proxmark3/client/cmdhfmfu.c
pwpiwi 3a5ffba7c1
Implement Originality Signature Check in 'hf mfu info'
* add support for elliptic curve 'secp128r1' to mbedtls library
* change ecdsa_signature_verify() to allow different curves, signature lengths, and skipping hash
* add another public key for Mifare Ultralight EV1
2019-08-01 10:53:26 -04:00

1861 lines
56 KiB
C

//-----------------------------------------------------------------------------
// Ultralight Code (c) 2013,2014 Midnitesnake & Andy Davies of Pentura
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// High frequency MIFARE ULTRALIGHT (C) commands
//-----------------------------------------------------------------------------
#include "cmdhfmfu.h"
#include <stdint.h>
#include <stdio.h>
#include "comms.h"
#include "usb_cmd.h"
#include "cmdmain.h"
#include "ui.h"
#include "mbedtls/des.h"
#include "cmdhfmf.h"
#include "cmdhf14a.h" // DropField()
#include "mifare.h"
#include "util.h"
#include "util_posix.h"
#include "protocols.h"
#include "taginfo.h"
#include "crypto/libpcrypto.h"
typedef enum TAGTYPE_UL {
UNKNOWN = 0x000000,
UL = 0x000001,
UL_C = 0x000002,
UL_EV1_48 = 0x000004,
UL_EV1_128 = 0x000008,
NTAG = 0x000010,
NTAG_203 = 0x000020,
NTAG_210 = 0x000040,
NTAG_212 = 0x000080,
NTAG_213 = 0x000100,
NTAG_215 = 0x000200,
NTAG_216 = 0x000400,
MY_D = 0x000800,
MY_D_NFC = 0x001000,
MY_D_MOVE = 0x002000,
MY_D_MOVE_LEAN= 0x004000,
NTAG_I2C_1K = 0x008000,
NTAG_I2C_2K = 0x010000,
FUDAN_UL = 0x020000,
MAGIC = 0x040000,
UL_MAGIC = UL | MAGIC,
UL_C_MAGIC = UL_C | MAGIC,
UL_ERROR = 0xFFFFFF,
} TagTypeUL_t;
#define MAX_UL_BLOCKS 0x0f
#define MAX_ULC_BLOCKS 0x2b
#define MAX_ULEV1a_BLOCKS 0x13
#define MAX_ULEV1b_BLOCKS 0x28
#define MAX_NTAG_203 0x29
#define MAX_NTAG_210 0x13
#define MAX_NTAG_212 0x28
#define MAX_NTAG_213 0x2c
#define MAX_NTAG_215 0x86
#define MAX_NTAG_216 0xe6
#define MAX_MY_D_NFC 0xff
#define MAX_MY_D_MOVE 0x25
#define MAX_MY_D_MOVE_LEAN 0x0f
#define KEYS_3DES_COUNT 7
static uint8_t default_3des_keys[KEYS_3DES_COUNT][16] = {
{ 0x42,0x52,0x45,0x41,0x4b,0x4d,0x45,0x49,0x46,0x59,0x4f,0x55,0x43,0x41,0x4e,0x21 },// 3des std key
{ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },// all zeroes
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f },// 0x00-0x0F
{ 0x49,0x45,0x4D,0x4B,0x41,0x45,0x52,0x42,0x21,0x4E,0x41,0x43,0x55,0x4F,0x59,0x46 },// NFC-key
{ 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01 },// all ones
{ 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF },// all FF
{ 0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xAA,0xBB,0xCC,0xDD,0xEE,0xFF } // 11 22 33
};
#define KEYS_PWD_COUNT 6
static uint8_t default_pwd_pack[KEYS_PWD_COUNT][4] = {
{0xFF,0xFF,0xFF,0xFF}, // PACK 0x00,0x00 -- factory default
{0x4A,0xF8,0x4B,0x19}, // PACK 0xE5,0xBE -- italian bus (sniffed)
{0x33,0x6B,0xA1,0x19}, // PACK 0x9c,0x2d -- italian bus (sniffed)
{0xFF,0x90,0x6C,0xB2}, // PACK 0x12,0x9e -- italian bus (sniffed)
{0x46,0x1c,0xA3,0x19}, // PACK 0xE9,0x5A -- italian bus (sniffed)
{0x35,0x1C,0xD0,0x19}, // PACK 0x9A,0x5a -- italian bus (sniffed)
};
// known public keys for the originality check (source: https://github.com/alexbatalov/node-nxp-originality-verifier)
uint8_t public_keys[2][33] = {{0x04,0x49,0x4e,0x1a,0x38,0x6d,0x3d,0x3c,0xfe,0x3d,0xc1,0x0e,0x5d,0xe6,0x8a,0x49,0x9b, // UL and NDEF
0x1c,0x20,0x2d,0xb5,0xb1,0x32,0x39,0x3e,0x89,0xed,0x19,0xfe,0x5b,0xe8,0xbc,0x61},
{0x04,0x90,0x93,0x3b,0xdc,0xd6,0xe9,0x9b,0x4e,0x25,0x5e,0x3d,0xa5,0x53,0x89,0xa8,0x27, // UL EV1
0x56,0x4e,0x11,0x71,0x8e,0x01,0x72,0x92,0xfa,0xf2,0x32,0x26,0xa9,0x66,0x14,0xb8}
};
#define MAX_UL_TYPES 17
static uint32_t UL_TYPES_ARRAY[MAX_UL_TYPES] = {UNKNOWN, UL, UL_C, UL_EV1_48, UL_EV1_128, NTAG, NTAG_203,
NTAG_210, NTAG_212, NTAG_213, NTAG_215, NTAG_216, MY_D, MY_D_NFC, MY_D_MOVE, MY_D_MOVE_LEAN, FUDAN_UL};
static uint8_t UL_MEMORY_ARRAY[MAX_UL_TYPES] = {MAX_UL_BLOCKS, MAX_UL_BLOCKS, MAX_ULC_BLOCKS, MAX_ULEV1a_BLOCKS,
MAX_ULEV1b_BLOCKS, MAX_NTAG_203, MAX_NTAG_203, MAX_NTAG_210, MAX_NTAG_212, MAX_NTAG_213,
MAX_NTAG_215, MAX_NTAG_216, MAX_UL_BLOCKS, MAX_MY_D_NFC, MAX_MY_D_MOVE, MAX_MY_D_MOVE_LEAN, MAX_UL_BLOCKS};
// get version nxp product type
static char *getProductTypeStr( uint8_t id){
static char buf[20];
char *retStr = buf;
switch(id) {
case 3: sprintf(retStr, "%02X, Ultralight", id); break;
case 4: sprintf(retStr, "%02X, NTAG", id); break;
default: sprintf(retStr, "%02X, unknown", id); break;
}
return buf;
}
/*
The 7 MSBits (=n) code the storage size itself based on 2^n,
the LSBit is set to '0' if the size is exactly 2^n
and set to '1' if the storage size is between 2^n and 2^(n+1).
*/
static char *getUlev1CardSizeStr( uint8_t fsize ){
static char buf[40];
char *retStr = buf;
memset(buf, 0, sizeof(buf));
uint16_t usize = 1 << ((fsize >>1) + 1);
uint16_t lsize = 1 << (fsize >>1);
// is LSB set?
if ( fsize & 1 )
sprintf(retStr, "%02X, (%u <-> %u bytes)",fsize, usize, lsize);
else
sprintf(retStr, "%02X, (%u bytes)", fsize, lsize);
return buf;
}
static int ul_send_cmd_raw(uint8_t *cmd, uint8_t cmdlen, uint8_t *response, uint16_t responseLength) {
UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_RAW | ISO14A_NO_DISCONNECT | ISO14A_APPEND_CRC, cmdlen, 0}};
memcpy(c.d.asBytes, cmd, cmdlen);
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return -1;
if (!resp.arg[0] && responseLength) return -1;
uint16_t resplen = (resp.arg[0] < responseLength) ? resp.arg[0] : responseLength;
memcpy(response, resp.d.asBytes, resplen);
return resplen;
}
static int ul_select(iso14a_card_select_t *card, bool clear_trace) {
UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT | ISO14A_NO_DISCONNECT | ISO14A_NO_RATS | (clear_trace?ISO14A_CLEAR_TRACE:0), 0, 0}};
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
bool ans = false;
ans = WaitForResponseTimeout(CMD_ACK, &resp, 1500);
if (ans == 0 || resp.arg[0] == 0) {
PrintAndLogEx(WARNING, "iso14443a card select failed");
return 0;
}
memcpy(card, resp.d.asBytes, sizeof(iso14a_card_select_t));
return 1;
}
// This read command will return 16 bytes.
