proxmark3/client/cmddata.c
marshmellow42 2ec8773314 fix bug in pskdemod return value if no samples...
... caused crash in data psknexwatchdemod if no samples were in the
graphbuffer.
also fixed hf mfu wrbl and rdbl to allow printing of help without a tag
being present.
2015-06-23 12:16:23 -04:00

2325 lines
79 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Data and Graph commands
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include "proxmark3.h"
#include "data.h"
#include "ui.h"
#include "graph.h"
#include "cmdparser.h"
#include "util.h"
#include "cmdmain.h"
#include "cmddata.h"
#include "lfdemod.h"
#include "usb_cmd.h"
#include "crc.h"
#include "crc16.h"
uint8_t DemodBuffer[MAX_DEMOD_BUF_LEN];
uint8_t g_debugMode;
size_t DemodBufferLen;
static int CmdHelp(const char *Cmd);
//set the demod buffer with given array of binary (one bit per byte)
//by marshmellow
void setDemodBuf(uint8_t *buff, size_t size, size_t startIdx)
{
if (buff == NULL)
return;
if ( size >= MAX_DEMOD_BUF_LEN)
size = MAX_DEMOD_BUF_LEN;
size_t i = 0;
for (; i < size; i++){
DemodBuffer[i]=buff[startIdx++];
}
DemodBufferLen=size;
return;
}
int CmdSetDebugMode(const char *Cmd)
{
int demod=0;
sscanf(Cmd, "%i", &demod);
g_debugMode=(uint8_t)demod;
return 1;
}
int usage_data_printdemodbuf(){
PrintAndLog("Usage: data printdemodbuffer x o <offset>");
PrintAndLog("Options: ");
PrintAndLog(" h This help");
PrintAndLog(" x output in hex (omit for binary output)");
PrintAndLog(" o <offset> enter offset in # of bits");
return 0;
}
//by marshmellow
void printDemodBuff(void)
{
int bitLen = DemodBufferLen;
if (bitLen<1) {
PrintAndLog("no bits found in demod buffer");
return;
}
if (bitLen>512) bitLen=512; //max output to 512 bits if we have more - should be plenty
char *bin = sprint_bin_break(DemodBuffer,bitLen,16);
PrintAndLog("%s",bin);
return;
}
int CmdPrintDemodBuff(const char *Cmd)
{
char hex[512]={0x00};
bool hexMode = false;
bool errors = false;
uint8_t offset = 0;
char cmdp = 0;
while(param_getchar(Cmd, cmdp) != 0x00)
{
switch(param_getchar(Cmd, cmdp))
{
case 'h':
case 'H':
return usage_data_printdemodbuf();
case 'x':
case 'X':
hexMode = true;
cmdp++;
break;
case 'o':
case 'O':
offset = param_get8(Cmd, cmdp+1);
if (!offset) errors = true;
cmdp += 2;
break;
default:
PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if(errors) break;
}
//Validations
if(errors) return usage_data_printdemodbuf();
int numBits = (DemodBufferLen-offset) & 0x7FC; //make sure we don't exceed our string
if (hexMode){
char *buf = (char *) (DemodBuffer + offset);
numBits = binarraytohex(hex, buf, numBits);
if (numBits==0) return 0;
PrintAndLog("DemodBuffer: %s",hex);
} else {
//setDemodBuf(DemodBuffer, DemodBufferLen-offset, offset);
char *bin = sprint_bin_break(DemodBuffer+offset,numBits,16);
PrintAndLog("DemodBuffer:\n%s",bin);
}
return 1;
}
//by marshmellow
//this function strictly converts >1 to 1 and <1 to 0 for each sample in the graphbuffer
int CmdGetBitStream(const char *Cmd)
{
int i;
CmdHpf(Cmd);
for (i = 0; i < GraphTraceLen; i++) {
if (GraphBuffer[i] >= 1) {
GraphBuffer[i] = 1;
} else {
GraphBuffer[i] = 0;
}
}
RepaintGraphWindow();
return 0;
}
//by marshmellow
//print 64 bit EM410x ID in multiple formats
void printEM410x(uint32_t hi, uint64_t id)
{
if (id || hi){
uint64_t iii=1;
uint64_t id2lo=0;
uint32_t ii=0;
uint32_t i=0;
for (ii=5; ii>0;ii--){
for (i=0;i<8;i++){
id2lo=(id2lo<<1LL) | ((id & (iii << (i+((ii-1)*8)))) >> (i+((ii-1)*8)));
}
}
if (hi){
//output 88 bit em id
PrintAndLog("\nEM TAG ID : %06X%016llX", hi, id);
} else{
//output 40 bit em id
PrintAndLog("\nEM TAG ID : %010llX", id);
PrintAndLog("Unique TAG ID : %010llX", id2lo);
PrintAndLog("\nPossible de-scramble patterns");
PrintAndLog("HoneyWell IdentKey {");
PrintAndLog("DEZ 8 : %08lld",id & 0xFFFFFF);
PrintAndLog("DEZ 10 : %010lld",id & 0xFFFFFFFF);
PrintAndLog("DEZ 5.5 : %05lld.%05lld",(id>>16LL) & 0xFFFF,(id & 0xFFFF));
PrintAndLog("DEZ 3.5A : %03lld.%05lld",(id>>32ll),(id & 0xFFFF));
PrintAndLog("DEZ 3.5B : %03lld.%05lld",(id & 0xFF000000) >> 24,(id & 0xFFFF));
PrintAndLog("DEZ 3.5C : %03lld.%05lld",(id & 0xFF0000) >> 16,(id & 0xFFFF));
PrintAndLog("DEZ 14/IK2 : %014lld",id);
PrintAndLog("DEZ 15/IK3 : %015lld",id2lo);
PrintAndLog("DEZ 20/ZK : %02lld%02lld%02lld%02lld%02lld%02lld%02lld%02lld%02lld%02lld",
(id2lo & 0xf000000000) >> 36,
(id2lo & 0x0f00000000) >> 32,
(id2lo & 0x00f0000000) >> 28,
(id2lo & 0x000f000000) >> 24,
(id2lo & 0x0000f00000) >> 20,
(id2lo & 0x00000f0000) >> 16,
(id2lo & 0x000000f000) >> 12,
(id2lo & 0x0000000f00) >> 8,
(id2lo & 0x00000000f0) >> 4,
(id2lo & 0x000000000f)
);
uint64_t paxton = (((id>>32) << 24) | (id & 0xffffff)) + 0x143e00;
PrintAndLog("}\nOther : %05lld_%03lld_%08lld",(id&0xFFFF),((id>>16LL) & 0xFF),(id & 0xFFFFFF));
PrintAndLog("Pattern Paxton : %lld [0x%llX]", paxton, paxton);
uint32_t p1id = (id & 0xFFFFFF);
uint8_t arr[32] = {0x00};
int i =0;
int j = 23;
for (; i < 24; ++i, --j ){
arr[i] = (p1id >> i) & 1;
}
uint32_t p1 = 0;
p1 |= arr[23] << 21;
p1 |= arr[22] << 23;
p1 |= arr[21] << 20;
p1 |= arr[20] << 22;
p1 |= arr[19] << 18;
p1 |= arr[18] << 16;
p1 |= arr[17] << 19;
p1 |= arr[16] << 17;
p1 |= arr[15] << 13;
p1 |= arr[14] << 15;
p1 |= arr[13] << 12;
p1 |= arr[12] << 14;
p1 |= arr[11] << 6;
p1 |= arr[10] << 2;
p1 |= arr[9] << 7;
p1 |= arr[8] << 1;
p1 |= arr[7] << 0;
p1 |= arr[6] << 8;
p1 |= arr[5] << 11;
p1 |= arr[4] << 3;
p1 |= arr[3] << 10;
p1 |= arr[2] << 4;
p1 |= arr[1] << 5;
p1 |= arr[0] << 9;
PrintAndLog("Pattern 1 : %d [0x%X]", p1, p1);
uint16_t sebury1 = id & 0xFFFF;
uint8_t sebury2 = (id >> 16) & 0x7F;
uint32_t sebury3 = id & 0x7FFFFF;
PrintAndLog("Pattern Sebury : %d %d %d [0x%X 0x%X 0x%X]", sebury1, sebury2, sebury3, sebury1, sebury2, sebury3);
}
}
return;
}
int AskEm410xDecode(bool verbose, uint32_t *hi, uint64_t *lo )
{
size_t idx = 0;
size_t BitLen = DemodBufferLen;
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
memcpy(BitStream, DemodBuffer, BitLen);
if (Em410xDecode(BitStream, &BitLen, &idx, hi, lo)){
//set GraphBuffer for clone or sim command
setDemodBuf(BitStream, BitLen, idx);
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, BitLen);
printDemodBuff();
}
if (verbose){
PrintAndLog("EM410x pattern found: ");
printEM410x(*hi, *lo);
}
return 1;
}
return 0;
}
int AskEm410xDemod(const char *Cmd, uint32_t *hi, uint64_t *lo, bool verbose)
{
if (!ASKDemod(Cmd, FALSE, FALSE, 1)) return 0;
return AskEm410xDecode(verbose, hi, lo);
}
//by marshmellow
//takes 3 arguments - clock, invert and maxErr as integers
//attempts to demodulate ask while decoding manchester
//prints binary found and saves in graphbuffer for further commands
int CmdAskEM410xDemod(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data askem410xdemod [clock] <0|1> [maxError]");
PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
PrintAndLog(" <invert>, 1 for invert output");
PrintAndLog(" [set maximum allowed errors], default = 100.");
PrintAndLog("");
PrintAndLog(" sample: data askem410xdemod = demod an EM410x Tag ID from GraphBuffer");
PrintAndLog(" : data askem410xdemod 32 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32");
PrintAndLog(" : data askem410xdemod 32 1 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : data askem410xdemod 1 = demod an EM410x Tag ID from GraphBuffer while inverting data");
PrintAndLog(" : data askem410xdemod 64 1 0 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/64 and inverting data and allowing 0 demod errors");
return 0;
}
uint64_t lo = 0;
uint32_t hi = 0;
return AskEm410xDemod(Cmd, &hi, &lo, true);
}
//by marshmellow
//Cmd Args: Clock, invert, maxErr, maxLen as integers and amplify as char == 'a'
// (amp may not be needed anymore)
//verbose will print results and demoding messages
//emSearch will auto search for EM410x format in bitstream
//askType switches decode: ask/raw = 0, ask/manchester = 1
int ASKDemod(const char *Cmd, bool verbose, bool emSearch, uint8_t askType)
{
int invert=0;
int clk=0;
int maxErr=100;
int maxLen=0;
uint8_t askAmp = 0;
char amp = param_getchar(Cmd, 0);
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
sscanf(Cmd, "%i %i %i %i %c", &clk, &invert, &maxErr, &maxLen, &amp);
if (!maxLen) maxLen = 512*64;
if (invert != 0 && invert != 1) {
PrintAndLog("Invalid argument: %s", Cmd);
return 0;
}
if (clk==1){
invert=1;
clk=0;
}
if (amp == 'a' || amp == 'A') askAmp=1;
size_t BitLen = getFromGraphBuf(BitStream);
if (g_debugMode) PrintAndLog("DEBUG: Bitlen from grphbuff: %d",BitLen);
if (BitLen<255) return 0;
if (maxLen<BitLen && maxLen != 0) BitLen = maxLen;
int errCnt = askdemod(BitStream, &BitLen, &clk, &invert, maxErr, askAmp, askType);
if (errCnt<0 || BitLen<16){ //if fatal error (or -1)
if (g_debugMode) PrintAndLog("DEBUG: no data found %d, errors:%d, bitlen:%d, clock:%d",errCnt,invert,BitLen,clk);
return 0;
}
if (errCnt>maxErr){
if (g_debugMode) PrintAndLog("DEBUG: Too many errors found, errors:%d, bits:%d, clock:%d",errCnt, BitLen, clk);
return 0;
}
