proxmark3/client/cmdlfem4x.c
marshmellow42 6ac4cb270a minor fixes
see @icemant1001 -
0ad1a1d492
for more details
2015-06-15 00:44:57 -04:00

634 lines
17 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency EM4x commands
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "proxmark3.h"
#include "ui.h"
#include "util.h"
#include "graph.h"
#include "cmdparser.h"
#include "cmddata.h"
#include "cmdlf.h"
#include "cmdlfem4x.h"
#include "lfdemod.h"
#define llx PRIx64
char *global_em410xId;
static int CmdHelp(const char *Cmd);
int CmdEMdemodASK(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
int findone = (cmdp == '1') ? 1 : 0;
UsbCommand c={CMD_EM410X_DEMOD};
c.arg[0]=findone;
SendCommand(&c);
return 0;
}
/* Read the ID of an EM410x tag.
* Format:
* 1111 1111 1 <-- standard non-repeatable header
* XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
* ....
* CCCC <-- each bit here is parity for the 10 bits above in corresponding column
* 0 <-- stop bit, end of tag
*/
int CmdEM410xRead(const char *Cmd)
{
uint32_t hi=0;
uint64_t lo=0;
if(!AskEm410xDemod("", &hi, &lo, false)) return 0;
PrintAndLog("EM410x pattern found: ");
printEM410x(hi, lo);
if (hi){
PrintAndLog ("EM410x XL pattern found");
return 0;
}
char id[12] = {0x00};
sprintf(id, "%010llx",lo);
global_em410xId = id;
return 1;
}
// emulate an EM410X tag
int CmdEM410xSim(const char *Cmd)
{
int i, n, j, binary[4], parity[4];
char cmdp = param_getchar(Cmd, 0);
uint8_t uid[5] = {0x00};
if (cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: lf em4x 410xsim <UID>");
PrintAndLog("");
PrintAndLog(" sample: lf em4x 410xsim 0F0368568B");
return 0;
}
if (param_gethex(Cmd, 0, uid, 10)) {
PrintAndLog("UID must include 10 HEX symbols");
return 0;
}
PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X", uid[0],uid[1],uid[2],uid[3],uid[4]);
PrintAndLog("Press pm3-button to about simulation");
/* clock is 64 in EM410x tags */
int clock = 64;
/* clear our graph */
ClearGraph(0);
/* write 9 start bits */
for (i = 0; i < 9; i++)
AppendGraph(0, clock, 1);
/* for each hex char */
parity[0] = parity[1] = parity[2] = parity[3] = 0;
for (i = 0; i < 10; i++)
{
/* read each hex char */
sscanf(&Cmd[i], "%1x", &n);
for (j = 3; j >= 0; j--, n/= 2)
binary[j] = n % 2;
/* append each bit */
AppendGraph(0, clock, binary[0]);
AppendGraph(0, clock, binary[1]);
AppendGraph(0, clock, binary[2]);
AppendGraph(0, clock, binary[3]);
/* append parity bit */
AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
/* keep track of column parity */
parity[0] ^= binary[0];
parity[1] ^= binary[1];
parity[2] ^= binary[2];
parity[3] ^= binary[3];
}
/* parity columns */
AppendGraph(0, clock, parity[0]);
AppendGraph(0, clock, parity[1]);
AppendGraph(0, clock, parity[2]);
AppendGraph(0, clock, parity[3]);
/* stop bit */
AppendGraph(1, clock, 0);
CmdLFSim("0"); //240 start_gap.
return 0;
}
/* Function is equivalent of lf read + data samples + em410xread
* looped until an EM410x tag is detected
*
* Why is CmdSamples("16000")?
