HELD instead
int BUTTON_CLICKED(int ms)
{
// Up to 500ms in between clicks to mean a double click
int ticks = (48000 * (ms ? ms : 1000)) >> 10;
// If we're not even pressed, forget about it!
if (!BUTTON_PRESS())
return BUTTON_NO_CLICK;
// Borrow a PWM unit for my real-time clock
AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
// 48 MHz / 1024 gives 46.875 kHz
AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
int letoff = 0;
for(;;)
{
uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
// We haven't let off the button yet
if (!letoff)
{
// We just let it off!
if (!BUTTON_PRESS())
{
letoff = 1;
// reset our timer for 500ms
start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
ticks = (48000 * (500)) >> 10;
}
// Still haven't let it off
else
// Have we held down a full second?
if (now == (uint16_t)(start + ticks))
return BUTTON_HOLD;
}
// We already let off, did we click again?
else
// Sweet, double click!
if (BUTTON_PRESS())
return BUTTON_DOUBLE_CLICK;
// Have we ran out of time to double click?
else
if (now == (uint16_t)(start + ticks))
// At least we did a single click
return BUTTON_SINGLE_CLICK;
WDT_HIT();
}
// We should never get here
return BUTTON_ERROR;
}
// Determine if a button is held down
int BUTTON_HELD(int ms)
{
// If button is held for one second
int ticks = (48000 * (ms ? ms : 1000)) >> 10;
// If we're not even pressed, forget about it!
if (!BUTTON_PRESS())
return BUTTON_NO_CLICK;
// Borrow a PWM unit for my real-time clock
AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
// 48 MHz / 1024 gives 46.875 kHz
AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
for(;;)
{
uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
// As soon as our button let go, we didn't hold long enough
if (!BUTTON_PRESS())
return BUTTON_SINGLE_CLICK;
// Have we waited the full second?
else
if (now == (uint16_t)(start + ticks))
return BUTTON_HOLD;
WDT_HIT();
}
// We should never get here
return BUTTON_ERROR;
}
// attempt at high resolution microsecond timer
// beware: timer counts in 21.3uS increments (1024/48Mhz)
void SpinDelayUs(int us)
{
int ticks = (48*us) >> 10;
// Borrow a PWM unit for my real-time clock
AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
// 48 MHz / 1024 gives 46.875 kHz
AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
for(;;) {
uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
if (now == (uint16_t)(start + ticks))
return;
WDT_HIT();
}
}
void SpinDelay(int ms)
{
// convert to uS and call microsecond delay function
SpinDelayUs(ms*1000);
}
/* Similar to FpgaGatherVersion this formats stored version information
* into a string representation. It takes a pointer to the struct version_information,
* verifies the magic properties, then stores a formatted string, prefixed by
* prefix in dst.
*/
void FormatVersionInformation(char *dst, int len, const char *prefix, void *version_information)
{
struct version_information *v = (struct version_information*)version_information;
dst[0] = 0;
strncat(dst, prefix, len-1);
if(v->magic != VERSION_INFORMATION_MAGIC) {
strncat(dst, "Missing/Invalid version information\n", len - strlen(dst) - 1);
return;
}
if(v->versionversion != 1) {
strncat(dst, "Version information not understood\n", len - strlen(dst) - 1);
return;
}
if(!v->present) {
strncat(dst, "Version information not available\n", len - strlen(dst) - 1);
return;
}
strncat(dst, v->gitversion, len - strlen(dst) - 1);
if(v->clean == 0) {
strncat(dst, "-unclean", len - strlen(dst) - 1);
} else if(v->clean == 2) {
strncat(dst, "-suspect", len - strlen(dst) - 1);
}
strncat(dst, " ", len - strlen(dst) - 1);
strncat(dst, v->buildtime, len - strlen(dst) - 1);
strncat(dst, "\n", len - strlen(dst) - 1);
}
// -------------------------------------------------------------------------
// timer lib
// -------------------------------------------------------------------------
// test procedure:
//
// ti = GetTickCount();
// SpinDelay(1000);
// ti = GetTickCount() - ti;
// Dbprintf("timer(1s): %d t=%d", ti, GetTickCount());
void StartTickCount()
{
// This timer is based on the slow clock. The slow clock frequency is between 22kHz and 40kHz.
// We can determine the actual slow clock frequency by looking at the Main Clock Frequency Register.
uint16_t mainf = AT91C_BASE_PMC->PMC_MCFR & 0xffff; // = 16 * main clock frequency (16MHz) / slow clock frequency
// set RealTimeCounter divider to count at 1kHz:
AT91C_BASE_RTTC->RTTC_RTMR = AT91C_RTTC_RTTRST | ((256000 + (mainf/2)) / mainf);
// note: worst case precision is approx 2.5%
}
/*
* Get the current count.