static int ul_read(uint8_t page, uint8_t *response, uint16_t responseLength) {
uint8_t cmd[] = {MIFARE_CMD_READBLOCK, page};
int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength);
return len;
}
static int ul_halt(void) {
uint8_t cmd[] = {ISO14443A_CMD_HALT, 0x00};
uint8_t response;
int len = ul_send_cmd_raw(cmd, sizeof(cmd), &response, sizeof(response));
return len;
}
static int ul_comp_write_ex(uint8_t page, uint8_t *data, uint8_t datalen, bool first_part_only) {
uint8_t cmd[18] = {0x00};
datalen = ( datalen > 16) ? 16 : datalen;
cmd[0] = MIFARE_CMD_WRITEBLOCK;
cmd[1] = page;
uint8_t response = {0xff};
ul_send_cmd_raw(cmd, 2, &response, sizeof(response));
if (response != CARD_ACK)
return -1;
if (first_part_only)
return 0;
memcpy(cmd, data, datalen);
ul_send_cmd_raw(cmd, 16, &response, sizeof(response));
if (response != CARD_ACK)
return -1;
return 0;
}
// not used yet
// static int ul_comp_write(uint8_t page, uint8_t *data, uint8_t datalen) {
// return ul_comp_write_ex(page, data, datalen, false);
// }
static int ulc_requestAuthentication(uint8_t *nonce, uint16_t nonceLength) {
uint8_t cmd[] = {MIFARE_ULC_AUTH_1, 0x00};
int len = ul_send_cmd_raw(cmd, sizeof(cmd), nonce, nonceLength);
return len;
}
static int ulc_authentication(uint8_t *key, bool switch_off_field) {
UsbCommand c = {CMD_MIFAREUC_AUTH, {switch_off_field}};
memcpy(c.d.asBytes, key, 16);
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if ( !WaitForResponseTimeout(CMD_ACK, &resp, 1500) ) return 0;
if ( resp.arg[0] == 1 ) return 1;
return 0;
}
static int ulev1_requestAuthentication(uint8_t *pwd, uint8_t *pack, uint16_t packLength) {
uint8_t cmd[] = {MIFARE_ULEV1_AUTH, pwd[0], pwd[1], pwd[2], pwd[3]};
int len = ul_send_cmd_raw(cmd, sizeof(cmd), pack, packLength);
return len;
}
static int ul_auth_select(iso14a_card_select_t *card, TagTypeUL_t tagtype, bool hasAuthKey, uint8_t *authenticationkey, uint8_t *pack, uint8_t packSize) {
if (hasAuthKey && (tagtype & UL_C)) {
//will select card automatically and close connection on error
if (!ulc_authentication(authenticationkey, false)) {
PrintAndLogEx(ERR, "Authentication Failed UL-C");
return 0;
}
} else {
if (!ul_select(card, false)) return 0;
if (hasAuthKey) {
if (ulev1_requestAuthentication(authenticationkey, pack, packSize) < 1) {
PrintAndLogEx(ERR, "Authentication Failed UL-EV1/NTAG");
return 0;
}
}
}
return 1;
}
static int ulev1_getVersion(uint8_t *response, uint16_t responseLength) {
uint8_t cmd[] = {MIFARE_ULEV1_VERSION};
int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength);
return len;
}
// static int ulev1_fastRead( uint8_t startblock, uint8_t endblock, uint8_t *response ){
// uint8_t cmd[] = {MIFARE_ULEV1_FASTREAD, startblock, endblock};
// if ( !ul_send_cmd_raw(cmd, sizeof(cmd), response)){
// return -1;
// }
// return 0;
// }
static int ulev1_readCounter(uint8_t counter, uint8_t *response, uint16_t responseLength) {
uint8_t cmd[] = {MIFARE_ULEV1_READ_CNT, counter};
int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength);
return len;
}
static int ulev1_readTearing(uint8_t counter, uint8_t *response, uint16_t responseLength) {
uint8_t cmd[] = {MIFARE_ULEV1_CHECKTEAR, counter};
int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength);
return len;
}
static int ulev1_readSignature(uint8_t *response, uint16_t responseLength) {
uint8_t cmd[] = {MIFARE_ULEV1_READSIG, 0x00};
int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength);
return len;
}
// Fudan check checks for which error is given for a command with incorrect crc
// NXP UL chip responds with 01, fudan 00.
// other possible checks:
// send a0 + crc
// UL responds with 00, fudan doesn't respond
// or
// send a200 + crc
// UL doesn't respond, fudan responds with 00
// or
// send 300000 + crc (read with extra byte(s))
// UL responds with read of page 0, fudan doesn't respond.
//
// make sure field is off before calling this function
static int ul_fudan_check(void) {
iso14a_card_select_t card;
if (!ul_select(&card, false))
return UL_ERROR;
UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_RAW | ISO14A_NO_DISCONNECT, 4, 0}};
uint8_t cmd[4] = {0x30,0x00,0x02,0xa7}; //wrong crc on purpose should be 0xa8
memcpy(c.d.asBytes, cmd, 4);
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return UL_ERROR;
if (resp.arg[0] != 1) return UL_ERROR;
return (!resp.d.asBytes[0]) ? FUDAN_UL : UL; //if response == 0x00 then Fudan, else Genuine NXP
}
static int ul_print_default(uint8_t *data) {
uint8_t uid[7];
memcpy(uid, data, 3);
memcpy(uid+3, data+4, 4);
PrintAndLogEx(NORMAL," UID : %s", sprint_hex(uid, 7));
PrintAndLogEx(NORMAL," UID[0] : %02X, %s", uid[0], getManufacturerName(uid[0]));
if (uid[0] == 0x05 && ((uid[1] & 0xf0) >> 4) == 2 ) { // is infineon and 66RxxP
uint8_t chip = (data[8] & 0xC7); // 11000111 mask, bit 3,4,5 RFU
switch (chip){
case 0xc2: PrintAndLogEx(NORMAL, " IC type : SLE 66R04P 770 Bytes"); break; //77 pages
case 0xc4: PrintAndLogEx(NORMAL, " IC type : SLE 66R16P 2560 Bytes"); break; //256 pages
case 0xc6: PrintAndLogEx(NORMAL, " IC type : SLE 66R32P 5120 Bytes"); break; //512 pages /2 sectors
}
}
// CT (cascade tag byte) 0x88 xor SN0 xor SN1 xor SN2
int crc0 = 0x88 ^ uid[0] ^ uid[1] ^ uid[2];
if ( data[3] == crc0 )
PrintAndLogEx(NORMAL, " BCC0 : %02X, Ok", data[3]);
else
PrintAndLogEx(NORMAL, " BCC0 : %02X, crc should be %02X", data[3], crc0);
int crc1 = uid[3] ^ uid[4] ^ uid[5] ^ uid[6];
if ( data[8] == crc1 )
PrintAndLogEx(NORMAL, " BCC1 : %02X, Ok", data[8]);
else
PrintAndLogEx(NORMAL, " BCC1 : %02X, crc should be %02X", data[8], crc1 );
PrintAndLogEx(NORMAL, " Internal : %02X, %sdefault", data[9], (data[9]==0x48)?"":"not " );
PrintAndLogEx(NORMAL, " Lock : %s (binary %s %s)",
sprint_hex(data+10, 2),
printBits(1, data+10),
printBits(1, data+11)
);
PrintAndLogEx(NORMAL, "OneTimePad : %s (binary %s %s %s %s)\n",
sprint_hex(data+12, 4),
printBits(1, data+12),
printBits(1, data+13),
printBits(1, data+14),
printBits(1, data+15)
);
return 0;
}
static int ndef_print_CC(uint8_t *data) {
// no NDEF message
if(data[0] != 0xe1)
return -1;
PrintAndLogEx(NORMAL, "--- NDEF Message");
PrintAndLogEx(NORMAL, "Capability Container: %s", sprint_hex(data,4) );
PrintAndLogEx(NORMAL, " %02X : NDEF Magic Number", data[0]);
PrintAndLogEx(NORMAL, " %02X : version %d.%d supported by tag", data[1], (data[1] & 0xF0) >> 4, data[1] & 0x0f);
PrintAndLogEx(NORMAL, " %02X : Physical Memory Size: %d bytes", data[2], (data[2] + 1) * 8);
if ( data[2] == 0x12 )
PrintAndLogEx(NORMAL, " %02X : NDEF Memory Size: %d bytes", data[2], 144);
else if ( data[2] == 0x3e )
PrintAndLogEx(NORMAL, " %02X : NDEF Memory Size: %d bytes", data[2], 496);
else if ( data[2] == 0x6d )
PrintAndLogEx(NORMAL, " %02X : NDEF Memory Size: %d bytes", data[2], 872);
PrintAndLogEx(NORMAL, " %02X : %s / %s", data[3],
(data[3] & 0xF0) ? "(RFU)" : "Read access granted without any security",
(data[3] & 0x0F)==0 ? "Write access granted without any security" : (data[3] & 0x0F)==0x0F ? "No write access granted at all" : "(RFU)");
return 0;
}