* TBD: Auto-grow sample size based on detected sample rate. IE: If the
* rate gets lower, then grow the number of samples
* Changed by martin, 4000 x 4 = 16000,
* see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
*/
int CmdEM410xWatch(const char *Cmd)
{
do {
if (ukbhit()) {
printf("\naborted via keyboard!\n");
break;
}
CmdLFRead("s");
getSamples("8201",true); //capture enough to get 2 complete preambles (4096*2+9)
} while (!CmdEM410xRead(""));
return 0;
}
//currently only supports manchester modulations
int CmdEM410xWatchnSpoof(const char *Cmd)
{
CmdEM410xWatch(Cmd);
PrintAndLog("# Replaying captured ID: %s",global_em410xId);
CmdLFaskSim("");
return 0;
}
int CmdEM410xWrite(const char *Cmd)
{
uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
int card = 0xFF; // invalid card value
unsigned int clock = 0; // invalid clock value
sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock);
// Check ID
if (id == 0xFFFFFFFFFFFFFFFF) {
PrintAndLog("Error! ID is required.\n");
return 0;
}
if (id >= 0x10000000000) {
PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n");
return 0;
}
// Check Card
if (card == 0xFF) {
PrintAndLog("Error! Card type required.\n");
return 0;
}
if (card < 0) {
PrintAndLog("Error! Bad card type selected.\n");
return 0;
}
// Check Clock
if (card == 1)
{
// Default: 64
if (clock == 0)
clock = 64;
// Allowed clock rates: 16, 32 and 64
if ((clock != 16) && (clock != 32) && (clock != 64)) {
PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32 and 64.\n", clock);
return 0;
}
}
else if (clock != 0)
{
PrintAndLog("Error! Clock rate is only supported on T55x7 tags.\n");
return 0;
}
if (card == 1) {
PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock);
// NOTE: We really should pass the clock in as a separate argument, but to
// provide for backwards-compatibility for older firmware, and to avoid
// having to add another argument to CMD_EM410X_WRITE_TAG, we just store
// the clock rate in bits 8-15 of the card value
card = (card & 0xFF) | (((uint64_t)clock << 8) & 0xFF00);
}
else if (card == 0)
PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
else {
PrintAndLog("Error! Bad card type selected.\n");
return 0;
}
UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
SendCommand(&c);
return 0;
}
bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
{
if (rows*cols>size) return false;
uint8_t colP=0;
//assume last col is a parity and do not test
for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
colP ^= BitStream[(rowNum*cols)+colNum];
}
if (colP != pType) return false;
}
return true;
}
bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
{
if (rows*cols>size) return false;
uint8_t rowP=0;
//assume last row is a parity row and do not test
for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
for (uint8_t colNum = 0; colNum < cols; colNum++) {
rowP ^= BitStream[(rowNum*cols)+colNum];
}
if (rowP != pType) return false;
}
return true;
}
uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
{
if (size<45) return 0;
uint32_t code = bytebits_to_byte(BitStream,8);
code = code<<8 | bytebits_to_byte(BitStream+9,8);
code = code<<8 | bytebits_to_byte(BitStream+18,8);
code = code<<8 | bytebits_to_byte(BitStream+27,8);
if (verbose || g_debugMode){
for (uint8_t i = 0; i<5; i++){
if (i == 4) PrintAndLog(""); //parity byte spacer
PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x",
BitStream[i*9],
BitStream[i*9+1],
BitStream[i*9+2],
BitStream[i*9+3],
BitStream[i*9+4],
BitStream[i*9+5],
BitStream[i*9+6],
BitStream[i*9+7],
BitStream[i*9+8],
bytebits_to_byte(BitStream+i*9,8)
);
}
if (pTest)
PrintAndLog("Parity Passed");
else
PrintAndLog("Parity Failed");
}
return code;
}
/* Read the transmitted data of an EM4x50 tag
* Format:
*
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
* CCCCCCCC <- column parity bits
* 0 <- stop bit
* LW <- Listen Window
*
* This pattern repeats for every block of data being transmitted.
* Transmission starts with two Listen Windows (LW - a modulated
* pattern of 320 cycles each (32/32/128/64/64)).
*
* Note that this data may or may not be the UID. It is whatever data
* is stored in the blocks defined in the control word First and Last
* Word Read values. UID is stored in block 32.
