proxmark3/client/cmdlf.c
marshmellow42 f3bf15e484 lf/data combined detectclock functions to one
cleaned up detect clock functions - now uses one main function that
takes a char argument to select which modulation to detect the clock for
REMOVED commands: pskdetectclock, nrzdetectclock, fskfcdetect.
renamed DetectClock function to DetectAskClock to be more descriptive.
2015-02-09 11:11:04 -05:00

791 lines
21 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency commands
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include "proxmark3.h"
#include "data.h"
#include "graph.h"
#include "ui.h"
#include "cmdparser.h"
#include "cmdmain.h"
#include "cmddata.h"
#include "util.h"
#include "cmdlf.h"
#include "cmdlfhid.h"
#include "cmdlfti.h"
#include "cmdlfem4x.h"
#include "cmdlfhitag.h"
#include "cmdlft55xx.h"
#include "cmdlfpcf7931.h"
#include "cmdlfio.h"
static int CmdHelp(const char *Cmd);
/* send a command before reading */
int CmdLFCommandRead(const char *Cmd)
{
static char dummy[3];
dummy[0]= ' ';
UsbCommand c = {CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K};
sscanf(Cmd, "%"lli" %"lli" %"lli" %s %s", &c.arg[0], &c.arg[1], &c.arg[2],(char*)(&c.d.asBytes),(char*)(&dummy+1));
// in case they specified 'h'
strcpy((char *)&c.d.asBytes + strlen((char *)c.d.asBytes), dummy);
SendCommand(&c);
return 0;
}
int CmdFlexdemod(const char *Cmd)
{
int i;
for (i = 0; i < GraphTraceLen; ++i) {
if (GraphBuffer[i] < 0) {
GraphBuffer[i] = -1;
} else {
GraphBuffer[i] = 1;
}
}
#define LONG_WAIT 100
int start;
for (start = 0; start < GraphTraceLen - LONG_WAIT; start++) {
int first = GraphBuffer[start];
for (i = start; i < start + LONG_WAIT; i++) {
if (GraphBuffer[i] != first) {
break;
}
}
if (i == (start + LONG_WAIT)) {
break;
}
}
if (start == GraphTraceLen - LONG_WAIT) {
PrintAndLog("nothing to wait for");
return 0;
}
GraphBuffer[start] = 2;
GraphBuffer[start+1] = -2;
uint8_t bits[64] = {0x00};
int bit, sum;
i = start;
for (bit = 0; bit < 64; bit++) {
sum = 0;
for (int j = 0; j < 16; j++) {
sum += GraphBuffer[i++];
}
bits[bit] = (sum > 0) ? 1 : 0;
PrintAndLog("bit %d sum %d", bit, sum);
}
for (bit = 0; bit < 64; bit++) {
int j;
int sum = 0;
for (j = 0; j < 16; j++) {
sum += GraphBuffer[i++];
}
if (sum > 0 && bits[bit] != 1) {
PrintAndLog("oops1 at %d", bit);
}
if (sum < 0 && bits[bit] != 0) {
PrintAndLog("oops2 at %d", bit);
}
}
// HACK writing back to graphbuffer.
GraphTraceLen = 32*64;
i = 0;
int phase = 0;
for (bit = 0; bit < 64; bit++) {
phase = (bits[bit] == 0) ? 0 : 1;
int j;
for (j = 0; j < 32; j++) {
GraphBuffer[i++] = phase;
phase = !phase;
}
}
RepaintGraphWindow();
return 0;
}
int CmdIndalaDemod(const char *Cmd)
{
// Usage: recover 64bit UID by default, specify "224" as arg to recover a 224bit UID
int state = -1;
int count = 0;
int i, j;
// worst case with GraphTraceLen=64000 is < 4096
// under normal conditions it's < 2048
uint8_t rawbits[4096];
int rawbit = 0;
int worst = 0, worstPos = 0;
// PrintAndLog("Expecting a bit less than %d raw bits", GraphTraceLen / 32);
for (i = 0; i < GraphTraceLen-1; i += 2) {