int ul_print_type(uint32_t tagtype, uint8_t spaces){
char spc[11] = " ";
spc[10]=0x00;
char *spacer = spc + (10-spaces);
if (tagtype & UL )
PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight (MF0ICU1) %s", spacer, (tagtype & MAGIC) ? "<magic>" : "" );
else if (tagtype & UL_C)
PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight C (MF0ULC) %s", spacer, (tagtype & MAGIC) ? "<magic>" : "" );
else if (tagtype & UL_EV1_48)
PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight EV1 48bytes (MF0UL1101)", spacer);
else if (tagtype & UL_EV1_128)
PrintAndLogEx(NORMAL, "%sTYPE : MIFARE Ultralight EV1 128bytes (MF0UL2101)", spacer);
else if (tagtype & NTAG)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG UNKNOWN", spacer);
else if (tagtype & NTAG_203)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG 203 144bytes (NT2H0301F0DT)", spacer);
else if (tagtype & NTAG_210)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG 210 48bytes (NT2L1011G0DU)", spacer);
else if (tagtype & NTAG_212)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG 212 128bytes (NT2L1211G0DU)", spacer);
else if (tagtype & NTAG_213)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG 213 144bytes (NT2H1311G0DU)", spacer);
else if (tagtype & NTAG_215)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG 215 504bytes (NT2H1511G0DU)", spacer);
else if (tagtype & NTAG_216)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG 216 888bytes (NT2H1611G0DU)", spacer);
else if (tagtype & NTAG_I2C_1K)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG I%sC 888bytes (NT3H1101FHK)", spacer, "\xFD");
else if (tagtype & NTAG_I2C_2K)
PrintAndLogEx(NORMAL, "%sTYPE : NTAG I%sC 1904bytes (NT3H1201FHK)", spacer, "\xFD");
else if (tagtype & MY_D)
PrintAndLogEx(NORMAL, "%sTYPE : INFINEON my-d\x99 (SLE 66RxxS)", spacer);
else if (tagtype & MY_D_NFC)
PrintAndLogEx(NORMAL, "%sTYPE : INFINEON my-d\x99 NFC (SLE 66RxxP)", spacer);
else if (tagtype & MY_D_MOVE)
PrintAndLogEx(NORMAL, "%sTYPE : INFINEON my-d\x99 move | my-d\x99move NFC (SLE 66R01P)", spacer);
else if (tagtype & MY_D_MOVE_LEAN)
PrintAndLogEx(NORMAL, "%sTYPE : INFINEON my-d\x99 move lean (SLE 66R01L)", spacer);
else if (tagtype & FUDAN_UL)
PrintAndLogEx(NORMAL, "%sTYPE : FUDAN Ultralight Compatible (or other compatible) %s", spacer, (tagtype & MAGIC) ? "<magic>" : "" );
else
PrintAndLogEx(NORMAL, "%sTYPE : Unknown %06x", spacer, tagtype);
return 0;
}
static int ulc_print_3deskey(uint8_t *data) {
PrintAndLogEx(NORMAL, " deskey1 [44/0x2C] : %s [%.4s]", sprint_hex(data ,4),data);
PrintAndLogEx(NORMAL, " deskey1 [45/0x2D] : %s [%.4s]", sprint_hex(data+4 ,4),data+4);
PrintAndLogEx(NORMAL, " deskey2 [46/0x2E] : %s [%.4s]", sprint_hex(data+8 ,4),data+8);
PrintAndLogEx(NORMAL, " deskey2 [47/0x2F] : %s [%.4s]", sprint_hex(data+12,4),data+12);
PrintAndLogEx(NORMAL, "\n 3des key : %s", sprint_hex(SwapEndian64(data, 16, 8), 16));
return 0;
}
static int ulc_print_configuration(uint8_t *data) {
PrintAndLogEx(NORMAL, "--- UL-C Configuration");
PrintAndLogEx(NORMAL, " Higher Lockbits [40/0x28] : %s (binary %s %s)",
sprint_hex(data, 2),
printBits(1, data),
printBits(1, data+1)
);
PrintAndLogEx(NORMAL, " Counter [41/0x29] : %s", sprint_hex(data+4, 2));
bool validAuth = (data[8] >= 0x03 && data[8] <= 0x30);
if (validAuth)
PrintAndLogEx(NORMAL, " Auth0 [42/0x2A] : %s page %d/0x%02X and above need authentication", sprint_hex(data+8, 4), data[8], data[8] );
else{
if (data[8] == 0) {
PrintAndLogEx(NORMAL, " Auth0 [42/0x2A] : %s default", sprint_hex(data+8, 4) );
} else {
PrintAndLogEx(NORMAL, " Auth0 [42/0x2A] : %s auth byte is out-of-range", sprint_hex(data+8, 4) );
}
}
PrintAndLogEx(NORMAL, " Auth1 [43/0x2B] : %s %s",
sprint_hex(data+12, 4),
(data[12] & 1) ? "write access restricted": "read and write access restricted"
);
return 0;
}
static int ulev1_print_configuration(uint8_t *data, uint8_t startPage) {
PrintAndLogEx(NORMAL, "\n--- Tag Configuration");
bool strg_mod_en = (data[0] & 2);
uint8_t authlim = (data[4] & 0x07);
bool cfglck = (data[4] & 0x40);
bool prot = (data[4] & 0x80);
uint8_t vctid = data[5];
PrintAndLogEx(NORMAL, " cfg0 [%u/0x%02X] : %s", startPage, startPage, sprint_hex(data, 4));
if (data[3] < 0xff)
PrintAndLogEx(NORMAL, " - page %d and above need authentication", data[3]);
else
PrintAndLogEx(NORMAL, " - pages don't need authentication");
PrintAndLogEx(NORMAL, " - strong modulation mode %s", (strg_mod_en) ? "enabled" : "disabled");
PrintAndLogEx(NORMAL, " cfg1 [%u/0x%02X] : %s", startPage + 1, startPage + 1, sprint_hex(data+4, 4) );
if (authlim == 0)
PrintAndLogEx(NORMAL, " - Unlimited password attempts");
else
PrintAndLogEx(NORMAL, " - Max number of password attempts is %d", authlim);
PrintAndLogEx(NORMAL, " - user configuration %s", cfglck ? "permanently locked":"writeable");
PrintAndLogEx(NORMAL, " - %s access is protected with password", prot ? "read and write":"write");
PrintAndLogEx(NORMAL, " - %02X, Virtual Card Type Identifier is %s default", vctid, (vctid==0x05)? "":"not");
PrintAndLogEx(NORMAL, " PWD [%u/0x%02X] : %s- (cannot be read)", startPage + 2, startPage + 2, sprint_hex(data+8, 4));
PrintAndLogEx(NORMAL, " PACK [%u/0x%02X] : %s - (cannot be read)", startPage + 3, startPage + 3, sprint_hex(data+12, 2));
PrintAndLogEx(NORMAL, " RFU [%u/0x%02X] : %s- (cannot be read)", startPage + 3, startPage + 3, sprint_hex(data+14, 2));
return 0;
}
static int ulev1_print_counters(void) {
PrintAndLogEx(NORMAL, "--- Tag Counters");
uint8_t tear[1] = {0};
uint8_t counter[3] = {0,0,0};
uint16_t len = 0;
for ( uint8_t i = 0; i<3; ++i) {
ulev1_readTearing(i, tear, sizeof(tear));
len = ulev1_readCounter(i, counter, sizeof(counter) );
if (len == 3) {
PrintAndLogEx(NORMAL, " [%0d] : %s", i, sprint_hex(counter,3));
PrintAndLogEx(NORMAL, " - %02X tearing %s", tear[0], ( tear[0]==0xBD)?"Ok":"failure");
}
}
return len;
}
static int ulev1_print_signature(TagTypeUL_t tagtype, uint8_t *uid, uint8_t *signature, size_t signature_len){
uint8_t public_key = 0;
if (tagtype == UL_EV1_48 || tagtype == UL_EV1_128) {
public_key = 1;
}
int res = ecdsa_signature_r_s_verify(MBEDTLS_ECP_DP_SECP128R1, public_keys[public_key], uid, 7, signature, signature_len, false);
bool signature_valid = (res == 0);
PrintAndLogEx(NORMAL, "\n--- Tag Originality Signature");
//PrintAndLogEx(NORMAL, "IC signature public key name : NXP NTAG21x 2013"); // don't know if there is other NXP public keys.. :(
PrintAndLogEx(NORMAL, " Signature public key : %s", sprint_hex(public_keys[public_key]+1, sizeof(public_keys[public_key])-1));
PrintAndLogEx(NORMAL, " Elliptic curve parameters : secp128r1");
PrintAndLogEx(NORMAL, " Tag ECC Signature : %s", sprint_hex(signature, signature_len));
PrintAndLogEx(NORMAL, " Originality signature check : signature is %svalid", signature_valid?"":"NOT ");
return 0;
}
static int ulev1_print_version(uint8_t *data){
PrintAndLogEx(NORMAL, "\n--- Tag Version");
PrintAndLogEx(NORMAL, " Raw bytes : %s", sprint_hex(data, 8) );
PrintAndLogEx(NORMAL, " Vendor ID : %02X, %s", data[1], getManufacturerName(data[1]));