*/
//completed by Marshmellow
int EM4x50Read(const char *Cmd, bool verbose)
{
uint8_t fndClk[] = {8,16,32,40,50,64,128};
int clk = 0;
int invert = 0;
int tol = 0;
int i, j, startblock, skip, block, start, end, low, high, minClk;
bool complete = false;
int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
uint32_t Code[6];
char tmp[6];
char tmp2[20];
int phaseoff;
high = low = 0;
memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
// get user entry if any
sscanf(Cmd, "%i %i", &clk, &invert);
// save GraphBuffer - to restore it later
save_restoreGB(1);
// first get high and low values
for (i = 0; i < GraphTraceLen; i++) {
if (GraphBuffer[i] > high)
high = GraphBuffer[i];
else if (GraphBuffer[i] < low)
low = GraphBuffer[i];
}
i = 0;
j = 0;
minClk = 255;
// get to first full low to prime loop and skip incomplete first pulse
while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
++i;
while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
++i;
skip = i;
// populate tmpbuff buffer with pulse lengths
while (i < GraphTraceLen) {
// measure from low to low
while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
++i;
start= i;
while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
++i;
while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
++i;
if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
break;
}
tmpbuff[j++]= i - start;
if (i-start < minClk && i < GraphTraceLen) {
minClk = i - start;
}
}
// set clock
if (!clk) {
for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
tol = fndClk[clkCnt]/8;
if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
clk=fndClk[clkCnt];
break;
}
}
if (!clk) return 0;
} else tol = clk/8;
// look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
start = -1;
for (i= 0; i < j - 4 ; ++i) {
skip += tmpbuff[i];
if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
{
start= i + 4;
break;
}
}
startblock = i + 4;
// skip over the remainder of LW
skip += tmpbuff[i+1] + tmpbuff[i+2] + clk;
if (tmpbuff[i+3]>clk)
phaseoff = tmpbuff[i+3]-clk;
else
phaseoff = 0;
// now do it again to find the end
end = skip;
for (i += 3; i < j - 4 ; ++i) {
end += tmpbuff[i];
if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
{
complete= true;
break;
}
}
end = i;
// report back
if (verbose || g_debugMode) {
if (start >= 0) {
PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
} else {
PrintAndLog("No data found!, clock tried:%d",clk);
PrintAndLog("Try again with more samples.");
PrintAndLog(" or after a 'data askedge' command to clean up the read");
return 0;
}
} else if (start < 0) return 0;
start = skip;
snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47);
// get rid of leading crap
snprintf(tmp, sizeof(tmp), "%i", skip);
CmdLtrim(tmp);
bool pTest;
bool AllPTest = true;
// now work through remaining buffer printing out data blocks
block = 0;
i = startblock;
while (block < 6) {
if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block);
skip = phaseoff;
// look for LW before start of next block
for ( ; i < j - 4 ; ++i) {
skip += tmpbuff[i];
if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
if (tmpbuff[i+1] >= clk-tol)
break;
}
if (i >= j-4) break; //next LW not found
skip += clk;
if (tmpbuff[i+1]>clk)
phaseoff = tmpbuff[i+1]-clk;
else
phaseoff = 0;
i += 2;
if (ASKDemod(tmp2, false, false, 1) < 1) {
save_restoreGB(0);
return 0;
}
//set DemodBufferLen to just one block
DemodBufferLen = skip/clk;
//test parities
pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0);
pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0);
AllPTest &= pTest;
//get output
Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk);
//skip to start of next block
