proxmark3/client/cmdlfem4x.c
marshmellow42 2b11c7c750 adjust timeouts on lf read/lf search to no timeout if threshold was set.
NOTE: lf snoop already doesn't have a timeout...
also adjusted PRIx64 to SCNx64 in em410xwrite
2017-02-26 21:44:40 -05:00

1017 lines
30 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency EM4x commands
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "proxmark3.h"
#include "ui.h"
#include "util.h"
#include "graph.h"
#include "cmdparser.h"
#include "cmddata.h"
#include "cmdlf.h"
#include "cmdmain.h"
#include "cmdlfem4x.h"
#include "lfdemod.h"
char *global_em410xId;
static int CmdHelp(const char *Cmd);
int CmdEMdemodASK(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
int findone = (cmdp == '1') ? 1 : 0;
UsbCommand c={CMD_EM410X_DEMOD};
c.arg[0]=findone;
SendCommand(&c);
return 0;
}
/* Read the ID of an EM410x tag.
* Format:
* 1111 1111 1 <-- standard non-repeatable header
* XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
* ....
* CCCC <-- each bit here is parity for the 10 bits above in corresponding column
* 0 <-- stop bit, end of tag
*/
int CmdEM410xRead(const char *Cmd)
{
uint32_t hi=0;
uint64_t lo=0;
if(!AskEm410xDemod("", &hi, &lo, false)) return 0;
PrintAndLog("EM410x pattern found: ");
printEM410x(hi, lo);
if (hi){
PrintAndLog ("EM410x XL pattern found");
return 0;
}
char id[12] = {0x00};
sprintf(id, "%010"PRIx64,lo);
global_em410xId = id;
return 1;
}
int usage_lf_em410x_sim(void) {
PrintAndLog("Simulating EM410x tag");
PrintAndLog("");
PrintAndLog("Usage: lf em 410xsim [h] <uid> <clock>");
PrintAndLog("Options:");
PrintAndLog(" h - this help");
PrintAndLog(" uid - uid (10 HEX symbols)");
PrintAndLog(" clock - clock (32|64) (optional)");
PrintAndLog("samples:");
PrintAndLog(" lf em 410xsim 0F0368568B");
PrintAndLog(" lf em 410xsim 0F0368568B 32");
return 0;
}
// emulate an EM410X tag
int CmdEM410xSim(const char *Cmd)
{
int i, n, j, binary[4], parity[4];
char cmdp = param_getchar(Cmd, 0);
uint8_t uid[5] = {0x00};
if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim();
/* clock is 64 in EM410x tags */
uint8_t clock = 64;
if (param_gethex(Cmd, 0, uid, 10)) {
PrintAndLog("UID must include 10 HEX symbols");
return 0;
}
param_getdec(Cmd,1, &clock);
PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
PrintAndLog("Press pm3-button to about simulation");
/* clear our graph */
ClearGraph(0);
/* write 9 start bits */
for (i = 0; i < 9; i++)
AppendGraph(0, clock, 1);
/* for each hex char */
parity[0] = parity[1] = parity[2] = parity[3] = 0;
for (i = 0; i < 10; i++)
{
/* read each hex char */
sscanf(&Cmd[i], "%1x", &n);
for (j = 3; j >= 0; j--, n/= 2)
binary[j] = n % 2;
/* append each bit */
AppendGraph(0, clock, binary[0]);
AppendGraph(0, clock, binary[1]);
AppendGraph(0, clock, binary[2]);
AppendGraph(0, clock, binary[3]);
/* append parity bit */
AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
/* keep track of column parity */
parity[0] ^= binary[0];
parity[1] ^= binary[1];
parity[2] ^= binary[2];
parity[3] ^= binary[3];
}
/* parity columns */
AppendGraph(0, clock, parity[0]);
AppendGraph(0, clock, parity[1]);
AppendGraph(0, clock, parity[2]);
AppendGraph(0, clock, parity[3]);
/* stop bit */
AppendGraph(1, clock, 0);
CmdLFSim("0"); //240 start_gap.
return 0;
}
/* Function is equivalent of lf read + data samples + em410xread
* looped until an EM410x tag is detected
*
* Why is CmdSamples("16000")?