PrintAndLogEx(NORMAL, " Product type : %s", getProductTypeStr(data[2]));
PrintAndLogEx(NORMAL, " Product subtype : %02X, %s", data[3], (data[3]==1) ?"17 pF":"50pF");
PrintAndLogEx(NORMAL, " Major version : %02X", data[4]);
PrintAndLogEx(NORMAL, " Minor version : %02X", data[5]);
PrintAndLogEx(NORMAL, " Size : %s", getUlev1CardSizeStr(data[6]));
PrintAndLogEx(NORMAL, " Protocol type : %02X", data[7]);
return 0;
}
static int ul_magic_test(void) {
// try a compatibility write to page0, and see if tag answers with ACK/NACK to the first part of the command
iso14a_card_select_t card;
if (!ul_select(&card, false))
return UL_ERROR;
int status = ul_comp_write_ex(0, NULL, 0, true);
if (status == 0) {
return MAGIC;
}
return 0;
}
uint32_t GetHF14AMfU_Type(void){
TagTypeUL_t tagtype = UNKNOWN;
iso14a_card_select_t card;
uint8_t version[10] = {0x00};
int len;
if (!ul_select(&card, true)) {
DropField();
msleep(200);
return UL_ERROR;
}
// Check for Ultralight Family
if (card.uidlen != 7 || (card.sak & 0x38) != 0x00) {
DropField();
PrintAndLogEx(NORMAL, "Tag is not Ultralight | NTAG | MY-D [ATQA: %02X %02X SAK: %02X]\n", card.atqa[1], card.atqa[0], card.sak);
return UL_ERROR;
}
if (card.uid[0] != 0x05) {
len = ulev1_getVersion(version, sizeof(version));
if (len == 10) {
if (version[2] == 0x03 && version[6] == 0x0B)
tagtype = UL_EV1_48;
else if (version[2] == 0x03 && version[6] != 0x0B)
tagtype = UL_EV1_128;
else if (version[2] == 0x04 && version[3] == 0x01 && version[6] == 0x0B)
tagtype = NTAG_210;
else if (version[2] == 0x04 && version[3] == 0x01 && version[6] == 0x0E)
tagtype = NTAG_212;
else if (version[2] == 0x04 && version[3] == 0x02 && version[6] == 0x0F)
tagtype = NTAG_213;
else if (version[2] == 0x04 && version[3] == 0x02 && version[6] == 0x11)
tagtype = NTAG_215;
else if (version[2] == 0x04 && version[3] == 0x02 && version[6] == 0x13)
tagtype = NTAG_216;
else if (version[2] == 0x04 && version[3] == 0x05 && version[6] == 0x13)
tagtype = NTAG_I2C_1K;
else if (version[2] == 0x04 && version[3] == 0x05 && version[6] == 0x15)
tagtype = NTAG_I2C_2K;
else if (version[2] == 0x04)
tagtype = NTAG;
}
// UL vs UL-C vs ntag203 test
if (tagtype == UNKNOWN) {
ul_halt();
if (!ul_select(&card, false)) {
DropField();
msleep(200);
return UL_ERROR;
}
// do UL_C check first...
uint8_t nonce[11] = {0x00};
len = ulc_requestAuthentication(nonce, sizeof(nonce));
ul_halt();
if (len == 11) {
tagtype = UL_C;
} else {
// need to re-select after authentication error
if (!ul_select(&card, false)) {
DropField();
msleep(200);
return UL_ERROR;
}
uint8_t data[16] = {0x00};
// read page 0x29 (last valid ntag203 page)
len = ul_read(0x29, data, sizeof(data));
if (len <= 1) {
tagtype = UL;
} else {
// read page 0x30 (should error if it is a ntag203)
len = ul_read(0x30, data, sizeof(data));
if (len <= 1) {
ul_halt();
tagtype = NTAG_203;
}
}
}
}
if (tagtype & UL) {
tagtype = ul_fudan_check();
ul_halt();
}
} else { // manufacturer Infineon. Check for my-d variants
uint8_t nib = (card.uid[1] & 0xf0) >> 4;
switch (nib) {
case 1: tagtype = MY_D; break; //or SLE 66RxxS ... up to 512 pages of 8 user bytes...
case 2: tagtype = MY_D_NFC; break; //or SLE 66RxxP ... up to 512 pages of 8 user bytes... (or in nfc mode FF pages of 4 bytes)
case 3: tagtype = MY_D_MOVE; break; //or SLE 66R01P // 38 pages of 4 bytes
case 7: tagtype = MY_D_MOVE_LEAN; break; //or SLE 66R01L // 16 pages of 4 bytes
}
}
tagtype |= ul_magic_test();
if (tagtype == (UNKNOWN | MAGIC)) tagtype = (UL_MAGIC);
DropField();
msleep(200);
printf("Tagtype: %08x\n", tagtype);
return tagtype;
}
static int usage_hf_mfu_info(void) {
PrintAndLogEx(NORMAL, "It gathers information about the tag and tries to detect what kind it is.");
PrintAndLogEx(NORMAL, "Sometimes the tags are locked down, and you may need a key to be able to read the information");
PrintAndLogEx(NORMAL, "The following tags can be identified:\n");
PrintAndLogEx(NORMAL, "Ultralight, Ultralight-C, Ultralight EV1, NTAG 203, NTAG 210,");
PrintAndLogEx(NORMAL, "NTAG 212, NTAG 213, NTAG 215, NTAG 216, NTAG I2C 1K & 2K");
PrintAndLogEx(NORMAL, "my-d, my-d NFC, my-d move, my-d move NFC\n");
PrintAndLogEx(NORMAL, "Usage: hf mfu info k <key> l");
PrintAndLogEx(NORMAL, " Options : ");
PrintAndLogEx(NORMAL, " k <key> : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]");
PrintAndLogEx(NORMAL, " l : (optional) swap entered key's endianness");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, " sample : hf mfu info");
PrintAndLogEx(NORMAL, " : hf mfu info k 00112233445566778899AABBCCDDEEFF");
PrintAndLogEx(NORMAL, " : hf mfu info k AABBCCDDD");
return 0;
}
static int CmdHF14AMfUInfo(const char *Cmd) {
uint8_t authlim = 0xff;
iso14a_card_select_t card;
uint8_t uid[7];
bool errors = false;
uint8_t keybytes[16] = {0x00};
uint8_t *authenticationkey = keybytes;
int keyLen = 0;
bool hasAuthKey = false;
bool locked = false;
bool swapEndian = false;
uint8_t cmdp = 0;
uint8_t pack[4] = {0,0,0,0};
int len = 0;
while(param_getchar(Cmd, cmdp) != 0x00)
{
switch(param_getchar(Cmd, cmdp))
{
case 'h':
case 'H':
return usage_hf_mfu_info();
case 'k':
case 'K':
keyLen = 32;
errors = param_gethex_ex(Cmd, cmdp+1, authenticationkey, &keyLen);
if (errors || (keyLen != 32 && keyLen != 8)) { //ul-c or ev1/ntag key length
PrintAndLogEx(ERR, "Key has incorrect length.\n");
errors = true;
}
cmdp += 2;
keyLen /= 2;
hasAuthKey = true;
break;
case 'l':
case 'L':
swapEndian = true;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if(errors) break;
}
//Validations
if (errors)
return usage_hf_mfu_info();
TagTypeUL_t tagtype = GetHF14AMfU_Type();
if (tagtype == UL_ERROR) {
return -1;
}
PrintAndLogEx(NORMAL, "\n--- Tag Information ---------");
PrintAndLogEx(NORMAL, "-------------------------------------------------------------");
ul_print_type(tagtype, 6);
// Swap endianness
if (swapEndian && hasAuthKey)
authenticationkey = SwapEndian64(authenticationkey, keyLen, (keyLen == 16) ? 8 : 4 );
if (!ul_auth_select(&card, tagtype, hasAuthKey, authenticationkey, pack, sizeof(pack))) {
DropField();
return -1;
}
// read pages 0,1,2,3 (should read 4pages)
uint8_t data[16];
len = ul_read(0, data, sizeof(data));
if (len == -1) {
DropField();
PrintAndLogEx(WARNING, "Error: tag didn't answer to READ");
return -1;
} else if (len == 16) {
memcpy(uid, data, 3);
memcpy(uid+3, data+4, 4);
ul_print_default(data);
ndef_print_CC(data+12);
} else {
locked = true;
}
// UL_C Specific
if ((tagtype & UL_C)) {
// read pages 0x28, 0x29, 0x2A, 0x2B
uint8_t ulc_conf[16] = {0x00};
len = ul_read(0x28, ulc_conf, sizeof(ulc_conf));
if (len == -1) {
DropField();
PrintAndLogEx(WARNING, "Error: tag didn't answer to READ UL-C");
return -1;
}
if (len == 16) {
ulc_print_configuration(ulc_conf);
} else {
locked = true;
}
if ((tagtype & MAGIC)) {
//just read key
uint8_t ulc_deskey[16] = {0x00};
len = ul_read(0x2C, ulc_deskey, sizeof(ulc_deskey));
if (len == -1) {
DropField();
PrintAndLogEx(WARNING, "Error: tag didn't answer to READ magic");
return -1;
}
if (len == 16) ulc_print_3deskey(ulc_deskey);
} else {