if (verbose || g_debugMode) PrintAndLog("\nUsing Clock:%d, Invert:%d, Bits Found:%d",clk,invert,BitLen);
//output
setDemodBuf(BitStream,BitLen,0);
if (verbose || g_debugMode){
if (errCnt>0) PrintAndLog("# Errors during Demoding (shown as 7 in bit stream): %d",errCnt);
if (askType) PrintAndLog("ASK/Manchester - Clock: %d - Decoded bitstream:",clk);
else PrintAndLog("ASK/Raw - Clock: %d - Decoded bitstream:",clk);
// Now output the bitstream to the scrollback by line of 16 bits
printDemodBuff();
}
uint64_t lo = 0;
uint32_t hi = 0;
if (emSearch){
AskEm410xDecode(true, &hi, &lo);
}
return 1;
}
//by marshmellow
//takes 5 arguments - clock, invert, maxErr, maxLen as integers and amplify as char == 'a'
//attempts to demodulate ask while decoding manchester
//prints binary found and saves in graphbuffer for further commands
int Cmdaskmandemod(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 25 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod am [clock] <invert> [maxError] [maxLen] [amplify]");
PrintAndLog(" [set clock as integer] optional, if not set, autodetect");
PrintAndLog(" <invert>, 1 to invert output");
PrintAndLog(" [set maximum allowed errors], default = 100");
PrintAndLog(" [set maximum Samples to read], default = 32768 (512 bits at rf/64)");
PrintAndLog(" <amplify>, 'a' to attempt demod with ask amplification, default = no amp");
PrintAndLog("");
PrintAndLog(" sample: data rawdemod am = demod an ask/manchester tag from GraphBuffer");
PrintAndLog(" : data rawdemod am 32 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32");
PrintAndLog(" : data rawdemod am 32 1 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : data rawdemod am 1 = demod an ask/manchester tag from GraphBuffer while inverting data");
PrintAndLog(" : data rawdemod am 64 1 0 = demod an ask/manchester tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
return 0;
}
return ASKDemod(Cmd, TRUE, TRUE, 1);
}
//by marshmellow
//manchester decode
//stricktly take 10 and 01 and convert to 0 and 1
int Cmdmandecoderaw(const char *Cmd)
{
int i =0;
int errCnt=0;
size_t size=0;
int invert=0;
int maxErr = 20;
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 5 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data manrawdecode [invert] [maxErr]");
PrintAndLog(" Takes 10 and 01 and converts to 0 and 1 respectively");
PrintAndLog(" --must have binary sequence in demodbuffer (run data askrawdemod first)");
PrintAndLog(" [invert] invert output");
PrintAndLog(" [maxErr] set number of errors allowed (default = 20)");
PrintAndLog("");
PrintAndLog(" sample: data manrawdecode = decode manchester bitstream from the demodbuffer");
return 0;
}
if (DemodBufferLen==0) return 0;
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
int high=0,low=0;
for (;i<DemodBufferLen;++i){
if (DemodBuffer[i]>high) high=DemodBuffer[i];
else if(DemodBuffer[i]<low) low=DemodBuffer[i];
BitStream[i]=DemodBuffer[i];
}
if (high>7 || low <0 ){
PrintAndLog("Error: please raw demod the wave first then manchester raw decode");
return 0;
}
sscanf(Cmd, "%i %i", &invert, &maxErr);
size=i;
errCnt=manrawdecode(BitStream, &size, invert);
if (errCnt>=maxErr){
PrintAndLog("Too many errors: %d",errCnt);
return 0;
}
PrintAndLog("Manchester Decoded - # errors:%d - data:",errCnt);
PrintAndLog("%s", sprint_bin_break(BitStream, size, 16));
if (errCnt==0){
uint64_t id = 0;
uint32_t hi = 0;
size_t idx=0;
if (Em410xDecode(BitStream, &size, &idx, &hi, &id)){
//need to adjust to set bitstream back to manchester encoded data
//setDemodBuf(BitStream, size, idx);
printEM410x(hi, id);
}
}
return 1;
}
//by marshmellow
//biphase decode
//take 01 or 10 = 0 and 11 or 00 = 1
//takes 2 arguments "offset" default = 0 if 1 it will shift the decode by one bit
// and "invert" default = 0 if 1 it will invert output
// the argument offset allows us to manually shift if the output is incorrect - [EDIT: now auto detects]
int CmdBiphaseDecodeRaw(const char *Cmd)
{
size_t size=0;
int offset=0, invert=0, maxErr=20, errCnt=0;
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 3 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data biphaserawdecode [offset] [invert] [maxErr]");
PrintAndLog(" Converts 10 or 01 to 1 and 11 or 00 to 0");
PrintAndLog(" --must have binary sequence in demodbuffer (run data askrawdemod first)");
PrintAndLog(" --invert for Conditional Dephase Encoding (CDP) AKA Differential Manchester");
PrintAndLog("");
PrintAndLog(" [offset <0|1>], set to 0 not to adjust start position or to 1 to adjust decode start position");
PrintAndLog(" [invert <0|1>], set to 1 to invert output");
PrintAndLog(" [maxErr int], set max errors tolerated - default=20");
PrintAndLog("");
PrintAndLog(" sample: data biphaserawdecode = decode biphase bitstream from the demodbuffer");
PrintAndLog(" sample: data biphaserawdecode 1 1 = decode biphase bitstream from the demodbuffer, set offset, and invert output");
return 0;
}
sscanf(Cmd, "%i %i %i", &offset, &invert, &maxErr);
if (DemodBufferLen==0){
PrintAndLog("DemodBuffer Empty - run 'data rawdemod ar' first");
return 0;
}
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
memcpy(BitStream, DemodBuffer, DemodBufferLen);
size = DemodBufferLen;
errCnt=BiphaseRawDecode(BitStream, &size, offset, invert);
if (errCnt<0){
PrintAndLog("Error during decode:%d", errCnt);
return 0;
}
if (errCnt>maxErr){
PrintAndLog("Too many errors attempting to decode: %d",errCnt);
return 0;
}
if (errCnt>0){
PrintAndLog("# Errors found during Demod (shown as 7 in bit stream): %d",errCnt);
}
PrintAndLog("Biphase Decoded using offset: %d - # invert:%d - data:",offset,invert);
PrintAndLog("%s", sprint_bin_break(BitStream, size, 16));
if (offset) setDemodBuf(DemodBuffer,DemodBufferLen-offset, offset); //remove first bit from raw demod
return 1;
}
//by marshmellow
// - ASK Demod then Biphase decode GraphBuffer samples
int ASKbiphaseDemod(const char *Cmd, bool verbose)
{
//ask raw demod GraphBuffer first
int offset=0, clk=0, invert=0, maxErr=0;
sscanf(Cmd, "%i %i %i %i", &offset, &clk, &invert, &maxErr);
uint8_t BitStream[MAX_DEMOD_BUF_LEN];
size_t size = getFromGraphBuf(BitStream);
//invert here inverts the ask raw demoded bits which has no effect on the demod, but we need the pointer
int errCnt = askdemod(BitStream, &size, &clk, &invert, maxErr, 0, 0);
if ( errCnt < 0 || errCnt > maxErr ) {
if (g_debugMode) PrintAndLog("DEBUG: no data or error found %d, clock: %d", errCnt, clk);
return 0;
}
//attempt to Biphase decode BitStream
errCnt = BiphaseRawDecode(BitStream, &size, offset, invert);
if (errCnt < 0){
if (g_debugMode || verbose) PrintAndLog("Error BiphaseRawDecode: %d", errCnt);
return 0;
}
if (errCnt > maxErr) {
if (g_debugMode || verbose) PrintAndLog("Error BiphaseRawDecode too many errors: %d", errCnt);
return 0;
}
//success set DemodBuffer and return
setDemodBuf(BitStream, size, 0);
if (g_debugMode || verbose){
PrintAndLog("Biphase Decoded using offset: %d - clock: %d - # errors:%d - data:",offset,clk,errCnt);
printDemodBuff();
}
return 1;
}
//by marshmellow - see ASKbiphaseDemod
int Cmdaskbiphdemod(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 25 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod ab [offset] [clock] <invert> [maxError] [maxLen] <amplify>");
PrintAndLog(" [offset], offset to begin biphase, default=0");
PrintAndLog(" [set clock as integer] optional, if not set, autodetect");
PrintAndLog(" <invert>, 1 to invert output");
PrintAndLog(" [set maximum allowed errors], default = 100");
PrintAndLog(" [set maximum Samples to read], default = 32768 (512 bits at rf/64)");
PrintAndLog(" <amplify>, 'a' to attempt demod with ask amplification, default = no amp");
PrintAndLog(" NOTE: <invert> can be entered as second or third argument");
PrintAndLog(" NOTE: <amplify> can be entered as first, second or last argument");
PrintAndLog(" NOTE: any other arg must have previous args set to work");
PrintAndLog("");
PrintAndLog(" NOTE: --invert for Conditional Dephase Encoding (CDP) AKA Differential Manchester");
PrintAndLog("");
PrintAndLog(" sample: data rawdemod ab = demod an ask/biph tag from GraphBuffer");
PrintAndLog(" : data rawdemod ab 0 a = demod an ask/biph tag from GraphBuffer, amplified");
PrintAndLog(" : data rawdemod ab 1 32 = demod an ask/biph tag from GraphBuffer using an offset of 1 and a clock of RF/32");
PrintAndLog(" : data rawdemod ab 0 32 1 = demod an ask/biph tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : data rawdemod ab 0 1 = demod an ask/biph tag from GraphBuffer while inverting data");
PrintAndLog(" : data rawdemod ab 0 64 1 0 = demod an ask/biph tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
PrintAndLog(" : data rawdemod ab 0 64 1 0 0 a = demod an ask/biph tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors, and amp");
return 0;
}
return ASKbiphaseDemod(Cmd, TRUE);
}
//by marshmellow
//attempts to demodulate and identify a G_Prox_II verex/chubb card
//WARNING: if it fails during some points it will destroy the DemodBuffer data
// but will leave the GraphBuffer intact.