count += 1;
if ((GraphBuffer[i] > GraphBuffer[i + 1]) && (state != 1)) {
if (state == 0) {
for (j = 0; j < count - 8; j += 16) {
rawbits[rawbit++] = 0;
}
if ((abs(count - j)) > worst) {
worst = abs(count - j);
worstPos = i;
}
}
state = 1;
count = 0;
} else if ((GraphBuffer[i] < GraphBuffer[i + 1]) && (state != 0)) {
if (state == 1) {
for (j = 0; j < count - 8; j += 16) {
rawbits[rawbit++] = 1;
}
if ((abs(count - j)) > worst) {
worst = abs(count - j);
worstPos = i;
}
}
state = 0;
count = 0;
}
}
if (rawbit>0){
PrintAndLog("Recovered %d raw bits, expected: %d", rawbit, GraphTraceLen/32);
PrintAndLog("worst metric (0=best..7=worst): %d at pos %d", worst, worstPos);
} else {
return 0;
}
// Finding the start of a UID
int uidlen, long_wait;
if (strcmp(Cmd, "224") == 0) {
uidlen = 224;
long_wait = 30;
} else {
uidlen = 64;
long_wait = 29;
}
int start;
int first = 0;
for (start = 0; start <= rawbit - uidlen; start++) {
first = rawbits[start];
for (i = start; i < start + long_wait; i++) {
if (rawbits[i] != first) {
break;
}
}
if (i == (start + long_wait)) {
break;
}
}
if (start == rawbit - uidlen + 1) {
PrintAndLog("nothing to wait for");
return 0;
}
// Inverting signal if needed
if (first == 1) {
for (i = start; i < rawbit; i++) {
rawbits[i] = !rawbits[i];
}
}
// Dumping UID
uint8_t bits[224] = {0x00};
char showbits[225] = {0x00};
int bit;
i = start;
int times = 0;
if (uidlen > rawbit) {
PrintAndLog("Warning: not enough raw bits to get a full UID");
for (bit = 0; bit < rawbit; bit++) {
bits[bit] = rawbits[i++];
// As we cannot know the parity, let's use "." and "/"
showbits[bit] = '.' + bits[bit];
}
showbits[bit+1]='\0';
PrintAndLog("Partial UID=%s", showbits);
return 0;
} else {
for (bit = 0; bit < uidlen; bit++) {
bits[bit] = rawbits[i++];
showbits[bit] = '0' + bits[bit];
}
times = 1;
}
//convert UID to HEX
uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7;
int idx;
uid1 = uid2 = 0;
if (uidlen==64){
for( idx=0; idx<64; idx++) {
if (showbits[idx] == '0') {
uid1=(uid1<<1)|(uid2>>31);
uid2=(uid2<<1)|0;
} else {
uid1=(uid1<<1)|(uid2>>31);
uid2=(uid2<<1)|1;
}
}
PrintAndLog("UID=%s (%x%08x)", showbits, uid1, uid2);
}
else {
uid3 = uid4 = uid5 = uid6 = uid7 = 0;
for( idx=0; idx<224; idx++) {
uid1=(uid1<<1)|(uid2>>31);
uid2=(uid2<<1)|(uid3>>31);
uid3=(uid3<<1)|(uid4>>31);
uid4=(uid4<<1)|(uid5>>31);
uid5=(uid5<<1)|(uid6>>31);
uid6=(uid6<<1)|(uid7>>31);
if (showbits[idx] == '0')
uid7 = (uid7<<1) | 0;
else
uid7 = (uid7<<1) | 1;
}
PrintAndLog("UID=%s (%x%08x%08x%08x%08x%08x%08x)", showbits, uid1, uid2, uid3, uid4, uid5, uid6, uid7);
}
// Checking UID against next occurrences
int failed = 0;
for (; i + uidlen <= rawbit;) {
failed = 0;
for (bit = 0; bit < uidlen; bit++) {
if (bits[bit] != rawbits[i++]) {
failed = 1;
break;
}
}
if (failed == 1) {
break;
}
times += 1;
}
PrintAndLog("Occurrences: %d (expected %d)", times, (rawbit - start) / uidlen);
// Remodulating for tag cloning
// HACK: 2015-01-04 this will have an impact on our new way of seening lf commands (demod)
// since this changes graphbuffer data.