* TBD: Auto-grow sample size based on detected sample rate. IE: If the
* rate gets lower, then grow the number of samples
* Changed by martin, 4000 x 4 = 16000,
* see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
*/
int CmdEM410xWatch(const char *Cmd)
{
do {
if (ukbhit()) {
printf("\naborted via keyboard!\n");
break;
}
CmdLFRead("s");
getSamples("8201",true); //capture enough to get 2 complete preambles (4096*2+9)
} while (!CmdEM410xRead(""));
return 0;
}
//currently only supports manchester modulations
int CmdEM410xWatchnSpoof(const char *Cmd)
{
CmdEM410xWatch(Cmd);
PrintAndLog("# Replaying captured ID: %s",global_em410xId);
CmdLFaskSim("");
return 0;
}
int CmdEM410xWrite(const char *Cmd)
{
uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
int card = 0xFF; // invalid card value
unsigned int clock = 0; // invalid clock value
sscanf(Cmd, "%" SCNx64 " %d %d", &id, &card, &clock);
// Check ID
if (id == 0xFFFFFFFFFFFFFFFF) {
PrintAndLog("Error! ID is required.\n");
return 0;
}
if (id >= 0x10000000000) {
PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n");
return 0;
}
// Check Card
if (card == 0xFF) {
PrintAndLog("Error! Card type required.\n");
return 0;
}
if (card < 0) {
PrintAndLog("Error! Bad card type selected.\n");
return 0;
}
// Check Clock
// Default: 64
if (clock == 0)
clock = 64;
// Allowed clock rates: 16, 32, 40 and 64
if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) {
PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock);
return 0;
}
if (card == 1) {
PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock);
// NOTE: We really should pass the clock in as a separate argument, but to
// provide for backwards-compatibility for older firmware, and to avoid
// having to add another argument to CMD_EM410X_WRITE_TAG, we just store
// the clock rate in bits 8-15 of the card value
card = (card & 0xFF) | ((clock << 8) & 0xFF00);
} else if (card == 0) {
PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
card = (card & 0xFF) | ((clock << 8) & 0xFF00);
} else {
PrintAndLog("Error! Bad card type selected.\n");
return 0;
}
UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
SendCommand(&c);
return 0;
}
//**************** Start of EM4x50 Code ************************
bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
{
if (rows*cols>size) return false;
uint8_t colP=0;
//assume last col is a parity and do not test
for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
colP ^= BitStream[(rowNum*cols)+colNum];
}
if (colP != pType) return false;
}
return true;
}
bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
{
if (rows*cols>size) return false;
uint8_t rowP=0;
//assume last row is a parity row and do not test
for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
for (uint8_t colNum = 0; colNum < cols; colNum++) {
rowP ^= BitStream[(rowNum*cols)+colNum];
}
if (rowP != pType) return false;
}
return true;
}
uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
{
if (size<45) return 0;
uint32_t code = bytebits_to_byte(BitStream,8);
code = code<<8 | bytebits_to_byte(BitStream+9,8);
code = code<<8 | bytebits_to_byte(BitStream+18,8);
code = code<<8 | bytebits_to_byte(BitStream+27,8);
if (verbose || g_debugMode){
for (uint8_t i = 0; i<5; i++){
if (i == 4) PrintAndLog(""); //parity byte spacer
PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x",
BitStream[i*9],
BitStream[i*9+1],
BitStream[i*9+2],
BitStream[i*9+3],
BitStream[i*9+4],
BitStream[i*9+5],
BitStream[i*9+6],
BitStream[i*9+7],
BitStream[i*9+8],
bytebits_to_byte(BitStream+i*9,8)
);
}
if (pTest)
PrintAndLog("Parity Passed");
else
PrintAndLog("Parity Failed");
}
return code;
}
/* Read the transmitted data of an EM4x50 tag from the graphbuffer
* Format:
*
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
* CCCCCCCC <- column parity bits
* 0 <- stop bit
* LW <- Listen Window
*
* This pattern repeats for every block of data being transmitted.
* Transmission starts with two Listen Windows (LW - a modulated
* pattern of 320 cycles each (32/32/128/64/64)).