*/
uint32_t RAMFUNC GetTickCount(){
return AT91C_BASE_RTTC->RTTC_RTVR;// was * 2;
}
// -------------------------------------------------------------------------
// microseconds timer
// -------------------------------------------------------------------------
void StartCountUS()
{
AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
// AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC1XC1S_TIOA0;
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
// fast clock
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
AT91C_BASE_TC0->TC_RA = 1;
AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from timer 0
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN;
AT91C_BASE_TCB->TCB_BCR = 1;
}
uint32_t RAMFUNC GetCountUS(){
return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV * 2) / 3); //was /15) * 10);
}
static uint32_t GlobalUsCounter = 0;
uint32_t RAMFUNC GetDeltaCountUS(){
uint32_t g_cnt = GetCountUS();
uint32_t g_res = g_cnt - GlobalUsCounter;
GlobalUsCounter = g_cnt;
return g_res;
}
// -------------------------------------------------------------------------
// Timer for iso14443 commands. Uses ssp_clk from FPGA
// -------------------------------------------------------------------------
void StartCountSspClk()
{
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1) | (1 << AT91C_ID_TC2); // Enable Clock to all timers
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1
| AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none
| AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0
// configure TC1 to create a short pulse on TIOA1 when a rising edge on TIOB1 (= ssp_clk from FPGA) occurs:
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC1 Clock = MCK(48MHz)/2 = 24MHz
| AT91C_TC_CPCSTOP // Stop clock on RC compare
| AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event
| AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16)
| AT91C_TC_ENETRG // Enable external trigger event
| AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_AEEVT_SET // Set TIOA1 on external event
| AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare
AT91C_BASE_TC1->TC_RC = 0x04; // RC Compare value = 0x04
// use TC0 to count TIOA1 pulses
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_WAVESEL_UP // just count
| AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare
| AT91C_TC_ACPC_SET; // Set TIOA0 on RC Compare
AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2
AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow
// use TC2 to count TIOA0 pulses (giving us a 32bit counter (TC0/TC2) clocked by ssp_clk)
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2
AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_WAVESEL_UP; // just count
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; // enable TC0
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN; // enable TC1
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN; // enable TC2
//
// synchronize the counter with the ssp_frame signal. Note: FPGA must be in any iso14446 mode, otherwise the frame signal would not be present
//
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame)
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high
// note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame
// it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge
AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge)
// at the next (3rd) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0)
// at the next (4th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on,
// whenever the last three bits of our counter go 0, we can be sure to be in the middle of a frame transfer.
// (just started with the transfer of the 4th Bit).
// The high word of the counter (TC2) will not reset until the low word (TC0) overflows. Therefore need to wait quite some time before
// we can use the counter.
while (AT91C_BASE_TC0->TC_CV < 0xFFF0);
}
void ResetSspClk(void) {
//enable clock of timer and software trigger
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
while (AT91C_BASE_TC2->TC_CV > 0);
}
uint32_t RAMFUNC GetCountSspClk(){
uint32_t tmp_count;
tmp_count = (AT91C_BASE_TC2->TC_CV << 16) | AT91C_BASE_TC0->TC_CV;
if ((tmp_count & 0x0000ffff) == 0) { //small chance that we may have missed an increment in TC2
return (AT91C_BASE_TC2->TC_CV << 16);
}
else {
return tmp_count;
}
}
// -------------------------------------------------------------------------
// Timer for bitbanging, or LF stuff when you need a very precis timer
// 1us = 1.5ticks
// -------------------------------------------------------------------------
void StartTicks(void){
//initialization of the timer
// tc1 is higher 0xFFFF0000
// tc0 is lower 0x0000FFFF
AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1);
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz) / 32
AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
AT91C_BASE_TC0->TC_RA = 1;
AT91C_BASE_TC0->TC_RC = 0;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from TC0
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TCB->TCB_BCR = 1;
// wait until timer becomes zero.
while (AT91C_BASE_TC1->TC_CV > 0);
}
// Wait - Spindelay in ticks.
// if called with a high number, this will trigger the WDT...
void WaitTicks(uint32_t ticks){
if ( ticks == 0 ) return;
ticks += GET_TICKS;
while (GET_TICKS < ticks);
}
// Wait / Spindelay in us (microseconds)
// 1us = 1.5ticks.
void WaitUS(uint16_t us){
if ( us == 0 ) return;
WaitTicks( (uint32_t)(us * 1.5) );
}
void WaitMS(uint16_t ms){
if (ms == 0) return;
WaitTicks( (uint32_t)(ms * 1500) );
}
// Starts Clock and waits until its reset
void ResetTicks(void){
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
while (AT91C_BASE_TC1->TC_CV > 0);
}
void ResetTimer(AT91PS_TC timer){
timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
while(timer->TC_CV > 0) ;
}
// stop clock
void StopTicks(void){
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
}
static uint64_t next_random = 1;
/* Generates a (non-cryptographically secure) 32-bit random number.
*
* We don't have an implementation of the "rand" function or a clock to seed it
* with, so we just call GetTickCount the first time to seed ourselves.
*/
uint32_t prand() {
if (next_random == 1) {
next_random = GetTickCount();
}
next_random = next_random * 6364136223846793005 + 1;
return (uint32_t)(next_random >> 32) % 0xffffffff;
}