//if successful it will push askraw data back to demod buffer ready for emulation
int CmdG_Prox_II_Demod(const char *Cmd)
{
if (!ASKbiphaseDemod(Cmd, FALSE)){
if (g_debugMode) PrintAndLog("ASKbiphaseDemod failed 1st try");
return 0;
}
size_t size = DemodBufferLen;
//call lfdemod.c demod for gProxII
int ans = gProxII_Demod(DemodBuffer, &size);
if (ans < 0){
if (g_debugMode) PrintAndLog("Error gProxII_Demod");
return 0;
}
//got a good demod
uint32_t ByteStream[65] = {0x00};
uint8_t xorKey=0;
uint8_t keyCnt=0;
uint8_t bitCnt=0;
uint8_t ByteCnt=0;
size_t startIdx = ans + 6; //start after preamble
for (size_t idx = 0; idx<size-6; idx++){
if ((idx+1) % 5 == 0){
//spacer bit - should be 0
if (DemodBuffer[startIdx+idx] != 0) {
if (g_debugMode) PrintAndLog("Error spacer not 0: %d, pos: %d",DemodBuffer[startIdx+idx],startIdx+idx);
return 0;
}
continue;
}
if (keyCnt<8){ //lsb first
xorKey = xorKey | (DemodBuffer[startIdx+idx]<<keyCnt);
keyCnt++;
if (keyCnt==8 && g_debugMode) PrintAndLog("xorKey Found: %02x", xorKey);
continue;
}
//lsb first
ByteStream[ByteCnt] = ByteStream[ByteCnt] | (DemodBuffer[startIdx+idx]<<bitCnt);
bitCnt++;
if (bitCnt % 8 == 0){
if (g_debugMode) PrintAndLog("byte %d: %02x",ByteCnt,ByteStream[ByteCnt]);
bitCnt=0;
ByteCnt++;
}
}
for (uint8_t i = 0; i < ByteCnt; i++){
ByteStream[i] ^= xorKey; //xor
if (g_debugMode) PrintAndLog("byte %d after xor: %02x", i, ByteStream[i]);
}
//now ByteStream contains 64 bytes of decrypted raw tag data
//
uint8_t fmtLen = ByteStream[0]>>2;
uint32_t FC = 0;
uint32_t Card = 0;
uint32_t raw1 = bytebits_to_byte(DemodBuffer+ans,32);
uint32_t raw2 = bytebits_to_byte(DemodBuffer+ans+32, 32);
uint32_t raw3 = bytebits_to_byte(DemodBuffer+ans+64, 32);
if (fmtLen==36){
FC = ((ByteStream[3] & 0x7F)<<7) | (ByteStream[4]>>1);
Card = ((ByteStream[4]&1)<<19) | (ByteStream[5]<<11) | (ByteStream[6]<<3) | (ByteStream[7]>>5);
PrintAndLog("G-Prox-II Found: FmtLen %d, FC %d, Card %d",fmtLen,FC,Card);
} else if(fmtLen==26){
FC = ((ByteStream[3] & 0x7F)<<1) | (ByteStream[4]>>7);
Card = ((ByteStream[4]&0x7F)<<9) | (ByteStream[5]<<1) | (ByteStream[6]>>7);
PrintAndLog("G-Prox-II Found: FmtLen %d, FC %d, Card %d",fmtLen,FC,Card);
} else {
PrintAndLog("Unknown G-Prox-II Fmt Found: FmtLen %d",fmtLen);
}
PrintAndLog("Raw: %08x%08x%08x", raw1,raw2,raw3);
setDemodBuf(DemodBuffer+ans, 96, 0);
return 1;
}
//by marshmellow - see ASKDemod
int Cmdaskrawdemod(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 25 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod ar [clock] <invert> [maxError] [maxLen] [amplify]");
PrintAndLog(" [set clock as integer] optional, if not set, autodetect");
PrintAndLog(" <invert>, 1 to invert output");
PrintAndLog(" [set maximum allowed errors], default = 100");
PrintAndLog(" [set maximum Samples to read], default = 32768 (1024 bits at rf/64)");
PrintAndLog(" <amplify>, 'a' to attempt demod with ask amplification, default = no amp");
PrintAndLog("");
PrintAndLog(" sample: data rawdemod ar = demod an ask tag from GraphBuffer");
PrintAndLog(" : data rawdemod ar a = demod an ask tag from GraphBuffer, amplified");
PrintAndLog(" : data rawdemod ar 32 = demod an ask tag from GraphBuffer using a clock of RF/32");
PrintAndLog(" : data rawdemod ar 32 1 = demod an ask tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : data rawdemod ar 1 = demod an ask tag from GraphBuffer while inverting data");
PrintAndLog(" : data rawdemod ar 64 1 0 = demod an ask tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
PrintAndLog(" : data rawdemod ar 64 1 0 0 a = demod an ask tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors, and amp");
return 0;
}
return ASKDemod(Cmd, TRUE, FALSE, 0);
}
int AutoCorrelate(int window, bool SaveGrph, bool verbose)
{
static int CorrelBuffer[MAX_GRAPH_TRACE_LEN];
size_t Correlation = 0;
int maxSum = 0;
int lastMax = 0;
if (verbose) PrintAndLog("performing %d correlations", GraphTraceLen - window);
for (int i = 0; i < GraphTraceLen - window; ++i) {
int sum = 0;
for (int j = 0; j < window; ++j) {
sum += (GraphBuffer[j]*GraphBuffer[i + j]) / 256;
}
CorrelBuffer[i] = sum;
if (sum >= maxSum-100 && sum <= maxSum+100){
//another max
Correlation = i-lastMax;
lastMax = i;
if (sum > maxSum) maxSum = sum;
} else if (sum > maxSum){
maxSum=sum;
lastMax = i;
}
}
if (Correlation==0){
//try again with wider margin
for (int i = 0; i < GraphTraceLen - window; i++){
if (CorrelBuffer[i] >= maxSum-(maxSum*0.05) && CorrelBuffer[i] <= maxSum+(maxSum*0.05)){
//another max
Correlation = i-lastMax;
lastMax = i;
//if (CorrelBuffer[i] > maxSum) maxSum = sum;
}
}
}
if (verbose && Correlation > 0) PrintAndLog("Possible Correlation: %d samples",Correlation);
if (SaveGrph){
GraphTraceLen = GraphTraceLen - window;
memcpy(GraphBuffer, CorrelBuffer, GraphTraceLen * sizeof (int));
RepaintGraphWindow();
}
return Correlation;
}
int usage_data_autocorr(void)
{
//print help
PrintAndLog("Usage: data autocorr [window] [g]");
PrintAndLog("Options: ");
PrintAndLog(" h This help");
PrintAndLog(" [window] window length for correlation - default = 4000");
PrintAndLog(" g save back to GraphBuffer (overwrite)");
return 0;
}
int CmdAutoCorr(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (cmdp == 'h' || cmdp == 'H')
return usage_data_autocorr();
int window = 4000; //set default
char grph=0;
bool updateGrph = FALSE;
sscanf(Cmd, "%i %c", &window, &grph);
if (window >= GraphTraceLen) {
PrintAndLog("window must be smaller than trace (%d samples)",
GraphTraceLen);
return 0;
}
if (grph == 'g') updateGrph=TRUE;
return AutoCorrelate(window, updateGrph, TRUE);
}
int CmdBitsamples(const char *Cmd)
{
int cnt = 0;
uint8_t got[12288];
GetFromBigBuf(got,sizeof(got),0);
WaitForResponse(CMD_ACK,NULL);
for (int j = 0; j < sizeof(got); j++) {
for (int k = 0; k < 8; k++) {
if(got[j] & (1 << (7 - k))) {
GraphBuffer[cnt++] = 1;
} else {
GraphBuffer[cnt++] = 0;
}
}
}
GraphTraceLen = cnt;
RepaintGraphWindow();
return 0;
}
int CmdBuffClear(const char *Cmd)
{
UsbCommand c = {CMD_BUFF_CLEAR};
SendCommand(&c);
ClearGraph(true);
return 0;
}
int CmdDec(const char *Cmd)
{
for (int i = 0; i < (GraphTraceLen / 2); ++i)
GraphBuffer[i] = GraphBuffer[i * 2];
GraphTraceLen /= 2;
PrintAndLog("decimated by 2");
RepaintGraphWindow();
return 0;
}
/**
* Undecimate - I'd call it 'interpolate', but we'll save that
* name until someone does an actual interpolation command, not just
* blindly repeating samples
* @param Cmd
* @return
*/
int CmdUndec(const char *Cmd)
{
if(param_getchar(Cmd, 0) == 'h')
{
PrintAndLog("Usage: data undec [factor]");
PrintAndLog("This function performs un-decimation, by repeating each sample N times");
PrintAndLog("Options: ");
PrintAndLog(" h This help");
PrintAndLog(" factor The number of times to repeat each sample.[default:2]");
PrintAndLog("Example: 'data undec 3'");
return 0;
}
uint8_t factor = param_get8ex(Cmd, 0,2, 10);
//We have memory, don't we?
int swap[MAX_GRAPH_TRACE_LEN] = { 0 };
uint32_t g_index = 0 ,s_index = 0;
while(g_index < GraphTraceLen && s_index < MAX_GRAPH_TRACE_LEN)
{
int count = 0;
for(count = 0; count < factor && s_index+count < MAX_GRAPH_TRACE_LEN; count ++)
swap[s_index+count] = GraphBuffer[g_index];
s_index+=count;
}
memcpy(GraphBuffer,swap, s_index * sizeof(int));
GraphTraceLen = s_index;
RepaintGraphWindow();
return 0;
}
//by marshmellow
//shift graph zero up or down based on input + or -
int CmdGraphShiftZero(const char *Cmd)
{
int shift=0;
//set options from parameters entered with the command
sscanf(Cmd, "%i", &shift);
int shiftedVal=0;
for(int i = 0; i<GraphTraceLen; i++){
shiftedVal=GraphBuffer[i]+shift;
if (shiftedVal>127)
shiftedVal=127;
else if (shiftedVal<-127)
shiftedVal=-127;
GraphBuffer[i]= shiftedVal;
}
CmdNorm("");
return 0;
}
//by marshmellow
//use large jumps in read samples to identify edges of waves and then amplify that wave to max
//similar to dirtheshold, threshold commands
//takes a threshold length which is the measured length between two samples then determines an edge
int CmdAskEdgeDetect(const char *Cmd)
{
int thresLen = 25;
sscanf(Cmd, "%i", &thresLen);
for(int i = 1; i<GraphTraceLen; i++){
if (GraphBuffer[i]-GraphBuffer[i-1]>=thresLen) //large jump up
GraphBuffer[i-1] = 127;
else if(GraphBuffer[i]-GraphBuffer[i-1]<=-1*thresLen) //large jump down
GraphBuffer[i-1] = -127;
}
RepaintGraphWindow();
return 0;
}
/* Print our clock rate */
// uses data from graphbuffer
// adjusted to take char parameter for type of modulation to find the clock - by marshmellow.