*
* Note that this data may or may not be the UID. It is whatever data
* is stored in the blocks defined in the control word First and Last
* Word Read values. UID is stored in block 32.
*/
//completed by Marshmellow
int EM4x50Read(const char *Cmd, bool verbose)
{
uint8_t fndClk[] = {8,16,32,40,50,64,128};
int clk = 0;
int invert = 0;
int tol = 0;
int i, j, startblock, skip, block, start, end, low, high, minClk;
bool complete = false;
int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
uint32_t Code[6];
char tmp[6];
char tmp2[20];
int phaseoff;
high = low = 0;
memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
// get user entry if any
sscanf(Cmd, "%i %i", &clk, &invert);
// save GraphBuffer - to restore it later
save_restoreGB(1);
// first get high and low values
for (i = 0; i < GraphTraceLen; i++) {
if (GraphBuffer[i] > high)
high = GraphBuffer[i];
else if (GraphBuffer[i] < low)
low = GraphBuffer[i];
}
i = 0;
j = 0;
minClk = 255;
// get to first full low to prime loop and skip incomplete first pulse
while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
++i;
while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
++i;
skip = i;
// populate tmpbuff buffer with pulse lengths
while (i < GraphTraceLen) {
// measure from low to low
while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
++i;
start= i;
while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
++i;
while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
++i;
if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
break;
}
tmpbuff[j++]= i - start;
if (i-start < minClk && i < GraphTraceLen) {
minClk = i - start;
}
}
// set clock
if (!clk) {
for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
tol = fndClk[clkCnt]/8;
if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
clk=fndClk[clkCnt];
break;
}
}
if (!clk) return 0;
} else tol = clk/8;
// look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
start = -1;
for (i= 0; i < j - 4 ; ++i) {
skip += tmpbuff[i];
if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
{
start= i + 4;
break;
}
}
startblock = i + 4;
// skip over the remainder of LW
skip += tmpbuff[i+1] + tmpbuff[i+2] + clk;
if (tmpbuff[i+3]>clk)
phaseoff = tmpbuff[i+3]-clk;
else
phaseoff = 0;
// now do it again to find the end
end = skip;
for (i += 3; i < j - 4 ; ++i) {
end += tmpbuff[i];
if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
{
complete= true;
break;
}
}
end = i;
// report back
if (verbose || g_debugMode) {
if (start >= 0) {
PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
} else {
PrintAndLog("No data found!, clock tried:%d",clk);
PrintAndLog("Try again with more samples.");
PrintAndLog(" or after a 'data askedge' command to clean up the read");
return 0;
}
} else if (start < 0) return 0;
start = skip;
snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47);
// get rid of leading crap
snprintf(tmp, sizeof(tmp), "%i", skip);
CmdLtrim(tmp);
bool pTest;
bool AllPTest = true;
// now work through remaining buffer printing out data blocks
block = 0;
i = startblock;
while (block < 6) {
if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block);
skip = phaseoff;
// look for LW before start of next block
for ( ; i < j - 4 ; ++i) {
skip += tmpbuff[i];
if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
if (tmpbuff[i+1] >= clk-tol)
break;
}
if (i >= j-4) break; //next LW not found
skip += clk;
if (tmpbuff[i+1]>clk)
phaseoff = tmpbuff[i+1]-clk;
else
phaseoff = 0;
i += 2;
if (ASKDemod(tmp2, false, false, 1) < 1) {
save_restoreGB(0);
return 0;
}
//set DemodBufferLen to just one block
DemodBufferLen = skip/clk;
//test parities
pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0);
pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0);
AllPTest &= pTest;
//get output
Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk);
//skip to start of next block
snprintf(tmp,sizeof(tmp),"%i",skip);
CmdLtrim(tmp);
block++;
if (i >= end) break; //in case chip doesn't output 6 blocks
}
//print full code:
if (verbose || g_debugMode || AllPTest){
if (!complete) {
PrintAndLog("*** Warning!");