// if we called info with key, just return
if (hasAuthKey) {
DropField();
return 1;
}
// also try to diversify default keys.. look into CmdHF14AMfuGenDiverseKeys
PrintAndLogEx(INFO, "Trying some default 3des keys");
for (uint8_t i = 0; i < KEYS_3DES_COUNT; ++i ) {
uint8_t *key = default_3des_keys[i];
if (ulc_authentication(key, true)) {
DropField();
PrintAndLogEx(SUCCESS, "Found default 3des key: ");
uint8_t keySwap[16];
memcpy(keySwap, SwapEndian64(key,16,8), 16);
ulc_print_3deskey(keySwap);
return 1;
}
}
DropField();
return 1;
}
}
// do counters and signature first (don't neet auth)
// ul counters are different than ntag counters
if ((tagtype & (UL_EV1_48 | UL_EV1_128))) {
if (ulev1_print_counters() != 3) {
// failed - re-select
if (!ul_auth_select( &card, tagtype, hasAuthKey, authenticationkey, pack, sizeof(pack))) {
DropField();
return -1;
}
}
}
if ((tagtype & (UL_EV1_48 | UL_EV1_128 | NTAG_213 | NTAG_215 | NTAG_216 | NTAG_I2C_1K | NTAG_I2C_2K ))) {
uint8_t ulev1_signature[32] = {0x00};
len = ulev1_readSignature(ulev1_signature, sizeof(ulev1_signature));
if (len == -1) {
DropField();
PrintAndLogEx(WARNING, "Error: tag didn't answer to READ SIGNATURE");
return -1;
}
if (len == 32) {
ulev1_print_signature(tagtype, uid, ulev1_signature, sizeof(ulev1_signature));
} else {
// re-select
if (!ul_auth_select( &card, tagtype, hasAuthKey, authenticationkey, pack, sizeof(pack))) {
DropField();
return -1;
}
}
}
if ((tagtype & (UL_EV1_48 | UL_EV1_128 | NTAG_210 | NTAG_212 | NTAG_213 | NTAG_215 | NTAG_216 | NTAG_I2C_1K | NTAG_I2C_2K))) {
uint8_t version[10] = {0x00};
len = ulev1_getVersion(version, sizeof(version));
if (len == -1) {
DropField();
PrintAndLogEx(WARNING, "Error: tag didn't answer to GETVERSION");
return -1;
} else if (len == 10) {
ulev1_print_version(version);
} else {
locked = true;
if (!ul_auth_select( &card, tagtype, hasAuthKey, authenticationkey, pack, sizeof(pack))) {
DropField();
return -1;
}
}
uint8_t startconfigblock = 0;
uint8_t ulev1_conf[16] = {0x00};
// config blocks always are last 4 pages
for (uint8_t idx = 0; idx < MAX_UL_TYPES; idx++) {
if (tagtype & UL_TYPES_ARRAY[idx]) {
startconfigblock = UL_MEMORY_ARRAY[idx]-3;
break;
}
}
if (startconfigblock) { // if we know where the config block is...
len = ul_read(startconfigblock, ulev1_conf, sizeof(ulev1_conf));
if (len == -1) {
DropField();
PrintAndLogEx(WARNING, "Error: tag didn't answer to READ EV1");
return -1;
} else if (len == 16) {
// save AUTHENTICATION LIMITS for later:
authlim = (ulev1_conf[4] & 0x07);
ulev1_print_configuration(ulev1_conf, startconfigblock);
}
}
// AUTHLIMIT, (number of failed authentications)
// 0 = limitless.
// 1-7 = limit. No automatic tries then.
// hasAuthKey, if we was called with key, skip test.
if (!authlim && !hasAuthKey) {
PrintAndLogEx(NORMAL, "\n--- Known EV1/NTAG passwords.");
len = 0;
for (uint8_t i = 0; i < KEYS_PWD_COUNT; ++i ) {
uint8_t *key = default_pwd_pack[i];
len = ulev1_requestAuthentication(key, pack, sizeof(pack));
if (len >= 1) {
PrintAndLogEx(SUCCESS, "Found a default password: %s || Pack: %02X %02X", sprint_hex(key, 4), pack[0], pack[1]);
break;
} else {
if (!ul_auth_select( &card, tagtype, hasAuthKey, authenticationkey, pack, sizeof(pack))) {
DropField();
return -1;
}
}
}
if (len < 1) PrintAndLogEx(WARNING, "password not known");
}
}
DropField();
if (locked)
PrintAndLogEx(FAILED, "\nTag appears to be locked, try using the key to get more info");
PrintAndLogEx(NORMAL, "");
return 1;
}
//
// Write Single Block
//
static int usage_hf_mfu_wrbl(void) {
PrintAndLogEx(NORMAL, "Write a block. It autodetects card type.\n");
PrintAndLogEx(NORMAL, "Usage: hf mfu wrbl b <block number> d <data> k <key> l\n");
PrintAndLogEx(NORMAL, " Options:");
PrintAndLogEx(NORMAL, " b <no> : block to write");
PrintAndLogEx(NORMAL, " d <data> : block data - (8 hex symbols)");
PrintAndLogEx(NORMAL, " k <key> : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]");
PrintAndLogEx(NORMAL, " l : (optional) swap entered key's endianness");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, " sample : hf mfu wrbl b 0 d 01234567");
PrintAndLogEx(NORMAL, " : hf mfu wrbl b 0 d 01234567 k AABBCCDDD\n");
return 0;
}
static int CmdHF14AMfUWrBl(const char *Cmd){
int blockNo = -1;
bool errors = false;
uint8_t keybytes[16] = {0x00};
uint8_t *authenticationkey = keybytes;
int keyLen = 0;
bool hasAuthKey = false;
bool swapEndian = false;
uint8_t cmdp = 0;
uint8_t blockdata[20] = {0x00};
while(param_getchar(Cmd, cmdp) != 0x00) {
switch(param_getchar(Cmd, cmdp)) {
case 'h':
case 'H':
return usage_hf_mfu_wrbl();
case 'k':
case 'K':
keyLen = 32;
errors = param_gethex_ex(Cmd, cmdp+1, authenticationkey, &keyLen);
if (errors || (keyLen != 32 && keyLen != 8)) { //ul-c or ev1/ntag key length
PrintAndLogEx(ERR, "Key has incorrect length.\n");
errors = true;
}
cmdp += 2;
keyLen /= 2;
hasAuthKey = true;
break;
case 'b':
case 'B':
blockNo = param_get8(Cmd, cmdp+1);
if (blockNo < 0) {
PrintAndLogEx(ERR, "Wrong block number");
errors = true;
}
cmdp += 2;
break;
case 'l':
case 'L':
swapEndian = true;
cmdp++;
break;
case 'd':
case 'D':
if ( param_gethex(Cmd, cmdp+1, blockdata, 8) ) {
PrintAndLogEx(ERR, "Block data must include 8 HEX symbols");
errors = true;
break;
}
cmdp += 2;
break;
default:
PrintAndLogEx(ERR, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
//Validations
if(errors) return usage_hf_mfu_wrbl();
}
if (blockNo == -1) return usage_hf_mfu_wrbl();
// starting with getting tagtype
TagTypeUL_t tagtype = GetHF14AMfU_Type();
if (tagtype == UL_ERROR) {
return -1;
}
uint8_t maxblockno = 0;
for (uint8_t idx = 0; idx < MAX_UL_TYPES; idx++) {
if (tagtype & UL_TYPES_ARRAY[idx]) {
maxblockno = UL_MEMORY_ARRAY[idx];
break;
}
}
if (blockNo > maxblockno){
DropField();
PrintAndLogEx(WARNING, "block number too large. Max block is %u/0x%02X \n", maxblockno,maxblockno);
return usage_hf_mfu_wrbl();
}
// Swap endianness
if (swapEndian && hasAuthKey) authenticationkey = SwapEndian64(authenticationkey, keyLen, (keyLen == 16) ? 8 : 4);
if ( blockNo <= 3)
PrintAndLogEx(NORMAL, "Special Block: %0d (0x%02X) [ %s]", blockNo, blockNo, sprint_hex(blockdata, 4));
else
PrintAndLogEx(NORMAL, "Block: %0d (0x%02X) [ %s]", blockNo, blockNo, sprint_hex(blockdata, 4));
//Send write Block
UsbCommand c = {CMD_MIFAREU_WRITEBL, {blockNo}};
memcpy(c.d.asBytes, blockdata, 4);
if (hasAuthKey) {
c.arg[1] = (keyLen == 16) ? 1 : 2;
memcpy(c.d.asBytes+4, authenticationkey, keyLen);
}
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
uint8_t isOK = resp.arg[0] & 0xff;
PrintAndLogEx(SUCCESS, "isOk:%02x", isOK);
} else {
PrintAndLogEx(ERR, "Command execute timeout");
}
DropField();
return 0;
}
//
// Read Single Block
//
static int usage_hf_mfu_rdbl(void) {
PrintAndLogEx(NORMAL, "Read a block and print. It autodetects card type.\n");
PrintAndLogEx(NORMAL, "Usage: hf mfu rdbl b <block number> k <key> l\n");
PrintAndLogEx(NORMAL, " Options:");
PrintAndLogEx(NORMAL, " b <no> : block to read");
PrintAndLogEx(NORMAL, " k <key> : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]");