snprintf(tmp,sizeof(tmp),"%i",skip);
CmdLtrim(tmp);
block++;
if (i >= end) break; //in case chip doesn't output 6 blocks
}
//print full code:
if (verbose || g_debugMode || AllPTest){
if (!complete) {
PrintAndLog("*** Warning!");
PrintAndLog("Partial data - no end found!");
PrintAndLog("Try again with more samples.");
}
PrintAndLog("Found data at sample: %i - using clock: %i", start, clk);
end = block;
for (block=0; block < end; block++){
PrintAndLog("Block %d: %08x",block,Code[block]);
}
if (AllPTest) {
PrintAndLog("Parities Passed");
} else {
PrintAndLog("Parities Failed");
PrintAndLog("Try cleaning the read samples with 'data askedge'");
}
}
//restore GraphBuffer
save_restoreGB(0);
return (int)AllPTest;
}
int CmdEM4x50Read(const char *Cmd)
{
return EM4x50Read(Cmd, true);
}
int CmdReadWord(const char *Cmd)
{
int Word = -1; //default to invalid word
UsbCommand c;
sscanf(Cmd, "%d", &Word);
if ( (Word > 15) | (Word < 0) ) {
PrintAndLog("Word must be between 0 and 15");
return 1;
}
PrintAndLog("Reading word %d", Word);
c.cmd = CMD_EM4X_READ_WORD;
c.d.asBytes[0] = 0x0; //Normal mode
c.arg[0] = 0;
c.arg[1] = Word;
c.arg[2] = 0;
SendCommand(&c);
return 0;
}
int CmdReadWordPWD(const char *Cmd)
{
int Word = -1; //default to invalid word
int Password = 0xFFFFFFFF; //default to blank password
UsbCommand c;
sscanf(Cmd, "%d %x", &Word, &Password);
if ( (Word > 15) | (Word < 0) ) {
PrintAndLog("Word must be between 0 and 15");
return 1;
}
PrintAndLog("Reading word %d with password %08X", Word, Password);
c.cmd = CMD_EM4X_READ_WORD;
c.d.asBytes[0] = 0x1; //Password mode
c.arg[0] = 0;
c.arg[1] = Word;
c.arg[2] = Password;
SendCommand(&c);
return 0;
}
int CmdWriteWord(const char *Cmd)
{
int Word = 16; //default to invalid block
int Data = 0xFFFFFFFF; //default to blank data
UsbCommand c;
sscanf(Cmd, "%x %d", &Data, &Word);
if (Word > 15) {
PrintAndLog("Word must be between 0 and 15");
return 1;
}
PrintAndLog("Writing word %d with data %08X", Word, Data);
c.cmd = CMD_EM4X_WRITE_WORD;
c.d.asBytes[0] = 0x0; //Normal mode
c.arg[0] = Data;
c.arg[1] = Word;
c.arg[2] = 0;
SendCommand(&c);
return 0;
}
int CmdWriteWordPWD(const char *Cmd)
{
int Word = 16; //default to invalid word
int Data = 0xFFFFFFFF; //default to blank data
int Password = 0xFFFFFFFF; //default to blank password
UsbCommand c;
sscanf(Cmd, "%x %d %x", &Data, &Word, &Password);
if (Word > 15) {
PrintAndLog("Word must be between 0 and 15");
return 1;
}
PrintAndLog("Writing word %d with data %08X and password %08X", Word, Data, Password);
c.cmd = CMD_EM4X_WRITE_WORD;
c.d.asBytes[0] = 0x1; //Password mode
c.arg[0] = Data;
c.arg[1] = Word;
c.arg[2] = Password;
SendCommand(&c);
return 0;
}
static command_t CommandTable[] =
{
{"help", CmdHelp, 1, "This help"},
{"em410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
{"em410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"},
{"em410xsim", CmdEM410xSim, 0, "<UID> -- Simulate EM410x tag"},
{"em410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
{"em410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
{"em410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
{"em4x50read", CmdEM4x50Read, 1, "Extract data from EM4x50 tag"},
{"readword", CmdReadWord, 1, "<Word> -- Read EM4xxx word data"},
{"readwordPWD", CmdReadWordPWD, 1, "<Word> <Password> -- Read EM4xxx word data in password mode"},
{"writeword", CmdWriteWord, 1, "<Data> <Word> -- Write EM4xxx word data"},
{"writewordPWD", CmdWriteWordPWD, 1, "<Data> <Word> <Password> -- Write EM4xxx word data in password mode"},
{NULL, NULL, 0, NULL}
};
int CmdLFEM4X(const char *Cmd)
{
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd)
{
CmdsHelp(CommandTable);
return 0;
}