PrintAndLog("Partial data - no end found!");
PrintAndLog("Try again with more samples.");
}
PrintAndLog("Found data at sample: %i - using clock: %i", start, clk);
end = block;
for (block=0; block < end; block++){
PrintAndLog("Block %d: %08x",block,Code[block]);
}
if (AllPTest) {
PrintAndLog("Parities Passed");
} else {
PrintAndLog("Parities Failed");
PrintAndLog("Try cleaning the read samples with 'data askedge'");
}
}
//restore GraphBuffer
save_restoreGB(0);
return (int)AllPTest;
}
int CmdEM4x50Read(const char *Cmd)
{
return EM4x50Read(Cmd, true);
}
//**************** Start of EM4x05/EM4x69 Code ************************
int usage_lf_em_read(void) {
PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. ");
PrintAndLog("");
PrintAndLog("Usage: lf em 4x05readword [h] <address> <pwd>");
PrintAndLog("Options:");
PrintAndLog(" h - this help");
PrintAndLog(" address - memory address to read. (0-15)");
PrintAndLog(" pwd - password (hex) (optional)");
PrintAndLog("samples:");
PrintAndLog(" lf em 4x05readword 1");
PrintAndLog(" lf em 4x05readword 1 11223344");
return 0;
}
// for command responses from em4x05 or em4x69
// download samples from device and copy them to the Graphbuffer
bool downloadSamplesEM() {
// 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
uint8_t got[6000];
GetFromBigBuf(got, sizeof(got), 0);
if ( !WaitForResponseTimeout(CMD_ACK, NULL, 4000) ) {
PrintAndLog("command execution time out");
return false;
}
setGraphBuf(got, sizeof(got));
return true;
}
bool EM4x05testDemodReadData(uint32_t *word, bool readCmd) {
// em4x05/em4x69 command response preamble is 00001010
// skip first two 0 bits as they might have been missed in the demod
uint8_t preamble[] = {0,0,1,0,1,0};
size_t startIdx = 0;
// set size to 20 to only test first 14 positions for the preamble or less if not a read command
size_t size = (readCmd) ? 20 : 11;
// sanity check
size = (size > DemodBufferLen) ? DemodBufferLen : size;
// test preamble
if ( !preambleSearchEx(DemodBuffer, preamble, sizeof(preamble), &size, &startIdx, true) ) {
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", startIdx);
return false;
}
// if this is a readword command, get the read bytes and test the parities
if (readCmd) {
if (!EM_EndParityTest(DemodBuffer + startIdx + sizeof(preamble), 45, 5, 9, 0)) {
if (g_debugMode) PrintAndLog("DEBUG: Error - End Parity check failed");
return false;
}
// test for even parity bits and remove them. (leave out the end row of parities so 36 bits)
if ( removeParity(DemodBuffer, startIdx + sizeof(preamble),9,0,36) == 0 ) {
if (g_debugMode) PrintAndLog("DEBUG: Error - Parity not detected");
return false;
}
setDemodBuf(DemodBuffer, 32, 0);
*word = bytebits_to_byteLSBF(DemodBuffer, 32);
}
return true;
}
// FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE
// should cover 90% of known used configs
// the rest will need to be manually demoded for now...
int demodEM4x05resp(uint32_t *word, bool readCmd) {
int ans = 0;
// test for FSK wave (easiest to 99% ID)
if (GetFskClock("", false, false)) {
//valid fsk clocks found
ans = FSKrawDemod("0 0", false);
if (!ans) {
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: FSK Demod failed, ans: %d", ans);
} else {
if (EM4x05testDemodReadData(word, readCmd)) {
return 1;
}
}
}
// PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... )
ans = GetPskClock("", false, false);
if (ans>0) {
//try psk1
ans = PSKDemod("0 0 6", false);
if (!ans) {
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
} else {
if (EM4x05testDemodReadData(word, readCmd)) {
return 1;
} else {
//try psk2
psk1TOpsk2(DemodBuffer, DemodBufferLen);
if (EM4x05testDemodReadData(word, readCmd)) {
return 1;
}
}
//try psk1 inverted
ans = PSKDemod("0 1 6", false);
if (!ans) {
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
} else {
if (EM4x05testDemodReadData(word, readCmd)) {
return 1;
} else {
//try psk2
psk1TOpsk2(DemodBuffer, DemodBufferLen);
if (EM4x05testDemodReadData(word, readCmd)) {
return 1;
}
}
}
}
}
// manchester is more common than biphase... try first
bool stcheck = false;
// try manchester - NOTE: ST only applies to T55x7 tags.