PrintAndLogEx(NORMAL, " l : (optional) swap entered key's endianness");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, " sample : hf mfu rdbl b 0");
PrintAndLogEx(NORMAL, " : hf mfu rdbl b 0 k 00112233445566778899AABBCCDDEEFF");
PrintAndLogEx(NORMAL, " : hf mfu rdbl b 0 k AABBCCDDD\n");
return 0;
}
static int CmdHF14AMfURdBl(const char *Cmd){
int blockNo = -1;
bool errors = false;
uint8_t keybytes[16] = {0x00};
uint8_t *authenticationkey = keybytes;
int keyLen = 0;
bool hasAuthKey = false;
bool swapEndian = false;
uint8_t cmdp = 0;
while(param_getchar(Cmd, cmdp) != 0x00)
{
switch(param_getchar(Cmd, cmdp))
{
case 'h':
case 'H':
return usage_hf_mfu_rdbl();
case 'k':
case 'K':
keyLen = 32;
errors = param_gethex_ex(Cmd, cmdp+1, authenticationkey, &keyLen);
if (errors || (keyLen != 32 && keyLen != 8)) { //ul-c or ev1/ntag key length
PrintAndLogEx(ERR, "Key has incorrect length.\n");
errors = true;
}
cmdp += 2;
keyLen /= 2;
hasAuthKey = true;
break;
case 'b':
case 'B':
blockNo = param_get8(Cmd, cmdp+1);
if (blockNo < 0) {
PrintAndLogEx(ERR, "Wrong block number");
errors = true;
}
cmdp += 2;
break;
case 'l':
case 'L':
swapEndian = true;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
//Validations
if (errors) return usage_hf_mfu_rdbl();
}
if (blockNo == -1) return usage_hf_mfu_rdbl();
// start with getting tagtype
TagTypeUL_t tagtype = GetHF14AMfU_Type();
if (tagtype == UL_ERROR) {
return -1;
}
uint8_t maxblockno = 0;
for (uint8_t idx = 0; idx < MAX_UL_TYPES; idx++) {
if (tagtype & UL_TYPES_ARRAY[idx]) {
maxblockno = UL_MEMORY_ARRAY[idx];
break;
}
}
if (blockNo > maxblockno){
DropField();
PrintAndLogEx(WARNING, "block number to large. Max block is %u/0x%02X \n", maxblockno,maxblockno);
return usage_hf_mfu_rdbl();
}
// Swap endianness
if (swapEndian) authenticationkey = SwapEndian64(authenticationkey, keyLen, (keyLen == 16) ? 8 : 4);
//Read Block
UsbCommand c = {CMD_MIFAREU_READBL, {blockNo}};
if (hasAuthKey) {
c.arg[1] = (keyLen == 16) ? 1 : 2;
memcpy(c.d.asBytes, authenticationkey, keyLen);
}
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
uint8_t isOK = resp.arg[0] & 0xff;
if (isOK) {
uint8_t *data = resp.d.asBytes;
PrintAndLogEx(NORMAL, "\n Block# | Data | Ascii");
PrintAndLogEx(NORMAL, "---------+-------------+------");
PrintAndLogEx(NORMAL, " %02d/0x%02X | %s| %s\n", blockNo, blockNo, sprint_hex(data, 4), sprint_ascii(data, 4));
} else {
PrintAndLogEx(ERR, "Failed reading block: (%02x)", isOK);
}
} else {
PrintAndLogEx(ERR, "Command execute time-out");
}
DropField();
return 0;
}
//
// Mifare Ultralight / Ultralight-C / Ultralight-EV1
// Read and Dump Card Contents, using auto detection of tag size.
typedef struct {
uint8_t version[8];
uint8_t tbo[2];
uint8_t tbo1[1];
uint8_t pages; // max page number in dump
uint8_t signature[32];
uint8_t counter_tearing[3][4]; // 3 bytes counter, 1 byte tearing flag
uint8_t data[1024];
} mfu_dump_t;
static void printMFUdumpEx(mfu_dump_t *card, uint16_t pages, uint8_t startpage, TagTypeUL_t tagtype) {
bool tmplockbit = false;
bool bit[16] = {false};
bool bit2[16] = {false};
// standard lock bits
for(int i = 0; i < 16; i++){
bit[i] = card->data[10+i/8] & (1 << (7-i%8));
}
// dynamic lock bits
// TODO -- FIGURE OUT LOCK BYTES FOR EV1 and/or NTAG
if (tagtype & UL_C) {
for (int i = 0; i < 16; i++) {
bit2[i] = card->data[40*4+i/8] & (1 << (7-i%8));
}
}
PrintAndLogEx(NORMAL, "\n Block# | Data |lck| Ascii");
PrintAndLogEx(NORMAL, "---------+-------------+---+------");
for (int i = startpage; i < startpage + pages; i++) {
if (i < 3) {
PrintAndLogEx(NORMAL, "%3d/0x%02X | %s| | ", i, i, sprint_hex(card->data + i * 4, 4));
continue;
}
switch(i){
case 3: tmplockbit = bit[4]; break;
case 4: tmplockbit = bit[3]; break;
case 5: tmplockbit = bit[2]; break;
case 6: tmplockbit = bit[1]; break;
case 7: tmplockbit = bit[0]; break;
case 8: tmplockbit = bit[15]; break;
case 9: tmplockbit = bit[14]; break;
case 10: tmplockbit = bit[13]; break;
case 11: tmplockbit = bit[12]; break;
case 12: tmplockbit = bit[11]; break;
case 13: tmplockbit = bit[10]; break;
case 14: tmplockbit = bit[9]; break;
case 15: tmplockbit = bit[8]; break;
case 16:
case 17:
case 18:
case 19: tmplockbit = bit2[6]; break;
case 20:
case 21:
case 22:
case 23: tmplockbit = bit2[5]; break;
case 24:
case 25:
case 26:
case 27: tmplockbit = bit2[4]; break;
case 28:
case 29:
case 30:
case 31: tmplockbit = bit2[2]; break;
case 32:
case 33:
case 34:
case 35: tmplockbit = bit2[1]; break;
case 36:
case 37:
case 38:
case 39: tmplockbit = bit2[0]; break;
case 40: tmplockbit = bit2[12]; break;
case 41: tmplockbit = bit2[11]; break;
case 42: tmplockbit = bit2[10]; break; //auth0
case 43: tmplockbit = bit2[9]; break; //auth1
default: break;
}
PrintAndLogEx(NORMAL, "%3d/0x%02X | %s| %d | %.4s", i, i, sprint_hex(card->data + i * 4, 4), tmplockbit, sprint_ascii(card->data + i * 4, 4));
}
PrintAndLogEx(NORMAL, "---------------------------------");
}
static int usage_hf_mfu_dump(void) {
PrintAndLogEx(NORMAL, "Reads all pages from Ultralight, Ultralight-C, Ultralight EV1");
PrintAndLogEx(NORMAL, "NTAG 203, NTAG 210, NTAG 212, NTAG 213, NTAG 215, NTAG 216");
PrintAndLogEx(NORMAL, "and saves binary dump into the file `filename.bin` or `cardUID.bin`");
PrintAndLogEx(NORMAL, "It autodetects card type.\n");
PrintAndLogEx(NORMAL, "Usage: hf mfu dump k <key> l n <filename w/o .bin>");
PrintAndLogEx(NORMAL, " Options : ");
PrintAndLogEx(NORMAL, " k <key> : (optional) key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]");
PrintAndLogEx(NORMAL, " l : (optional) swap entered key's endianness");
PrintAndLogEx(NORMAL, " f <FN > : filename w/o .bin to save the dump as");
PrintAndLogEx(NORMAL, " p <Pg > : starting Page number to manually set a page to start the dump at");
PrintAndLogEx(NORMAL, " q <qty> : number of Pages to manually set how many pages to dump");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, " sample : hf mfu dump");
PrintAndLogEx(NORMAL, " : hf mfu dump n myfile");
PrintAndLogEx(NORMAL, " : hf mfu dump k 00112233445566778899AABBCCDDEEFF");
PrintAndLogEx(NORMAL, " : hf mfu dump k AABBCCDDD\n");
return 0;
}
static int CmdHF14AMfUDump(const char *Cmd){
char filename[FILE_PATH_SIZE] = {'\0'};
size_t fileNameLen = 0;
uint8_t keybytes[16] = {0x00};
uint8_t *authenticationkey = keybytes;
int keyLen = 0;
bool hasAuthKey = false;
uint8_t cmdp = 0;
bool errors = false;
bool swapEndian = false;
bool manualPages = false;
uint8_t startPage = 0;
int Pages = 16;
iso14a_card_select_t card_select;
mfu_dump_t card;
while(param_getchar(Cmd, cmdp) != 0x00)
{
switch(param_getchar(Cmd, cmdp))
{
case 'h':
case 'H':
return usage_hf_mfu_dump();
case 'k':
case 'K':
keyLen = 32;
errors = param_gethex_ex(Cmd, cmdp+1, authenticationkey, &keyLen);
if (errors || (keyLen != 32 && keyLen != 8)) { //ul-c or ev1/ntag key length
PrintAndLogEx(ERR, "Key has incorrect length.\n");
errors = true;
}
cmdp += 2;
keyLen /= 2;
hasAuthKey = true;
break;
case 'l':
case 'L':
swapEndian = true;
cmdp++;
break;
case 'f':
case 'F':