int CmdDetectClockRate(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 6 || strlen(Cmd) == 0 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data detectclock [modulation] <clock>");
PrintAndLog(" [modulation as char], specify the modulation type you want to detect the clock of");
PrintAndLog(" <clock> , specify the clock (optional - to get best start position only)");
PrintAndLog(" 'a' = ask, 'f' = fsk, 'n' = nrz/direct, 'p' = psk");
PrintAndLog("");
PrintAndLog(" sample: data detectclock a = detect the clock of an ask modulated wave in the GraphBuffer");
PrintAndLog(" data detectclock f = detect the clock of an fsk modulated wave in the GraphBuffer");
PrintAndLog(" data detectclock p = detect the clock of an psk modulated wave in the GraphBuffer");
PrintAndLog(" data detectclock n = detect the clock of an nrz/direct modulated wave in the GraphBuffer");
}
int ans=0;
if (cmdp == 'a'){
ans = GetAskClock(Cmd+1, true, false);
} else if (cmdp == 'f'){
ans = GetFskClock("", true, false);
} else if (cmdp == 'n'){
ans = GetNrzClock("", true, false);
} else if (cmdp == 'p'){
ans = GetPskClock("", true, false);
} else {
PrintAndLog ("Please specify a valid modulation to detect the clock of - see option h for help");
}
return ans;
}
char *GetFSKType(uint8_t fchigh, uint8_t fclow, uint8_t invert)
{
char *fskType;
if (fchigh==10 && fclow==8){
if (invert) //fsk2a
fskType = "FSK2a";
else //fsk2
fskType = "FSK2";
} else if (fchigh == 8 && fclow == 5) {
if (invert)
fskType = "FSK1";
else
fskType = "FSK1a";
} else {
fskType = "FSK??";
}
return fskType;
}
//by marshmellow
//fsk raw demod and print binary
//takes 4 arguments - Clock, invert, fchigh, fclow
//defaults: clock = 50, invert=1, fchigh=10, fclow=8 (RF/10 RF/8 (fsk2a))
int FSKrawDemod(const char *Cmd, bool verbose)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
//set defaults
int rfLen = 0;
int invert = 0;
int fchigh = 0;
int fclow = 0;
//set options from parameters entered with the command
sscanf(Cmd, "%i %i %i %i", &rfLen, &invert, &fchigh, &fclow);
if (strlen(Cmd)>0 && strlen(Cmd)<=2) {
if (rfLen==1){
invert = 1; //if invert option only is used
rfLen = 0;
}
}
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t BitLen = getFromGraphBuf(BitStream);
if (BitLen==0) return 0;
//get field clock lengths
uint16_t fcs=0;
if (fchigh==0 || fclow == 0){
fcs = countFC(BitStream, BitLen, 1);
if (fcs==0){
fchigh=10;
fclow=8;
}else{
fchigh = (fcs >> 8) & 0xFF;
fclow = fcs & 0xFF;
}
}
//get bit clock length
if (rfLen==0){
rfLen = detectFSKClk(BitStream, BitLen, fchigh, fclow);
if (rfLen == 0) rfLen = 50;
}
int size = fskdemod(BitStream,BitLen,(uint8_t)rfLen,(uint8_t)invert,(uint8_t)fchigh,(uint8_t)fclow);
if (size>0){
setDemodBuf(BitStream,size,0);
// Now output the bitstream to the scrollback by line of 16 bits
if (verbose || g_debugMode) {
PrintAndLog("\nUsing Clock:%d, invert:%d, fchigh:%d, fclow:%d", rfLen, invert, fchigh, fclow);
PrintAndLog("%s decoded bitstream:",GetFSKType(fchigh,fclow,invert));
printDemodBuff();
}
return 1;
} else{
if (g_debugMode) PrintAndLog("no FSK data found");
}
return 0;
}
//by marshmellow
//fsk raw demod and print binary
//takes 4 arguments - Clock, invert, fchigh, fclow
//defaults: clock = 50, invert=1, fchigh=10, fclow=8 (RF/10 RF/8 (fsk2a))
int CmdFSKrawdemod(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod fs [clock] <invert> [fchigh] [fclow]");
PrintAndLog(" [set clock as integer] optional, omit for autodetect.");
PrintAndLog(" <invert>, 1 for invert output, can be used even if the clock is omitted");
PrintAndLog(" [fchigh], larger field clock length, omit for autodetect");
PrintAndLog(" [fclow], small field clock length, omit for autodetect");
PrintAndLog("");
PrintAndLog(" sample: data rawdemod fs = demod an fsk tag from GraphBuffer using autodetect");
PrintAndLog(" : data rawdemod fs 32 = demod an fsk tag from GraphBuffer using a clock of RF/32, autodetect fc");
PrintAndLog(" : data rawdemod fs 1 = demod an fsk tag from GraphBuffer using autodetect, invert output");
PrintAndLog(" : data rawdemod fs 32 1 = demod an fsk tag from GraphBuffer using a clock of RF/32, invert output, autodetect fc");
PrintAndLog(" : data rawdemod fs 64 0 8 5 = demod an fsk1 RF/64 tag from GraphBuffer");
PrintAndLog(" : data rawdemod fs 50 0 10 8 = demod an fsk2 RF/50 tag from GraphBuffer");
PrintAndLog(" : data rawdemod fs 50 1 10 8 = demod an fsk2a RF/50 tag from GraphBuffer");
return 0;
}
return FSKrawDemod(Cmd, TRUE);
}
//by marshmellow (based on existing demod + holiman's refactor)
//HID Prox demod - FSK RF/50 with preamble of 00011101 (then manchester encoded)
//print full HID Prox ID and some bit format details if found
int CmdFSKdemodHID(const char *Cmd)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
uint32_t hi2=0, hi=0, lo=0;
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t BitLen = getFromGraphBuf(BitStream);
if (BitLen==0) return 0;
//get binary from fsk wave
int idx = HIDdemodFSK(BitStream,&BitLen,&hi2,&hi,&lo);
if (idx<0){
if (g_debugMode){
if (idx==-1){
PrintAndLog("DEBUG: Just Noise Detected");
} else if (idx == -2) {
PrintAndLog("DEBUG: Error demoding fsk");
} else if (idx == -3) {
PrintAndLog("DEBUG: Preamble not found");
} else if (idx == -4) {
PrintAndLog("DEBUG: Error in Manchester data, SIZE: %d", BitLen);
} else {
PrintAndLog("DEBUG: Error demoding fsk %d", idx);
}
}
return 0;
}
if (hi2==0 && hi==0 && lo==0) {
if (g_debugMode) PrintAndLog("DEBUG: Error - no values found");
return 0;
}
if (hi2 != 0){ //extra large HID tags
PrintAndLog("HID Prox TAG ID: %x%08x%08x (%d)",
(unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
}
else { //standard HID tags <38 bits
uint8_t fmtLen = 0;
uint32_t fc = 0;
uint32_t cardnum = 0;
if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
uint32_t lo2=0;
lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
uint8_t idx3 = 1;
while(lo2>1){ //find last bit set to 1 (format len bit)
lo2=lo2>>1;
idx3++;
}
fmtLen =idx3+19;
fc =0;
cardnum=0;
if(fmtLen==26){
cardnum = (lo>>1)&0xFFFF;
fc = (lo>>17)&0xFF;
}
if(fmtLen==34){
cardnum = (lo>>1)&0xFFFF;
fc= ((hi&1)<<15)|(lo>>17);
}
if(fmtLen==35){
cardnum = (lo>>1)&0xFFFFF;
fc = ((hi&1)<<11)|(lo>>21);
}
}
else { //if bit 38 is not set then 37 bit format is used
fmtLen = 37;
fc = 0;
cardnum = 0;
if(fmtLen == 37){
cardnum = (lo>>1)&0x7FFFF;
fc = ((hi&0xF)<<12)|(lo>>20);
}
}
PrintAndLog("HID Prox TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
(unsigned int) fmtLen, (unsigned int) fc, (unsigned int) cardnum);
}
setDemodBuf(BitStream,BitLen,idx);
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, BitLen);
printDemodBuff();
}
return 1;
}
//by marshmellow
//Paradox Prox demod - FSK RF/50 with preamble of 00001111 (then manchester encoded)
//print full Paradox Prox ID and some bit format details if found
int CmdFSKdemodParadox(const char *Cmd)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
uint32_t hi2=0, hi=0, lo=0;
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t BitLen = getFromGraphBuf(BitStream);
if (BitLen==0) return 0;
//get binary from fsk wave
int idx = ParadoxdemodFSK(BitStream,&BitLen,&hi2,&hi,&lo);
if (idx<0){
if (g_debugMode){
if (idx==-1){
PrintAndLog("DEBUG: Just Noise Detected");
} else if (idx == -2) {
PrintAndLog("DEBUG: Error demoding fsk");
} else if (idx == -3) {
PrintAndLog("DEBUG: Preamble not found");
} else if (idx == -4) {
PrintAndLog("DEBUG: Error in Manchester data");
} else {
PrintAndLog("DEBUG: Error demoding fsk %d", idx);
}
}
return 0;
}
if (hi2==0 && hi==0 && lo==0){
if (g_debugMode) PrintAndLog("DEBUG: Error - no value found");
return 0;
}
uint32_t fc = ((hi & 0x3)<<6) | (lo>>26);
uint32_t cardnum = (lo>>10)&0xFFFF;
uint32_t rawLo = bytebits_to_byte(BitStream+idx+64,32);
uint32_t rawHi = bytebits_to_byte(BitStream+idx+32,32);
uint32_t rawHi2 = bytebits_to_byte(BitStream+idx,32);
PrintAndLog("Paradox TAG ID: %x%08x - FC: %d - Card: %d - Checksum: %02x - RAW: %08x%08x%08x",
hi>>10, (hi & 0x3)<<26 | (lo>>10), fc, cardnum, (lo>>2) & 0xFF, rawHi2, rawHi, rawLo);
setDemodBuf(BitStream,BitLen,idx);
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, len: %d, Printing Demod Buffer:", idx, BitLen);
printDemodBuff();
}
return 1;
}
//by marshmellow
//IO-Prox demod - FSK RF/64 with preamble of 000000001
//print ioprox ID and some format details
int CmdFSKdemodIO(const char *Cmd)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
//set defaults
int idx=0;
//something in graphbuffer?