ans = ASKDemod_ext("0,0,1", false, false, 1, &stcheck);
if (!ans) {
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/Manchester Demod failed, ans: %d", ans);
} else {
if (EM4x05testDemodReadData(word, readCmd)) {
return 1;
}
}
//try biphase
ans = ASKbiphaseDemod("0 0 1", false);
if (!ans) {
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
} else {
if (EM4x05testDemodReadData(word, readCmd)) {
return 1;
}
}
//try diphase (differential biphase or inverted)
ans = ASKbiphaseDemod("0 1 1", false);
if (!ans) {
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
} else {
if (EM4x05testDemodReadData(word, readCmd)) {
return 1;
}
}
return -1;
}
int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *wordData) {
UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}};
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){
PrintAndLog("Command timed out");
return -1;
}
if ( !downloadSamplesEM() ) {
return -1;
}
int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000;
if (graphJustNoise(GraphBuffer, testLen)) {
PrintAndLog("no tag not found");
return -1;
}
//attempt demod:
return demodEM4x05resp(wordData, true);
}
int EM4x05ReadWord(uint8_t addr, uint32_t pwd, bool usePwd) {
uint32_t wordData = 0;
int success = EM4x05ReadWord_ext(addr, pwd, usePwd, &wordData);
if (success == 1)
PrintAndLog("%s Address %02d | %08X", (addr>13) ? "Lock":" Got",addr,wordData);
else
PrintAndLog("Read Address %02d | failed",addr);
return success;
}
int CmdEM4x05ReadWord(const char *Cmd) {
uint8_t addr;
uint32_t pwd;
bool usePwd = false;
uint8_t ctmp = param_getchar(Cmd, 0);
if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_read();
addr = param_get8ex(Cmd, 0, 50, 10);
// for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
pwd = param_get32ex(Cmd, 1, 1, 16);
if ( (addr > 15) ) {
PrintAndLog("Address must be between 0 and 15");
return 1;
}
if ( pwd == 1 ) {
PrintAndLog("Reading address %02u", addr);
} else {
usePwd = true;
PrintAndLog("Reading address %02u | password %08X", addr, pwd);
}
return EM4x05ReadWord(addr, pwd, usePwd);
}
int usage_lf_em_dump(void) {
PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. ");
PrintAndLog("");
PrintAndLog("Usage: lf em 4x05dump [h] <pwd>");
PrintAndLog("Options:");
PrintAndLog(" h - this help");
PrintAndLog(" pwd - password (hex) (optional)");
PrintAndLog("samples:");
PrintAndLog(" lf em 4x05dump");
PrintAndLog(" lf em 4x05dump 11223344");
return 0;
}
int CmdEM4x05dump(const char *Cmd) {
uint8_t addr = 0;
uint32_t pwd;
bool usePwd = false;
uint8_t ctmp = param_getchar(Cmd, 0);
if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
// for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
pwd = param_get32ex(Cmd, 0, 1, 16);
if ( pwd != 1 ) {
usePwd = true;
}
int success = 1;
for (; addr < 16; addr++) {
if (addr == 2) {
if (usePwd) {
PrintAndLog(" PWD Address %02u | %08X",addr,pwd);
} else {
PrintAndLog(" PWD Address 02 | cannot read");
}
} else {
success &= EM4x05ReadWord(addr, pwd, usePwd);
}
}
return success;
}
int usage_lf_em_write(void) {
PrintAndLog("Write EM4x05/EM4x69. Tag must be on antenna. ");
PrintAndLog("");
PrintAndLog("Usage: lf em 4x05writeword [h] <address> <data> <pwd>");
PrintAndLog("Options:");
PrintAndLog(" h - this help");
PrintAndLog(" address - memory address to write to. (0-15)");
PrintAndLog(" data - data to write (hex)");
PrintAndLog(" pwd - password (hex) (optional)");
PrintAndLog("samples:");
PrintAndLog(" lf em 4x05writeword 1");
PrintAndLog(" lf em 4x05writeword 1 deadc0de 11223344");
return 0;
}
int CmdEM4x05WriteWord(const char *Cmd) {
uint8_t ctmp = param_getchar(Cmd, 0);
if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_write();
bool usePwd = false;
uint8_t addr = 16; // default to invalid address
uint32_t data = 0xFFFFFFFF; // default to blank data
uint32_t pwd = 0xFFFFFFFF; // default to blank password
addr = param_get8ex(Cmd, 0, 16, 10);
data = param_get32ex(Cmd, 1, 0, 16);
pwd = param_get32ex(Cmd, 2, 1, 16);
if ( (addr > 15) ) {
PrintAndLog("Address must be between 0 and 15");
return 1;
}
if ( pwd == 1 )
PrintAndLog("Writing address %d data %08X", addr, data);
else {
usePwd = true;
PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd);
}
uint16_t flag = (addr << 8 ) | usePwd;
UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}};
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){
PrintAndLog("Error occurred, device did not respond during write operation.");
return -1;
}
if ( !downloadSamplesEM() ) {
return -1;
}
//check response for 00001010 for write confirmation!