fileNameLen = param_getstr(Cmd, cmdp+1, filename, sizeof(filename));
if (fileNameLen == 0) errors = true;
if (fileNameLen > FILE_PATH_SIZE-5) fileNameLen = FILE_PATH_SIZE-5;
cmdp += 2;
break;
case 'p':
case 'P':
startPage = param_get8(Cmd, cmdp+1);
manualPages = true;
cmdp += 2;
break;
case 'q':
case 'Q':
Pages = param_get8(Cmd, cmdp+1);
cmdp += 2;
manualPages = true;
break;
default:
PrintAndLogEx(ERR, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if (errors) break;
}
//Validations
if (errors) return usage_hf_mfu_dump();
if (swapEndian && hasAuthKey)
authenticationkey = SwapEndian64(authenticationkey, keyLen, (keyLen == 16) ? 8 : 4);
TagTypeUL_t tagtype = GetHF14AMfU_Type();
if (tagtype == UL_ERROR) {
return -1;
}
uint8_t maxPages = 0;
for (uint8_t idx = 0; idx < MAX_UL_TYPES; idx++) {
if (tagtype & UL_TYPES_ARRAY[idx]) {
maxPages = UL_MEMORY_ARRAY[idx]+1; //add one as maxblks starts at 0
break;
}
}
if (!manualPages) {
Pages = maxPages;
} else {
if (startPage + Pages - 1 > maxPages - 1) {
PrintAndLogEx(ERR, "Invalid page range. Card has only %d readable pages.", maxPages);
DropField();
return 1;
}
}
ul_print_type(tagtype, 0);
PrintAndLogEx(NORMAL, "Reading tag memory...");
memset(&card, 0x00, sizeof(card));
UsbCommand c = {CMD_MIFAREU_READCARD, {startPage, Pages}};
if (hasAuthKey) {
if (tagtype & UL_C)
c.arg[2] = 1; //UL_C auth
else
c.arg[2] = 2; //UL_EV1/NTAG auth
memcpy(c.d.asBytes, authenticationkey, keyLen);
}
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
PrintAndLogEx(ERR, "Command execution timeout");
DropField();
return 1;
}
if (resp.arg[0] != 1) {
PrintAndLogEx(ERR, "Failed reading card");
DropField();
return 1;
}
uint32_t startindex = resp.arg[2];
uint32_t bufferSize = resp.arg[1];
if (bufferSize > sizeof(card.data)) {
PrintAndLogEx(FAILED, "Data exceeded Buffer size!");
bufferSize = sizeof(card.data);
}
if (!GetFromBigBuf(card.data + startPage*4, bufferSize, startindex, NULL, -1, false)) {
PrintAndLogEx(ERR, "Command execution timeout");
DropField();
return 1;
}
// not ul_c and not std ul then attempt to collect
// VERSION, SIGNATURE, COUNTERS, TEARING, PACK
if (!(tagtype & UL_C || tagtype & UL)) {
//attempt to read pack
if (!ul_auth_select(&card_select, tagtype, true, authenticationkey, card.data + maxPages*4 - 4, 2)) {
//reset pack
card.data[maxPages*4 - 4] = 0;
card.data[maxPages*4 - 3] = 0;
}
if (hasAuthKey) {
uint8_t dummy_pack[2];
ul_auth_select(&card_select, tagtype, hasAuthKey, authenticationkey, dummy_pack, sizeof(dummy_pack));
} else {
ul_select(&card_select, false);
}
ulev1_getVersion(card.version, sizeof(card.version));
for (uint8_t n = 0; n < 3; ++n) {
ulev1_readTearing(n, &card.counter_tearing[n][3], 1);
ulev1_readCounter(n, &card.counter_tearing[n][0], 3);
}
ulev1_readSignature(card.signature, sizeof(card.signature));
}
DropField();
// add key to dump data
if (hasAuthKey) {
authenticationkey = SwapEndian64(authenticationkey, keyLen, (keyLen == 16) ? 8 : 4);
if (tagtype & UL_C){ // additional 4 pages
memcpy(card.data + maxPages*4, authenticationkey, keyLen);
maxPages += 4;
} else { // 2nd page from end
memcpy(card.data + (maxPages*4) - 8, authenticationkey, 4);
}
}
printMFUdumpEx(&card, Pages, startPage, tagtype);
if (!manualPages) {
// user supplied filename?
if (fileNameLen < 1) {
char *fptr = filename;
fptr += sprintf(fptr, "hf-mfu-");
uint8_t UID[] = {card.data[0], card.data[1], card.data[2], card.data[4], card.data[5], card.data[6], card.data[7]};
FillFileNameByUID(fptr, UID, "-dump.bin", 7);
} else {
sprintf(filename + fileNameLen, ".bin");
}
#define MFU_DUMP_PREFIX_LENGTH (sizeof(card) - sizeof(card.data))
FILE *fout;
if ((fout = fopen(filename, "wb")) == NULL) {
PrintAndLogEx(ERR, "Could not create file name %s", filename);
return 1;
}
fwrite(&card, 1, MFU_DUMP_PREFIX_LENGTH + maxPages*4, fout);
fclose(fout);
PrintAndLogEx(SUCCESS, "Dumped %d pages, wrote %d bytes to %s", maxPages, MFU_DUMP_PREFIX_LENGTH + maxPages*4, filename);
}
return 0;
}
//-------------------------------------------------------------------------------
// Ultralight C Methods
//-------------------------------------------------------------------------------
//
// Ultralight C Authentication Demo {currently uses hard-coded key}
//
static int CmdHF14AMfucAuth(const char *Cmd){
uint8_t keyNo = 3;
bool errors = false;
char cmdp = param_getchar(Cmd, 0);
//Change key to user defined one
if (cmdp == 'k' || cmdp == 'K'){
keyNo = param_get8(Cmd, 1);
if(keyNo > KEYS_3DES_COUNT-1)
errors = true;
}
if (cmdp == 'h' || cmdp == 'H')
errors = true;
if (errors) {
PrintAndLogEx(NORMAL, "Usage: hf mfu cauth k <key number>");
PrintAndLogEx(NORMAL, " 0 (default): 3DES standard key");
PrintAndLogEx(NORMAL, " 1 : all 0x00 key");
PrintAndLogEx(NORMAL, " 2 : 0x00-0x0F key");
PrintAndLogEx(NORMAL, " 3 : nfc key");
PrintAndLogEx(NORMAL, " 4 : all 0x01 key");
PrintAndLogEx(NORMAL, " 5 : all 0xff key");
PrintAndLogEx(NORMAL, " 6 : 0x00-0xFF key");
PrintAndLogEx(NORMAL, "\n sample : hf mfu cauth k");
PrintAndLogEx(NORMAL, " : hf mfu cauth k 3");
return 0;
}
uint8_t *key = default_3des_keys[keyNo];
if (ulc_authentication(key, true)) {
DropField();
PrintAndLogEx(SUCCESS, "Authentication successful. 3des key: %s",sprint_hex(key, 16));
} else {
DropField();
PrintAndLogEx(WARNING, "Authentication failed");
}
return 0;
}
//
// Mifare Ultralight C - Set password
//
static int CmdHF14AMfucSetPwd(const char *Cmd){
uint8_t pwd[16] = {0x00};
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) == 0 || cmdp == 'h' || cmdp == 'H') {
PrintAndLogEx(NORMAL, "Usage: hf mfu setpwd <password (32 hex symbols)>");
PrintAndLogEx(NORMAL, " [password] - (32 hex symbols)");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "sample: hf mfu setpwd 000102030405060708090a0b0c0d0e0f");
PrintAndLogEx(NORMAL, "");
return 0;
}
if (param_gethex(Cmd, 0, pwd, 32)) {
PrintAndLogEx(WARNING, "Password must include 32 HEX symbols");
return 1;
}
UsbCommand c = {CMD_MIFAREUC_SETPWD};
memcpy( c.d.asBytes, pwd, 16);
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500) ) {
DropField();
if ((resp.arg[0] & 0xff) == 1) {
PrintAndLogEx(INFO, "Ultralight-C new password: %s", sprint_hex(pwd,16));
return 0;
} else {
PrintAndLogEx(ERR, "Failed writing at block %d", resp.arg[1] & 0xff);
return 1;
}
} else {
DropField();
PrintAndLogEx(ERR, "command execution timeout");
return 1;
}
return 0;
}
//
// Magic UL / UL-C tags - Set UID
//
static int CmdHF14AMfucSetUid(const char *Cmd){
UsbCommand c;
UsbCommand resp;
uint8_t uid[7] = {0x00};
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) == 0 || cmdp == 'h' || cmdp == 'H') {
PrintAndLogEx(NORMAL, "Usage: hf mfu setuid <uid (14 hex symbols)>");
PrintAndLogEx(NORMAL, " [uid] - (14 hex symbols)");
PrintAndLogEx(NORMAL, "\nThis only works for Magic Ultralight tags.");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "sample: hf mfu setuid 11223344556677");
PrintAndLogEx(NORMAL, "");
return 0;
}
if (param_gethex(Cmd, 0, uid, 14)) {
PrintAndLogEx(WARNING, "UID must include 14 HEX symbols");
return 1;
}
// read block2.