if (GraphTraceLen < 65) {
if (g_debugMode)PrintAndLog("DEBUG: not enough samples in GraphBuffer");
return 0;
}
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t BitLen = getFromGraphBuf(BitStream);
if (BitLen==0) return 0;
//get binary from fsk wave
idx = IOdemodFSK(BitStream,BitLen);
if (idx<0){
if (g_debugMode){
if (idx==-1){
PrintAndLog("DEBUG: Just Noise Detected");
} else if (idx == -2) {
PrintAndLog("DEBUG: not enough samples");
} else if (idx == -3) {
PrintAndLog("DEBUG: error during fskdemod");
} else if (idx == -4) {
PrintAndLog("DEBUG: Preamble not found");
} else if (idx == -5) {
PrintAndLog("DEBUG: Separator bits not found");
} else {
PrintAndLog("DEBUG: Error demoding fsk %d", idx);
}
}
return 0;
}
if (idx==0){
if (g_debugMode){
PrintAndLog("DEBUG: IO Prox Data not found - FSK Bits: %d",BitLen);
if (BitLen > 92) PrintAndLog("%s", sprint_bin_break(BitStream,92,16));
}
return 0;
}
//Index map
//0 10 20 30 40 50 60
//| | | | | | |
//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
//-----------------------------------------------------------------------------
//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
//
//XSF(version)facility:codeone+codetwo (raw)
//Handle the data
if (idx+64>BitLen) {
if (g_debugMode) PrintAndLog("not enough bits found - bitlen: %d",BitLen);
return 0;
}
PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx], BitStream[idx+1], BitStream[idx+2], BitStream[idx+3], BitStream[idx+4], BitStream[idx+5], BitStream[idx+6], BitStream[idx+7], BitStream[idx+8]);
PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx+9], BitStream[idx+10], BitStream[idx+11],BitStream[idx+12],BitStream[idx+13],BitStream[idx+14],BitStream[idx+15],BitStream[idx+16],BitStream[idx+17]);
PrintAndLog("%d%d%d%d%d%d%d%d %d facility",BitStream[idx+18], BitStream[idx+19], BitStream[idx+20],BitStream[idx+21],BitStream[idx+22],BitStream[idx+23],BitStream[idx+24],BitStream[idx+25],BitStream[idx+26]);
PrintAndLog("%d%d%d%d%d%d%d%d %d version",BitStream[idx+27], BitStream[idx+28], BitStream[idx+29],BitStream[idx+30],BitStream[idx+31],BitStream[idx+32],BitStream[idx+33],BitStream[idx+34],BitStream[idx+35]);
PrintAndLog("%d%d%d%d%d%d%d%d %d code1",BitStream[idx+36], BitStream[idx+37], BitStream[idx+38],BitStream[idx+39],BitStream[idx+40],BitStream[idx+41],BitStream[idx+42],BitStream[idx+43],BitStream[idx+44]);
PrintAndLog("%d%d%d%d%d%d%d%d %d code2",BitStream[idx+45], BitStream[idx+46], BitStream[idx+47],BitStream[idx+48],BitStream[idx+49],BitStream[idx+50],BitStream[idx+51],BitStream[idx+52],BitStream[idx+53]);
PrintAndLog("%d%d%d%d%d%d%d%d %d%d checksum",BitStream[idx+54],BitStream[idx+55],BitStream[idx+56],BitStream[idx+57],BitStream[idx+58],BitStream[idx+59],BitStream[idx+60],BitStream[idx+61],BitStream[idx+62],BitStream[idx+63]);
uint32_t code = bytebits_to_byte(BitStream+idx,32);
uint32_t code2 = bytebits_to_byte(BitStream+idx+32,32);
uint8_t version = bytebits_to_byte(BitStream+idx+27,8); //14,4
uint8_t facilitycode = bytebits_to_byte(BitStream+idx+18,8) ;
uint16_t number = (bytebits_to_byte(BitStream+idx+36,8)<<8)|(bytebits_to_byte(BitStream+idx+45,8)); //36,9
uint8_t crc = bytebits_to_byte(BitStream+idx+54,8);
uint16_t calccrc = 0;
for (uint8_t i=1; i<6; ++i){
calccrc += bytebits_to_byte(BitStream+idx+9*i,8);
}
calccrc &= 0xff;
calccrc = 0xff - calccrc;
char *crcStr = (crc == calccrc) ? "crc ok": "!crc";
PrintAndLog("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr);
setDemodBuf(BitStream,64,idx);
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, Len: %d, Printing demod buffer:",idx,64);
printDemodBuff();
}
return 1;
}
//by marshmellow
//AWID Prox demod - FSK RF/50 with preamble of 00000001 (always a 96 bit data stream)
//print full AWID Prox ID and some bit format details if found
int CmdFSKdemodAWID(const char *Cmd)
{
//int verbose=1;
//sscanf(Cmd, "%i", &verbose);
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t size = getFromGraphBuf(BitStream);
if (size==0) return 0;
//get binary from fsk wave
int idx = AWIDdemodFSK(BitStream, &size);
if (idx<=0){
if (g_debugMode==1){
if (idx == -1)
PrintAndLog("DEBUG: Error - not enough samples");
else if (idx == -2)
PrintAndLog("DEBUG: Error - only noise found");
else if (idx == -3)
PrintAndLog("DEBUG: Error - problem during FSK demod");
else if (idx == -4)
PrintAndLog("DEBUG: Error - AWID preamble not found");
else if (idx == -5)
PrintAndLog("DEBUG: Error - Size not correct: %d", size);
else
PrintAndLog("DEBUG: Error %d",idx);
}
return 0;
}
// Index map
// 0 10 20 30 40 50 60
// | | | | | | |
// 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
// -----------------------------------------------------------------------------
// 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
// premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
// |---26 bit---| |-----117----||-------------142-------------|
// b = format bit len, o = odd parity of last 3 bits
// f = facility code, c = card number
// w = wiegand parity
// (26 bit format shown)
//get raw ID before removing parities
uint32_t rawLo = bytebits_to_byte(BitStream+idx+64,32);
uint32_t rawHi = bytebits_to_byte(BitStream+idx+32,32);
uint32_t rawHi2 = bytebits_to_byte(BitStream+idx,32);
setDemodBuf(BitStream,96,idx);
size = removeParity(BitStream, idx+8, 4, 1, 88);
if (size != 66){
if (g_debugMode==1) PrintAndLog("DEBUG: Error - at parity check-tag size does not match AWID format");
return 0;
}
// ok valid card found!
// Index map
// 0 10 20 30 40 50 60
// | | | | | | |
// 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
// -----------------------------------------------------------------------------
// 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
// bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
// |26 bit| |-117--| |-----142------|
// b = format bit len, o = odd parity of last 3 bits
// f = facility code, c = card number
// w = wiegand parity
// (26 bit format shown)
uint32_t fc = 0;
uint32_t cardnum = 0;
uint32_t code1 = 0;
uint32_t code2 = 0;
uint8_t fmtLen = bytebits_to_byte(BitStream,8);
if (fmtLen==26){
fc = bytebits_to_byte(BitStream+9, 8);
cardnum = bytebits_to_byte(BitStream+17, 16);
code1 = bytebits_to_byte(BitStream+8,fmtLen);
PrintAndLog("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
} else {
cardnum = bytebits_to_byte(BitStream+8+(fmtLen-17), 16);
if (fmtLen>32){
code1 = bytebits_to_byte(BitStream+8,fmtLen-32);
code2 = bytebits_to_byte(BitStream+8+(fmtLen-32),32);
PrintAndLog("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
} else{
code1 = bytebits_to_byte(BitStream+8,fmtLen);
PrintAndLog("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
}
}
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, Len: %d Printing Demod Buffer:", idx, 96);
printDemodBuff();
}
//todo - convert hi2, hi, lo to demodbuffer for future sim/clone commands
return 1;
}
//by marshmellow
//Pyramid Prox demod - FSK RF/50 with preamble of 0000000000000001 (always a 128 bit data stream)
//print full Farpointe Data/Pyramid Prox ID and some bit format details if found
int CmdFSKdemodPyramid(const char *Cmd)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t size = getFromGraphBuf(BitStream);
if (size==0) return 0;
//get binary from fsk wave
int idx = PyramiddemodFSK(BitStream, &size);
if (idx < 0){
if (g_debugMode==1){
if (idx == -5)
PrintAndLog("DEBUG: Error - not enough samples");
else if (idx == -1)
PrintAndLog("DEBUG: Error - only noise found");
else if (idx == -2)
PrintAndLog("DEBUG: Error - problem during FSK demod");
else if (idx == -3)
PrintAndLog("DEBUG: Error - Size not correct: %d", size);
else if (idx == -4)
PrintAndLog("DEBUG: Error - Pyramid preamble not found");
else
PrintAndLog("DEBUG: Error - idx: %d",idx);
}
return 0;
}
// Index map
// 0 10 20 30 40 50 60
// | | | | | | |
// 0123456 7 8901234 5 6789012 3 4567890 1 2345678 9 0123456 7 8901234 5 6789012 3
// -----------------------------------------------------------------------------
// 0000000 0 0000000 1 0000000 1 0000000 1 0000000 1 0000000 1 0000000 1 0000000 1
// premable xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o
// 64 70 80 90 100 110 120
// | | | | | | |
// 4567890 1 2345678 9 0123456 7 8901234 5 6789012 3 4567890 1 2345678 9 0123456 7
// -----------------------------------------------------------------------------
// 0000000 1 0000000 1 0000000 1 0110111 0 0011000 1 0000001 0 0001100 1 1001010 0
// xxxxxxx o xxxxxxx o xxxxxxx o xswffff o ffffccc o ccccccc o ccccccw o ppppppp o
// |---115---||---------71---------|
// s = format start bit, o = odd parity of last 7 bits
// f = facility code, c = card number
// w = wiegand parity, x = extra space for other formats
// p = unknown checksum
// (26 bit format shown)
//get bytes for checksum calc
uint8_t checksum = bytebits_to_byte(BitStream + idx + 120, 8);
uint8_t csBuff[14] = {0x00};
for (uint8_t i = 0; i < 13; i++){
csBuff[i] = bytebits_to_byte(BitStream + idx + 16 + (i*8), 8);
}
//check checksum calc
//checksum calc thanks to ICEMAN!!
uint32_t checkCS = CRC8Maxim(csBuff,13);
//get raw ID before removing parities
uint32_t rawLo = bytebits_to_byte(BitStream+idx+96,32);
uint32_t rawHi = bytebits_to_byte(BitStream+idx+64,32);
uint32_t rawHi2 = bytebits_to_byte(BitStream+idx+32,32);
uint32_t rawHi3 = bytebits_to_byte(BitStream+idx,32);
setDemodBuf(BitStream,128,idx);
size = removeParity(BitStream, idx+8, 8, 1, 120);
if (size != 105){
if (g_debugMode==1)
PrintAndLog("DEBUG: Error at parity check - tag size does not match Pyramid format, SIZE: %d, IDX: %d, hi3: %x",size, idx, rawHi3);
return 0;
}
// ok valid card found!