//attempt demod:
uint32_t dummy = 0;
int result = demodEM4x05resp(&dummy,false);
if (result == 1) {
PrintAndLog("Write Verified");
} else {
PrintAndLog("Write could not be verified");
}
return result;
}
void printEM4x05config(uint32_t wordData) {
uint16_t datarate = (((wordData & 0x3F)+1)*2);
uint8_t encoder = ((wordData >> 6) & 0xF);
char enc[14];
memset(enc,0,sizeof(enc));
uint8_t PSKcf = (wordData >> 10) & 0x3;
char cf[10];
memset(cf,0,sizeof(cf));
uint8_t delay = (wordData >> 12) & 0x3;
char cdelay[33];
memset(cdelay,0,sizeof(cdelay));
uint8_t LWR = (wordData >> 14) & 0xF; //last word read
switch (encoder) {
case 0: snprintf(enc,sizeof(enc),"NRZ"); break;
case 1: snprintf(enc,sizeof(enc),"Manchester"); break;
case 2: snprintf(enc,sizeof(enc),"Biphase"); break;
case 3: snprintf(enc,sizeof(enc),"Miller"); break;
case 4: snprintf(enc,sizeof(enc),"PSK1"); break;
case 5: snprintf(enc,sizeof(enc),"PSK2"); break;
case 6: snprintf(enc,sizeof(enc),"PSK3"); break;
case 7: snprintf(enc,sizeof(enc),"Unknown"); break;
case 8: snprintf(enc,sizeof(enc),"FSK1"); break;
case 9: snprintf(enc,sizeof(enc),"FSK2"); break;
default: snprintf(enc,sizeof(enc),"Unknown"); break;
}
switch (PSKcf) {
case 0: snprintf(cf,sizeof(cf),"RF/2"); break;
case 1: snprintf(cf,sizeof(cf),"RF/8"); break;
case 2: snprintf(cf,sizeof(cf),"RF/4"); break;
case 3: snprintf(cf,sizeof(cf),"unknown"); break;
}
switch (delay) {
case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break;
case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break;
case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
}
PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData);
PrintAndLog("Config Breakdown:", wordData);
PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate);
PrintAndLog(" Encoder: %u | %s", encoder, enc);
PrintAndLog(" PSK CF: %u | %s", PSKcf, cf);
PrintAndLog(" Delay: %u | %s", delay, cdelay);
PrintAndLog(" LastWordR: %02u | Address of last word for default read", LWR);
PrintAndLog(" ReadLogin: %u | Read Login is %s", (wordData & 0x40000)>>18, (wordData & 0x40000) ? "Required" : "Not Required");
PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", (wordData & 0x80000)>>19, (wordData & 0x80000) ? "Required" : "Not Required");
PrintAndLog("WriteLogin: %u | Write Login is %s", (wordData & 0x100000)>>20, (wordData & 0x100000) ? "Required" : "Not Required");
PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", (wordData & 0x200000)>>21, (wordData & 0x200000) ? "Required" : "Not Required");
PrintAndLog(" R.A.W.: %u | Read After Write is %s", (wordData & 0x400000)>>22, (wordData & 0x400000) ? "On" : "Off");
PrintAndLog(" Disable: %u | Disable Command is %s", (wordData & 0x800000)>>23, (wordData & 0x800000) ? "Accepted" : "Not Accepted");
PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", (wordData & 0x1000000)>>24, (wordData & 0x1000000) ? "Enabled" : "Disabled");
PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", (wordData & 0x4000000)>>26, (wordData & 0x4000000) ? "Enabled" : "Disabled");
}
void printEM4x05info(uint8_t chipType, uint8_t cap, uint16_t custCode, uint32_t serial) {
switch (chipType) {
case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break;
case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break;
case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break;
//add more here when known