c.cmd = CMD_MIFAREU_READBL;
c.arg[0] = 2;
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
DropField();
PrintAndLogEx(WARNING, "Command execute timeout");
return 2;
}
// save old block2.
uint8_t oldblock2[4] = {0x00};
memcpy(resp.d.asBytes, oldblock2, 4);
// block 0.
c.cmd = CMD_MIFAREU_WRITEBL;
c.arg[0] = 0;
c.d.asBytes[0] = uid[0];
c.d.asBytes[1] = uid[1];
c.d.asBytes[2] = uid[2];
c.d.asBytes[3] = 0x88 ^ uid[0] ^ uid[1] ^ uid[2];
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
DropField();
PrintAndLogEx(WARNING, "Command execute timeout");
return 3;
}
// block 1.
c.arg[0] = 1;
c.d.asBytes[0] = uid[3];
c.d.asBytes[1] = uid[4];
c.d.asBytes[2] = uid[5];
c.d.asBytes[3] = uid[6];
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500) ) {
DropField();
PrintAndLogEx(WARNING, "Command execute timeout");
return 4;
}
// block 2.
c.arg[0] = 2;
c.d.asBytes[0] = uid[3] ^ uid[4] ^ uid[5] ^ uid[6];
c.d.asBytes[1] = oldblock2[1];
c.d.asBytes[2] = oldblock2[2];
c.d.asBytes[3] = oldblock2[3];
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500) ) {
DropField();
PrintAndLogEx(WARNING, "Command execute timeout");
return 5;
}
DropField();
return 0;
}
static int CmdHF14AMfuGenDiverseKeys(const char *Cmd){
uint8_t iv[8] = { 0x00 };
uint8_t block = 0x07;
// UL-EV1
//04 57 b6 e2 05 3f 80 UID
//4a f8 4b 19 PWD
uint8_t uid[] = { 0xF4,0xEA, 0x54, 0x8E };
uint8_t mifarekeyA[] = { 0xA0,0xA1,0xA2,0xA3,0xA4,0xA5 };
uint8_t mifarekeyB[] = { 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5 };
uint8_t dkeyA[8] = { 0x00 };
uint8_t dkeyB[8] = { 0x00 };
uint8_t masterkey[] = { 0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xaa,0xbb,0xcc,0xdd,0xee,0xff };
uint8_t mix[8] = { 0x00 };
uint8_t divkey[8] = { 0x00 };
memcpy(mix, mifarekeyA, 4);
mix[4] = mifarekeyA[4] ^ uid[0];
mix[5] = mifarekeyA[5] ^ uid[1];
mix[6] = block ^ uid[2];
mix[7] = uid[3];
mbedtls_des3_context ctx = { {0} };
mbedtls_des3_set2key_enc(&ctx, masterkey);
mbedtls_des3_crypt_cbc(&ctx // des3_context
, MBEDTLS_DES_ENCRYPT // int mode
, sizeof(mix) // length
, iv // iv[8]
, mix // input
, divkey // output
);
PrintAndLogEx(NORMAL, "-- 3DES version");
PrintAndLogEx(NORMAL, "Masterkey :\t %s", sprint_hex(masterkey,sizeof(masterkey)));
PrintAndLogEx(NORMAL, "UID :\t %s", sprint_hex(uid, sizeof(uid)));
PrintAndLogEx(NORMAL, "Block :\t %0d", block);
PrintAndLogEx(NORMAL, "Mifare key :\t %s", sprint_hex(mifarekeyA, sizeof(mifarekeyA)));
PrintAndLogEx(NORMAL, "Message :\t %s", sprint_hex(mix, sizeof(mix)));
PrintAndLogEx(NORMAL, "Diversified key: %s", sprint_hex(divkey+1, 6));
for (int i=0; i < sizeof(mifarekeyA); ++i){
dkeyA[i] = (mifarekeyA[i] << 1) & 0xff;
dkeyA[6] |= ((mifarekeyA[i] >> 7) & 1) << (i+1);
}
for (int i=0; i < sizeof(mifarekeyB); ++i){
dkeyB[1] |= ((mifarekeyB[i] >> 7) & 1) << (i+1);
dkeyB[2+i] = (mifarekeyB[i] << 1) & 0xff;
}
uint8_t zeros[8] = {0x00};
uint8_t newpwd[8] = {0x00};
uint8_t dmkey[24] = {0x00};
memcpy(dmkey, dkeyA, 8);
memcpy(dmkey+8, dkeyB, 8);
memcpy(dmkey+16, dkeyA, 8);
memset(iv, 0x00, 8);
mbedtls_des3_set3key_enc(&ctx, dmkey);
mbedtls_des3_crypt_cbc(&ctx // des3_context
, MBEDTLS_DES_ENCRYPT // int mode
, sizeof(newpwd) // length
, iv // iv[8]
, zeros // input
, newpwd // output
);
PrintAndLogEx(NORMAL, "\n-- DES version");
PrintAndLogEx(NORMAL, "Mifare dkeyA :\t %s", sprint_hex(dkeyA, sizeof(dkeyA)));
PrintAndLogEx(NORMAL, "Mifare dkeyB :\t %s", sprint_hex(dkeyB, sizeof(dkeyB)));
PrintAndLogEx(NORMAL, "Mifare ABA :\t %s", sprint_hex(dmkey, sizeof(dmkey)));
PrintAndLogEx(NORMAL, "Mifare Pwd :\t %s", sprint_hex(newpwd, sizeof(newpwd)));
return 0;
}
// static uint8_t * diversify_key(uint8_t * key){
// for(int i=0; i<16; i++){
// if(i<=6) key[i]^=cuid[i];
// if(i>6) key[i]^=cuid[i%7];
// }
// return key;
// }
// static void GenerateUIDe( uint8_t *uid, uint8_t len){
// for (int i=0; i<len; ++i){
// }
// return;
// }
//------------------------------------
// Menu Stuff
//------------------------------------
static int CmdHelp(const char *Cmd);
static command_t CommandTable[] =
{
{"help", CmdHelp, 1, "This help"},
{"dbg", CmdHF14AMfDbg, 0, "Set default debug mode"},
{"info", CmdHF14AMfUInfo, 0, "Tag information"},
{"dump", CmdHF14AMfUDump, 0, "Dump Ultralight / Ultralight-C / NTAG tag to binary file"},
// {"restore", CmdHF14AMfURestore, 0, "Restore a dump onto a MFU MAGIC tag"},
{"rdbl", CmdHF14AMfURdBl, 0, "Read block"},
{"wrbl", CmdHF14AMfUWrBl, 0, "Write block"},
{"cauth", CmdHF14AMfucAuth, 0, "Authentication - Ultralight C"},
{"setpwd", CmdHF14AMfucSetPwd, 0, "Set 3des password - Ultralight-C"},
{"setuid", CmdHF14AMfucSetUid, 0, "Set UID - MAGIC tags only"},
{"gen", CmdHF14AMfuGenDiverseKeys, 1, "Generate 3des mifare diversified keys"},
{NULL, NULL, 0, NULL}
};
int CmdHFMFUltra(const char *Cmd){
(void)WaitForResponseTimeout(CMD_ACK,NULL,100);
CmdsParse(CommandTable, Cmd);
return 0;
}
static int CmdHelp(const char *Cmd){
CmdsHelp(CommandTable);
return 0;
}