// Index map
// 0 10 20 30 40 50 60 70
// | | | | | | | |
// 01234567890123456789012345678901234567890123456789012345678901234567890
// -----------------------------------------------------------------------
// 00000000000000000000000000000000000000000000000000000000000000000000000
// xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
// 71 80 90 100
// | | | |
// 1 2 34567890 1234567890123456 7 8901234
// ---------------------------------------
// 1 1 01110011 0000000001000110 0 1001010
// s w ffffffff cccccccccccccccc w ppppppp
// |--115-| |------71------|
// s = format start bit, o = odd parity of last 7 bits
// f = facility code, c = card number
// w = wiegand parity, x = extra space for other formats
// p = unknown checksum
// (26 bit format shown)
//find start bit to get fmtLen
int j;
for (j=0; j<size; j++){
if(BitStream[j]) break;
}
uint8_t fmtLen = size-j-8;
uint32_t fc = 0;
uint32_t cardnum = 0;
uint32_t code1 = 0;
//uint32_t code2 = 0;
if (fmtLen==26){
fc = bytebits_to_byte(BitStream+73, 8);
cardnum = bytebits_to_byte(BitStream+81, 16);
code1 = bytebits_to_byte(BitStream+72,fmtLen);
PrintAndLog("Pyramid ID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi3, rawHi2, rawHi, rawLo);
} else if (fmtLen==45){
fmtLen=42; //end = 10 bits not 7 like 26 bit fmt
fc = bytebits_to_byte(BitStream+53, 10);
cardnum = bytebits_to_byte(BitStream+63, 32);
PrintAndLog("Pyramid ID Found - BitLength: %d, FC: %d, Card: %d - Raw: %08x%08x%08x%08x", fmtLen, fc, cardnum, rawHi3, rawHi2, rawHi, rawLo);
} else {
cardnum = bytebits_to_byte(BitStream+81, 16);
if (fmtLen>32){
//code1 = bytebits_to_byte(BitStream+(size-fmtLen),fmtLen-32);
//code2 = bytebits_to_byte(BitStream+(size-32),32);
PrintAndLog("Pyramid ID Found - BitLength: %d -unknown BitLength- (%d), Raw: %08x%08x%08x%08x", fmtLen, cardnum, rawHi3, rawHi2, rawHi, rawLo);
} else{
//code1 = bytebits_to_byte(BitStream+(size-fmtLen),fmtLen);
PrintAndLog("Pyramid ID Found - BitLength: %d -unknown BitLength- (%d), Raw: %08x%08x%08x%08x", fmtLen, cardnum, rawHi3, rawHi2, rawHi, rawLo);
}
}
if (checksum == checkCS)
PrintAndLog("Checksum %02x passed", checksum);
else
PrintAndLog("Checksum %02x failed - should have been %02x", checksum, checkCS);
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, 128);
printDemodBuff();
}
return 1;
}
// FDX-B ISO11784/85 demod (aka animal tag) BIPHASE, inverted, rf/32, with preamble of 00000000001 (128bits)
// 8 databits + 1 parity (1)
// CIITT 16 chksum
// NATIONAL CODE, ICAR database
// COUNTRY CODE (ISO3166) or http://cms.abvma.ca/uploads/ManufacturersISOsandCountryCodes.pdf
// FLAG (animal/non-animal)
int CmdFDXBdemodBI(const char *Cmd){
int invert = 1;
int clk = 32;
int errCnt = 0;
int maxErr = 0;
uint8_t BitStream[MAX_DEMOD_BUF_LEN];
size_t size = getFromGraphBuf(BitStream);
errCnt = askdemod(BitStream, &size, &clk, &invert, maxErr, 0, 0);
if ( errCnt < 0 || errCnt > maxErr ) {
if (g_debugMode) PrintAndLog("DEBUG: no data or error found %d, clock: %d", errCnt, clk);
return 0;
}
errCnt = BiphaseRawDecode(BitStream, &size, maxErr, 1);
if (errCnt < 0 || errCnt > maxErr ) {
if (g_debugMode) PrintAndLog("Error BiphaseRawDecode: %d", errCnt);
return 0;
}
int preambleIndex = FDXBdemodBI(BitStream, &size);
if (preambleIndex < 0){
if (g_debugMode) PrintAndLog("Error FDXBDemod , no startmarker found :: %d",preambleIndex);
return 0;
}
setDemodBuf(BitStream, 128, preambleIndex);
// remove but don't verify parity. (pType = 2)
size = removeParity(BitStream, preambleIndex + 11, 9, 2, 117);
if ( size <= 103 ) {
if (g_debugMode) PrintAndLog("Error removeParity:: %d", size);
return 0;
}
if (g_debugMode) {
char *bin = sprint_bin_break(BitStream,size,16);
PrintAndLog("DEBUG BinStream:\n%s",bin);
}
PrintAndLog("\nFDX-B / ISO 11784/5 Animal Tag ID Found:");
if (g_debugMode) PrintAndLog("Start marker %d; Size %d", preambleIndex, size);
//got a good demod
uint64_t NationalCode = ((uint64_t)(bytebits_to_byteLSBF(BitStream+32,6)) << 32) | bytebits_to_byteLSBF(BitStream,32);
uint32_t countryCode = bytebits_to_byteLSBF(BitStream+38,10);
uint8_t dataBlockBit = BitStream[48];
uint32_t reservedCode = bytebits_to_byteLSBF(BitStream+49,14);
uint8_t animalBit = BitStream[63];
uint32_t crc16 = bytebits_to_byteLSBF(BitStream+64,16);
uint32_t extended = bytebits_to_byteLSBF(BitStream+80,24);
uint64_t rawid = ((uint64_t)bytebits_to_byte(BitStream,32)<<32) | bytebits_to_byte(BitStream+32,32);
uint8_t raw[8];
num_to_bytes(rawid, 8, raw);
if (g_debugMode) PrintAndLog("Raw ID Hex: %s", sprint_hex(raw,8));
uint16_t calcCrc = crc16_ccitt_kermit(raw, 8);
PrintAndLog("Animal ID: %04u-%012llu", countryCode, NationalCode);
PrintAndLog("National Code: %012llu", NationalCode);
PrintAndLog("CountryCode: %04u", countryCode);
PrintAndLog("Extended Data: %s", dataBlockBit ? "True" : "False");
PrintAndLog("reserved Code: %u", reservedCode);
PrintAndLog("Animal Tag: %s", animalBit ? "True" : "False");
PrintAndLog("CRC: 0x%04X - [%04X] - %s", crc16, calcCrc, (calcCrc == crc16) ? "Passed" : "Failed");
PrintAndLog("Extended: 0x%X\n", extended);
return 1;
}
//by marshmellow
//attempt to psk1 demod graph buffer
int PSKDemod(const char *Cmd, bool verbose)
{
int invert=0;
int clk=0;
int maxErr=100;
sscanf(Cmd, "%i %i %i", &clk, &invert, &maxErr);
if (clk==1){
invert=1;
clk=0;
}
if (invert != 0 && invert != 1) {
if (g_debugMode || verbose) PrintAndLog("Invalid argument: %s", Cmd);
return 0;
}
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t BitLen = getFromGraphBuf(BitStream);
if (BitLen==0) return 0;
uint8_t carrier=countFC(BitStream, BitLen, 0);
if (carrier!=2 && carrier!=4 && carrier!=8){
//invalid carrier
return 0;
}
int errCnt=0;
errCnt = pskRawDemod(BitStream, &BitLen, &clk, &invert);
if (errCnt > maxErr){
if (g_debugMode || verbose) PrintAndLog("Too many errors found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
return 0;
}
if (errCnt<0|| BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first)
if (g_debugMode || verbose) PrintAndLog("no data found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
return 0;
}
if (verbose || g_debugMode){
PrintAndLog("\nUsing Clock:%d, invert:%d, Bits Found:%d",clk,invert,BitLen);
if (errCnt>0){
PrintAndLog("# Errors during Demoding (shown as 7 in bit stream): %d",errCnt);
}
}
//prime demod buffer for output
setDemodBuf(BitStream,BitLen,0);
return 1;
}
// Indala 26 bit decode
// by marshmellow
// optional arguments - same as CmdpskNRZrawDemod (clock & invert)
int CmdIndalaDecode(const char *Cmd)
{
int ans;
if (strlen(Cmd)>0){
ans = PSKDemod(Cmd, 0);
} else{ //default to RF/32
ans = PSKDemod("32", 0);
}
if (!ans){
if (g_debugMode==1)
PrintAndLog("Error1: %d",ans);
return 0;
}
uint8_t invert=0;
ans = indala26decode(DemodBuffer, &DemodBufferLen, &invert);
if (ans < 1) {
if (g_debugMode==1)
PrintAndLog("Error2: %d",ans);
return -1;
}
char showbits[251]={0x00};
if (invert)
if (g_debugMode==1)
PrintAndLog("Had to invert bits");
//convert UID to HEX
uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7;
int idx;
uid1=0;
uid2=0;
PrintAndLog("BitLen: %d",DemodBufferLen);
if (DemodBufferLen==64){
for( idx=0; idx<64; idx++) {
uid1=(uid1<<1)|(uid2>>31);
if (DemodBuffer[idx] == 0) {
uid2=(uid2<<1)|0;
showbits[idx]='0';
} else {
uid2=(uid2<<1)|1;
showbits[idx]='1';
}
}
showbits[idx]='\0';
PrintAndLog("Indala UID=%s (%x%08x)", showbits, uid1, uid2);
}
else {
uid3=0;
uid4=0;
uid5=0;
uid6=0;
uid7=0;
for( idx=0; idx<DemodBufferLen; idx++) {
uid1=(uid1<<1)|(uid2>>31);
uid2=(uid2<<1)|(uid3>>31);
uid3=(uid3<<1)|(uid4>>31);
uid4=(uid4<<1)|(uid5>>31);
uid5=(uid5<<1)|(uid6>>31);
uid6=(uid6<<1)|(uid7>>31);
if (DemodBuffer[idx] == 0) {
uid7=(uid7<<1)|0;
showbits[idx]='0';
}
else {
uid7=(uid7<<1)|1;
showbits[idx]='1';
}
}
showbits[idx]='\0';
PrintAndLog("Indala UID=%s (%x%08x%08x%08x%08x%08x%08x)", showbits, uid1, uid2, uid3, uid4, uid5, uid6, uid7);
}
if (g_debugMode){
PrintAndLog("DEBUG: printing demodbuffer:");
printDemodBuff();
}
return 1;
}
int CmdPSKNexWatch(const char *Cmd)
{
if (!PSKDemod("", false)) return 0;
uint8_t preamble[28] = {0,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
size_t startIdx = 0, size = DemodBufferLen;
bool invert = false;
if (!preambleSearch(DemodBuffer, preamble, sizeof(preamble), &size, &startIdx)){
// if didn't find preamble try again inverting
if (!PSKDemod("1", false)) return 0;
size = DemodBufferLen;
if (!preambleSearch(DemodBuffer, preamble, sizeof(preamble), &size, &startIdx)) return 0;
invert = true;
}
if (size != 128) return 0;
setDemodBuf(DemodBuffer, size, startIdx+4);
startIdx = 8+32; //4 = extra i added, 8 = preamble, 32 = reserved bits (always 0)
//get ID
uint32_t ID = 0;
for (uint8_t wordIdx=0; wordIdx<4; wordIdx++){
for (uint8_t idx=0; idx<8; idx++){
ID = (ID << 1) | DemodBuffer[startIdx+wordIdx+(idx*4)];
}
}
//parity check (TBD)
//checksum check (TBD)
//output
PrintAndLog("NexWatch ID: %d", ID);
if (invert){
PrintAndLog("Had to Invert - probably NexKey");
for (uint8_t idx=0; idx<size; idx++)
DemodBuffer[idx] ^= 1;
}
CmdPrintDemodBuff("x");
return 1;
}
// by marshmellow
// takes 3 arguments - clock, invert, maxErr as integers
// attempts to demodulate nrz only
// prints binary found and saves in demodbuffer for further commands
int NRZrawDemod(const char *Cmd, bool verbose)
{
int invert=0;
int clk=0;
int maxErr=100;
sscanf(Cmd, "%i %i %i", &clk, &invert, &maxErr);
if (clk==1){
invert=1;
clk=0;
}
if (invert != 0 && invert != 1) {
PrintAndLog("Invalid argument: %s", Cmd);
return 0;
}
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t BitLen = getFromGraphBuf(BitStream);
if (BitLen==0) return 0;
int errCnt=0;
errCnt = nrzRawDemod(BitStream, &BitLen, &clk, &invert, maxErr);
if (errCnt > maxErr){
if (g_debugMode) PrintAndLog("Too many errors found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
return 0;
}
if (errCnt<0 || BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first)
if (g_debugMode) PrintAndLog("no data found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