default: PrintAndLog(" Chip Type: %u Unknown", chipType); break;
}
switch (cap) {
case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break;
case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break;
case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break;
case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break;
default: PrintAndLog(" Cap Type: %u | unknown",cap); break;
}
PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown");
if (serial != 0) {
PrintAndLog("\n Serial #: %08X\n", serial);
}
}
void printEM4x05ProtectionBits(uint32_t wordData) {
for (uint8_t i = 0; i < 15; i++) {
PrintAndLog(" Word: %02u | %s", i, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
if (i==14) {
PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
}
}
}
//quick test for EM4x05/EM4x69 tag
bool EM4x05Block0Test(uint32_t *wordData) {
if (EM4x05ReadWord_ext(0,0,false,wordData) == 1) {
return true;
}
return false;
}
int CmdEM4x05info(const char *Cmd) {
//uint8_t addr = 0;
uint32_t pwd;
uint32_t wordData = 0;
bool usePwd = false;
uint8_t ctmp = param_getchar(Cmd, 0);
if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
// for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
pwd = param_get32ex(Cmd, 0, 1, 16);
if ( pwd != 1 ) {
usePwd = true;
}
// read word 0 (chip info)
// block 0 can be read even without a password.
if ( !EM4x05Block0Test(&wordData) )
return -1;
uint8_t chipType = (wordData >> 1) & 0xF;
uint8_t cap = (wordData >> 5) & 3;
uint16_t custCode = (wordData >> 9) & 0x3FF;
// read word 1 (serial #) doesn't need pwd
wordData = 0;
if (EM4x05ReadWord_ext(1, 0, false, &wordData) != 1) {
//failed, but continue anyway...
}
printEM4x05info(chipType, cap, custCode, wordData);
// read word 4 (config block)
// needs password if one is set
wordData = 0;
if ( EM4x05ReadWord_ext(4, pwd, usePwd, &wordData) != 1 ) {
//failed
return 0;
}
printEM4x05config(wordData);
// read word 14 and 15 to see which is being used for the protection bits
wordData = 0;
if ( EM4x05ReadWord_ext(14, pwd, usePwd, &wordData) != 1 ) {
//failed
return 0;
}
// if status bit says this is not the used protection word
if (!(wordData & 0x8000)) {
if ( EM4x05ReadWord_ext(15, pwd, usePwd, &wordData) != 1 ) {
//failed
return 0;
}
}
if (!(wordData & 0x8000)) {
//something went wrong
return 0;
}
printEM4x05ProtectionBits(wordData);
return 1;
}
static command_t CommandTable[] =
{
{"help", CmdHelp, 1, "This help"},
{"410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
{"410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"},
{"410xsim", CmdEM410xSim, 0, "<UID> [clock rate] -- Simulate EM410x tag"},
{"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
{"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
{"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
{"4x05dump", CmdEM4x05dump, 0, "(pwd) -- Read EM4x05/EM4x69 all word data"},
{"4x05info", CmdEM4x05info, 0, "(pwd) -- Get info from EM4x05/EM4x69 tag"},
{"4x05readword", CmdEM4x05ReadWord, 0, "<Word> (pwd) -- Read EM4x05/EM4x69 word data"},
{"4x05writeword", CmdEM4x05WriteWord, 0, "<Word> <data> (pwd) -- Write EM4x05/EM4x69 word data"},
{"4x50read", CmdEM4x50Read, 1, "demod data from EM4x50 tag from the graph buffer"},
{NULL, NULL, 0, NULL}
};
int CmdLFEM4X(const char *Cmd)
{
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd)
{
CmdsHelp(CommandTable);
return 0;
}