return 0;
}
if (verbose || g_debugMode) PrintAndLog("Tried NRZ Demod using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen);
//prime demod buffer for output
setDemodBuf(BitStream,BitLen,0);
if (errCnt>0 && (verbose || g_debugMode)) PrintAndLog("# Errors during Demoding (shown as 7 in bit stream): %d",errCnt);
if (verbose || g_debugMode) {
PrintAndLog("NRZ demoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printDemodBuff();
}
return 1;
}
int CmdNRZrawDemod(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod nr [clock] <0|1> [maxError]");
PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
PrintAndLog(" <invert>, 1 for invert output");
PrintAndLog(" [set maximum allowed errors], default = 100.");
PrintAndLog("");
PrintAndLog(" sample: data rawdemod nr = demod a nrz/direct tag from GraphBuffer");
PrintAndLog(" : data rawdemod nr 32 = demod a nrz/direct tag from GraphBuffer using a clock of RF/32");
PrintAndLog(" : data rawdemod nr 32 1 = demod a nrz/direct tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : data rawdemod nr 1 = demod a nrz/direct tag from GraphBuffer while inverting data");
PrintAndLog(" : data rawdemod nr 64 1 0 = demod a nrz/direct tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
return 0;
}
return NRZrawDemod(Cmd, TRUE);
}
// by marshmellow
// takes 3 arguments - clock, invert, maxErr as integers
// attempts to demodulate psk only
// prints binary found and saves in demodbuffer for further commands
int CmdPSK1rawDemod(const char *Cmd)
{
int ans;
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod p1 [clock] <0|1> [maxError]");
PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
PrintAndLog(" <invert>, 1 for invert output");
PrintAndLog(" [set maximum allowed errors], default = 100.");
PrintAndLog("");
PrintAndLog(" sample: data rawdemod p1 = demod a psk1 tag from GraphBuffer");
PrintAndLog(" : data rawdemod p1 32 = demod a psk1 tag from GraphBuffer using a clock of RF/32");
PrintAndLog(" : data rawdemod p1 32 1 = demod a psk1 tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : data rawdemod p1 1 = demod a psk1 tag from GraphBuffer while inverting data");
PrintAndLog(" : data rawdemod p1 64 1 0 = demod a psk1 tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
return 0;
}
ans = PSKDemod(Cmd, TRUE);
//output
if (!ans){
if (g_debugMode) PrintAndLog("Error demoding: %d",ans);
return 0;
}
PrintAndLog("PSK1 demoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printDemodBuff();
return 1;
}
// by marshmellow
// takes same args as cmdpsk1rawdemod
int CmdPSK2rawDemod(const char *Cmd)
{
int ans=0;
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: data rawdemod p2 [clock] <0|1> [maxError]");
PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
PrintAndLog(" <invert>, 1 for invert output");
PrintAndLog(" [set maximum allowed errors], default = 100.");
PrintAndLog("");
PrintAndLog(" sample: data rawdemod p2 = demod a psk2 tag from GraphBuffer, autodetect clock");
PrintAndLog(" : data rawdemod p2 32 = demod a psk2 tag from GraphBuffer using a clock of RF/32");
PrintAndLog(" : data rawdemod p2 32 1 = demod a psk2 tag from GraphBuffer using a clock of RF/32 and inverting output");
PrintAndLog(" : data rawdemod p2 1 = demod a psk2 tag from GraphBuffer, autodetect clock and invert output");
PrintAndLog(" : data rawdemod p2 64 1 0 = demod a psk2 tag from GraphBuffer using a clock of RF/64, inverting output and allowing 0 demod errors");
return 0;
}
ans=PSKDemod(Cmd, TRUE);
if (!ans){
if (g_debugMode) PrintAndLog("Error demoding: %d",ans);
return 0;
}
psk1TOpsk2(DemodBuffer, DemodBufferLen);
PrintAndLog("PSK2 demoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printDemodBuff();
return 1;
}
// by marshmellow - combines all raw demod functions into one menu command
int CmdRawDemod(const char *Cmd)
{
char cmdp = Cmd[0]; //param_getchar(Cmd, 0);
if (strlen(Cmd) > 20 || cmdp == 'h' || cmdp == 'H' || strlen(Cmd)<2) {
PrintAndLog("Usage: data rawdemod [modulation] <help>|<options>");
PrintAndLog(" [modulation] as 2 char, 'ab' for ask/biphase, 'am' for ask/manchester, 'ar' for ask/raw, 'fs' for fsk, ...");
PrintAndLog(" 'nr' for nrz/direct, 'p1' for psk1, 'p2' for psk2");
PrintAndLog(" <help> as 'h', prints the help for the specific modulation");
PrintAndLog(" <options> see specific modulation help for optional parameters");
PrintAndLog("");
PrintAndLog(" sample: data rawdemod fs h = print help specific to fsk demod");
PrintAndLog(" : data rawdemod fs = demod GraphBuffer using: fsk - autodetect");
PrintAndLog(" : data rawdemod ab = demod GraphBuffer using: ask/biphase - autodetect");
PrintAndLog(" : data rawdemod am = demod GraphBuffer using: ask/manchester - autodetect");
PrintAndLog(" : data rawdemod ar = demod GraphBuffer using: ask/raw - autodetect");
PrintAndLog(" : data rawdemod nr = demod GraphBuffer using: nrz/direct - autodetect");
PrintAndLog(" : data rawdemod p1 = demod GraphBuffer using: psk1 - autodetect");
PrintAndLog(" : data rawdemod p2 = demod GraphBuffer using: psk2 - autodetect");
return 0;
}
char cmdp2 = Cmd[1];
int ans = 0;
if (cmdp == 'f' && cmdp2 == 's'){
ans = CmdFSKrawdemod(Cmd+2);
} else if(cmdp == 'a' && cmdp2 == 'b'){
ans = Cmdaskbiphdemod(Cmd+2);
} else if(cmdp == 'a' && cmdp2 == 'm'){
ans = Cmdaskmandemod(Cmd+2);
} else if(cmdp == 'a' && cmdp2 == 'r'){
ans = Cmdaskrawdemod(Cmd+2);
} else if(cmdp == 'n' && cmdp2 == 'r'){
ans = CmdNRZrawDemod(Cmd+2);
} else if(cmdp == 'p' && cmdp2 == '1'){
ans = CmdPSK1rawDemod(Cmd+2);
} else if(cmdp == 'p' && cmdp2 == '2'){
ans = CmdPSK2rawDemod(Cmd+2);
} else {
PrintAndLog("unknown modulation entered - see help ('h') for parameter structure");
}
return ans;
}
int CmdGrid(const char *Cmd)
{
sscanf(Cmd, "%i %i", &PlotGridX, &PlotGridY);
PlotGridXdefault= PlotGridX;
PlotGridYdefault= PlotGridY;
RepaintGraphWindow();
return 0;
}
int CmdHexsamples(const char *Cmd)
{
int i, j;
int requested = 0;
int offset = 0;
char string_buf[25];
char* string_ptr = string_buf;
uint8_t got[BIGBUF_SIZE];
sscanf(Cmd, "%i %i", &requested, &offset);
/* if no args send something */
if (requested == 0) {
requested = 8;
}
if (offset + requested > sizeof(got)) {
PrintAndLog("Tried to read past end of buffer, <bytes> + <offset> > %d", BIGBUF_SIZE);
return 0;
}
GetFromBigBuf(got,requested,offset);
WaitForResponse(CMD_ACK,NULL);
i = 0;
for (j = 0; j < requested; j++) {
i++;
string_ptr += sprintf(string_ptr, "%02x ", got[j]);
if (i == 8) {
*(string_ptr - 1) = '\0'; // remove the trailing space
PrintAndLog("%s", string_buf);
string_buf[0] = '\0';
string_ptr = string_buf;
i = 0;
}
if (j == requested - 1 && string_buf[0] != '\0') { // print any remaining bytes
*(string_ptr - 1) = '\0';
PrintAndLog("%s", string_buf);
string_buf[0] = '\0';
}
}
return 0;
}
int CmdHide(const char *Cmd)
{
HideGraphWindow();
return 0;
}
//zero mean GraphBuffer
int CmdHpf(const char *Cmd)
{
int i;
int accum = 0;
for (i = 10; i < GraphTraceLen; ++i)
accum += GraphBuffer[i];
accum /= (GraphTraceLen - 10);
for (i = 0; i < GraphTraceLen; ++i)
GraphBuffer[i] -= accum;
RepaintGraphWindow();
return 0;
}
typedef struct {
uint8_t * buffer;
uint32_t numbits;
uint32_t position;
}BitstreamOut;
bool _headBit( BitstreamOut *stream)
{
int bytepos = stream->position >> 3; // divide by 8
int bitpos = (stream->position++) & 7; // mask out 00000111
return (*(stream->buffer + bytepos) >> (7-bitpos)) & 1;
}
uint8_t getByte(uint8_t bits_per_sample, BitstreamOut* b)
{
int i;
uint8_t val = 0;
for(i =0 ; i < bits_per_sample; i++)
{
val |= (_headBit(b) << (7-i));
}
return val;
}
int getSamples(const char *Cmd, bool silent)
{
//If we get all but the last byte in bigbuf,
// we don't have to worry about remaining trash
// in the last byte in case the bits-per-sample
// does not line up on byte boundaries
uint8_t got[BIGBUF_SIZE-1] = { 0 };
int n = strtol(Cmd, NULL, 0);
if (n == 0)
n = sizeof(got);
if (n > sizeof(got))
n = sizeof(got);
PrintAndLog("Reading %d bytes from device memory\n", n);
GetFromBigBuf(got,n,0);
PrintAndLog("Data fetched");
UsbCommand response;
WaitForResponse(CMD_ACK, &response);
uint8_t bits_per_sample = 8;
//Old devices without this feature would send 0 at arg[0]
if(response.arg[0] > 0)
{
sample_config *sc = (sample_config *) response.d.asBytes;
PrintAndLog("Samples @ %d bits/smpl, decimation 1:%d ", sc->bits_per_sample
, sc->decimation);
bits_per_sample = sc->bits_per_sample;
}
if(bits_per_sample < 8)
{
PrintAndLog("Unpacking...");
BitstreamOut bout = { got, bits_per_sample * n, 0};
int j =0;
for (j = 0; j * bits_per_sample < n * 8 && j < n; j++) {
uint8_t sample = getByte(bits_per_sample, &bout);
GraphBuffer[j] = ((int) sample )- 128;
}
GraphTraceLen = j;
PrintAndLog("Unpacked %d samples" , j );
}else
{
for (int j = 0; j < n; j++) {
GraphBuffer[j] = ((int)got[j]) - 128;
}
GraphTraceLen = n;
}
RepaintGraphWindow();
return 0;
}
int CmdSamples(const char *Cmd)
{
return getSamples(Cmd, false);
}
int CmdTuneSamples(const char *Cmd)
{
int timeout = 0;
printf("\nMeasuring antenna characteristics, please wait...");
UsbCommand c = {CMD_MEASURE_ANTENNA_TUNING};
SendCommand(&c);
UsbCommand resp;
while(!WaitForResponseTimeout(CMD_MEASURED_ANTENNA_TUNING,&resp,1000)) {
timeout++;
printf(".");
if (timeout > 7) {
PrintAndLog("\nNo response from Proxmark. Aborting...");
return 1;
}
}
int peakv, peakf;
int vLf125, vLf134, vHf;
vLf125 = resp.arg[0] & 0xffff;
vLf134 = resp.arg[0] >> 16;
vHf = resp.arg[1] & 0xffff;;
peakf = resp.arg[2] & 0xffff;
peakv = resp.arg[2] >> 16;
PrintAndLog("");
PrintAndLog("# LF antenna: %5.2f V @ 125.00 kHz", vLf125/1000.0);
PrintAndLog("# LF antenna: %5.2f V @ 134.00 kHz", vLf134/1000.0);
PrintAndLog("# LF optimal: %5.2f V @%9.2f kHz", peakv/1000.0, 12000.0/(peakf+1));
PrintAndLog("# HF antenna: %5.2f V @ 13.56 MHz", vHf/1000.0);
#define LF_UNUSABLE_V 2948 // was 2000. Changed due to bugfix in voltage measurements. LF results are now 47% higher.
#define LF_MARGINAL_V 14739 // was 10000. Changed due to bugfix bug in voltage measurements. LF results are now 47% higher.
#define HF_UNUSABLE_V 3167 // was 2000. Changed due to bugfix in voltage measurements. HF results are now 58% higher.
#define HF_MARGINAL_V 7917 // was 5000. Changed due to bugfix in voltage measurements. HF results are now 58% higher.
if (peakv < LF_UNUSABLE_V)
PrintAndLog("# Your LF antenna is unusable.");
else if (peakv < LF_MARGINAL_V)
PrintAndLog("# Your LF antenna is marginal.");
if (vHf < HF_UNUSABLE_V)
PrintAndLog("# Your HF antenna is unusable.");
else if (vHf < HF_MARGINAL_V)
PrintAndLog("# Your HF antenna is marginal.");
if (peakv >= LF_UNUSABLE_V) {
for (int i = 0; i < 256; i++) {
GraphBuffer[i] = resp.d.asBytes[i] - 128;
}
PrintAndLog("Displaying LF tuning graph. Divisor 89 is 134khz, 95 is 125khz.\n");
PrintAndLog("\n");
GraphTraceLen = 256;
ShowGraphWindow();
RepaintGraphWindow();
}
return 0;
}
int CmdLoad(const char *Cmd)
{
char filename[FILE_PATH_SIZE] = {0x00};
int len = 0;
len = strlen(Cmd);
if (len > FILE_PATH_SIZE) len = FILE_PATH_SIZE;
memcpy(filename, Cmd, len);
FILE *f = fopen(filename, "r");
if (!f) {
PrintAndLog("couldn't open '%s'", filename);
return 0;
}
GraphTraceLen = 0;
char line[80];
while (fgets(line, sizeof (line), f)) {
GraphBuffer[GraphTraceLen] = atoi(line);
GraphTraceLen++;
}
fclose(f);
PrintAndLog("loaded %d samples", GraphTraceLen);
RepaintGraphWindow();
return 0;
}
int CmdLtrim(const char *Cmd)
{
int ds = atoi(Cmd);
if (GraphTraceLen<=0) return 0;
for (int i = ds; i < GraphTraceLen; ++i)
GraphBuffer[i-ds] = GraphBuffer[i];
GraphTraceLen -= ds;
RepaintGraphWindow();
return 0;
}
// trim graph to input argument length
int CmdRtrim(const char *Cmd)
{
int ds = atoi(Cmd);
GraphTraceLen = ds;
RepaintGraphWindow();
return 0;
}
int CmdNorm(const char *Cmd)
{
int i;
int max = INT_MIN, min = INT_MAX;
for (i = 10; i < GraphTraceLen; ++i) {
if (GraphBuffer[i] > max)
max = GraphBuffer[i];
if (GraphBuffer[i] < min)
min = GraphBuffer[i];
}
if (max != min) {
for (i = 0; i < GraphTraceLen; ++i) {
GraphBuffer[i] = (GraphBuffer[i] - ((max + min) / 2)) * 256 /
(max - min);
//marshmelow: adjusted *1000 to *256 to make +/- 128 so demod commands still work
}
}
RepaintGraphWindow();
return 0;
}
int CmdPlot(const char *Cmd)
{
ShowGraphWindow();
return 0;
}
int CmdSave(const char *Cmd)
{
char filename[FILE_PATH_SIZE] = {0x00};
int len = 0;
len = strlen(Cmd);
if (len > FILE_PATH_SIZE) len = FILE_PATH_SIZE;
memcpy(filename, Cmd, len);
FILE *f = fopen(filename, "w");
if(!f) {
PrintAndLog("couldn't open '%s'", filename);
return 0;
}
int i;
for (i = 0; i < GraphTraceLen; i++) {
fprintf(f, "%d\n", GraphBuffer[i]);
}
fclose(f);
PrintAndLog("saved to '%s'", Cmd);
return 0;
}
int CmdScale(const char *Cmd)
{
CursorScaleFactor = atoi(Cmd);
if (CursorScaleFactor == 0) {
PrintAndLog("bad, can't have zero scale");
CursorScaleFactor = 1;
}
RepaintGraphWindow();
return 0;
}
int CmdDirectionalThreshold(const char *Cmd)
{
int8_t upThres = param_get8(Cmd, 0);
int8_t downThres = param_get8(Cmd, 1);
printf("Applying Up Threshold: %d, Down Threshold: %d\n", upThres, downThres);
int lastValue = GraphBuffer[0];
GraphBuffer[0] = 0; // Will be changed at the end, but init 0 as we adjust to last samples value if no threshold kicks in.
for (int i = 1; i < GraphTraceLen; ++i) {
// Apply first threshold to samples heading up
if (GraphBuffer[i] >= upThres && GraphBuffer[i] > lastValue)
{
lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
GraphBuffer[i] = 1;
}
// Apply second threshold to samples heading down
else if (GraphBuffer[i] <= downThres && GraphBuffer[i] < lastValue)
{
lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
GraphBuffer[i] = -1;
}
else
{
lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
GraphBuffer[i] = GraphBuffer[i-1];
}
}
GraphBuffer[0] = GraphBuffer[1]; // Aline with first edited sample.
RepaintGraphWindow();
return 0;
}
int CmdZerocrossings(const char *Cmd)
{
// Zero-crossings aren't meaningful unless the signal is zero-mean.
CmdHpf("");
int sign = 1;
int zc = 0;
int lastZc = 0;
for (int i = 0; i < GraphTraceLen; ++i) {
if (GraphBuffer[i] * sign >= 0) {
// No change in sign, reproduce the previous sample count.
zc++;
GraphBuffer[i] = lastZc;
} else {
// Change in sign, reset the sample count.
sign = -sign;
GraphBuffer[i] = lastZc;
if (sign > 0) {
lastZc = zc;
zc = 0;
}
}
}
RepaintGraphWindow();
return 0;
}
static command_t CommandTable[] =
{
{"help", CmdHelp, 1, "This help"},
{"askedgedetect", CmdAskEdgeDetect, 1, "[threshold] Adjust Graph for manual ask demod using the length of sample differences to detect the edge of a wave (use 20-45, def:25)"},
{"askem410xdemod", CmdAskEM410xDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Demodulate an EM410x tag from GraphBuffer (args optional)"},
{"askgproxiidemod", CmdG_Prox_II_Demod, 1, "Demodulate a G Prox II tag from GraphBuffer"},
{"autocorr", CmdAutoCorr, 1, "[window length] [g] -- Autocorrelation over window - g to save back to GraphBuffer (overwrite)"},
{"biphaserawdecode",CmdBiphaseDecodeRaw,1, "[offset] [invert<0|1>] [maxErr] -- Biphase decode bin stream in DemodBuffer (offset = 0|1 bits to shift the decode start)"},
{"bitsamples", CmdBitsamples, 0, "Get raw samples as bitstring"},
{"buffclear", CmdBuffClear, 1, "Clear sample buffer and graph window"},
{"dec", CmdDec, 1, "Decimate samples"},
{"detectclock", CmdDetectClockRate, 1, "[modulation] Detect clock rate of wave in GraphBuffer (options: 'a','f','n','p' for ask, fsk, nrz, psk respectively)"},
{"fdxbdemod", CmdFDXBdemodBI , 1, "Demodulate a FDX-B ISO11784/85 Biphase tag from GraphBuffer"},
{"fskawiddemod", CmdFSKdemodAWID, 1, "Demodulate an AWID FSK tag from GraphBuffer"},
//{"fskfcdetect", CmdFSKfcDetect, 1, "Try to detect the Field Clock of an FSK wave"},
{"fskhiddemod", CmdFSKdemodHID, 1, "Demodulate a HID FSK tag from GraphBuffer"},
{"fskiodemod", CmdFSKdemodIO, 1, "Demodulate an IO Prox FSK tag from GraphBuffer"},
{"fskpyramiddemod", CmdFSKdemodPyramid, 1, "Demodulate a Pyramid FSK tag from GraphBuffer"},
{"fskparadoxdemod", CmdFSKdemodParadox, 1, "Demodulate a Paradox FSK tag from GraphBuffer"},
{"getbitstream", CmdGetBitStream, 1, "Convert GraphBuffer's >=1 values to 1 and <1 to 0"},
{"grid", CmdGrid, 1, "<x> <y> -- overlay grid on graph window, use zero value to turn off either"},
{"hexsamples", CmdHexsamples, 0, "<bytes> [<offset>] -- Dump big buffer as hex bytes"},
{"hide", CmdHide, 1, "Hide graph window"},
{"hpf", CmdHpf, 1, "Remove DC offset from trace"},
{"load", CmdLoad, 1, "<filename> -- Load trace (to graph window"},
{"ltrim", CmdLtrim, 1, "<samples> -- Trim samples from left of trace"},
{"rtrim", CmdRtrim, 1, "<location to end trace> -- Trim samples from right of trace"},
{"manrawdecode", Cmdmandecoderaw, 1, "[invert] [maxErr] -- Manchester decode binary stream in DemodBuffer"},
{"norm", CmdNorm, 1, "Normalize max/min to +/-128"},
{"plot", CmdPlot, 1, "Show graph window (hit 'h' in window for keystroke help)"},
{"printdemodbuffer",CmdPrintDemodBuff, 1, "[x] [o] <offset> -- print the data in the DemodBuffer - 'x' for hex output"},
{"pskindalademod", CmdIndalaDecode, 1, "[clock] [invert<0|1>] -- Demodulate an indala tag (PSK1) from GraphBuffer (args optional)"},
{"psknexwatchdemod",CmdPSKNexWatch, 1, "Demodulate a NexWatch tag (nexkey, quadrakey) (PSK1) from GraphBuffer"},
{"rawdemod", CmdRawDemod, 1, "[modulation] ... <options> -see help (h option) -- Demodulate the data in the GraphBuffer and output binary"},
{"samples", CmdSamples, 0, "[512 - 40000] -- Get raw samples for graph window (GraphBuffer)"},
{"save", CmdSave, 1, "<filename> -- Save trace (from graph window)"},
{"scale", CmdScale, 1, "<int> -- Set cursor display scale"},
{"setdebugmode", CmdSetDebugMode, 1, "<0|1> -- Turn on or off Debugging Mode for demods"},
{"shiftgraphzero", CmdGraphShiftZero, 1, "<shift> -- Shift 0 for Graphed wave + or - shift value"},
{"dirthreshold", CmdDirectionalThreshold, 1, "<thres up> <thres down> -- Max rising higher up-thres/ Min falling lower down-thres, keep rest as prev."},
{"tune", CmdTuneSamples, 0, "Get hw tune samples for graph window"},
{"undec", CmdUndec, 1, "Un-decimate samples by 2"},
{"zerocrossings", CmdZerocrossings, 1, "Count time between zero-crossings"},
{NULL, NULL, 0, NULL}
};
int CmdData(const char *Cmd)
{
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd)
{
CmdsHelp(CommandTable);
return 0;
}