GraphTraceLen = 32*uidlen;
i = 0;
int phase = 0;
for (bit = 0; bit < uidlen; bit++) {
if (bits[bit] == 0) {
phase = 0;
} else {
phase = 1;
}
int j;
for (j = 0; j < 32; j++) {
GraphBuffer[i++] = phase;
phase = !phase;
}
}
RepaintGraphWindow();
return 1;
}
int CmdIndalaClone(const char *Cmd)
{
UsbCommand c;
unsigned int uid1, uid2, uid3, uid4, uid5, uid6, uid7;
uid1 = uid2 = uid3 = uid4 = uid5 = uid6 = uid7 = 0;
int n = 0, i = 0;
if (strchr(Cmd,'l') != 0) {
while (sscanf(&Cmd[i++], "%1x", &n ) == 1) {
uid1 = (uid1 << 4) | (uid2 >> 28);
uid2 = (uid2 << 4) | (uid3 >> 28);
uid3 = (uid3 << 4) | (uid4 >> 28);
uid4 = (uid4 << 4) | (uid5 >> 28);
uid5 = (uid5 << 4) | (uid6 >> 28);
uid6 = (uid6 << 4) | (uid7 >> 28);
uid7 = (uid7 << 4) | (n & 0xf);
}
PrintAndLog("Cloning 224bit tag with UID %x%08x%08x%08x%08x%08x%08x", uid1, uid2, uid3, uid4, uid5, uid6, uid7);
c.cmd = CMD_INDALA_CLONE_TAG_L;
c.d.asDwords[0] = uid1;
c.d.asDwords[1] = uid2;
c.d.asDwords[2] = uid3;
c.d.asDwords[3] = uid4;
c.d.asDwords[4] = uid5;
c.d.asDwords[5] = uid6;
c.d.asDwords[6] = uid7;
} else {
while (sscanf(&Cmd[i++], "%1x", &n ) == 1) {
uid1 = (uid1 << 4) | (uid2 >> 28);
uid2 = (uid2 << 4) | (n & 0xf);
}
PrintAndLog("Cloning 64bit tag with UID %x%08x", uid1, uid2);
c.cmd = CMD_INDALA_CLONE_TAG;
c.arg[0] = uid1;
c.arg[1] = uid2;
}
SendCommand(&c);
return 0;
}
int usage_lf_read()
{
PrintAndLog("Usage: lf read");
PrintAndLog("Options: ");
PrintAndLog(" h This help");
PrintAndLog("This function takes no arguments. ");
PrintAndLog("Use 'lf config' to set parameters.");
return 0;
}
int usage_lf_snoop()
{
PrintAndLog("Usage: lf snoop");
PrintAndLog("Options: ");
PrintAndLog(" h This help");
PrintAndLog("This function takes no arguments. ");
PrintAndLog("Use 'lf config' to set parameters.");
return 0;
}
int usage_lf_config()
{
PrintAndLog("Usage: lf config [H|<divisor>] [b <bps>] [d <decim>] [a 0|1]");
PrintAndLog("Options: ");
PrintAndLog(" h This help");
PrintAndLog(" L Low frequency (125 KHz)");
PrintAndLog(" H High frequency (134 KHz)");
PrintAndLog(" q <divisor> Manually set divisor. 88-> 134KHz, 95-> 125 Hz");
PrintAndLog(" b <bps> Sets resolution of bits per sample. Default (max): 8");
PrintAndLog(" d <decim> Sets decimation. A value of N saves only 1 in N samples. Default: 1");
PrintAndLog(" a [0|1] Averaging - if set, will average the stored sample value when decimating. Default: 1");
PrintAndLog(" t <threshold> Sets trigger threshold. 0 means no threshold");
PrintAndLog("Examples:");
PrintAndLog(" lf config b 8 L");
PrintAndLog(" Samples at 125KHz, 8bps.");
PrintAndLog(" lf config H b 4 d 3");
PrintAndLog(" Samples at 134KHz, averages three samples into one, stored with ");
PrintAndLog(" a resolution of 4 bits per sample.");
PrintAndLog(" lf read");
PrintAndLog(" Performs a read (active field)");
PrintAndLog(" lf snoop");
PrintAndLog(" Performs a snoop (no active field)");
return 0;
}
int CmdLFSetConfig(const char *Cmd)
{
uint8_t divisor = 0;//Frequency divisor
uint8_t bps = 0; // Bits per sample
uint8_t decimation = 0; //How many to keep
bool averaging = 1; // Defaults to true
bool errors = FALSE;
int trigger_threshold =-1;//Means no change
uint8_t unsigned_trigg = 0;
uint8_t cmdp =0;
while(param_getchar(Cmd, cmdp) != 0x00)
{
PrintAndLog("working %c", param_getchar(Cmd, cmdp));
switch(param_getchar(Cmd, cmdp))
{
case 'h':
return usage_lf_config();
case 'H':
divisor = 88;
cmdp++;
break;
case 'L':
divisor = 95;
cmdp++;
break;
case 'q':
errors |= param_getdec(Cmd,cmdp+1,&divisor);
cmdp+=2;
break;
case 't':
errors |= param_getdec(Cmd,cmdp+1,&unsigned_trigg);
cmdp+=2;
if(!errors) trigger_threshold = unsigned_trigg;
break;
case 'b':
errors |= param_getdec(Cmd,cmdp+1,&bps);
cmdp+=2;
break;
case 'd':
errors |= param_getdec(Cmd,cmdp+1,&decimation);
cmdp+=2;
break;
case 'a':
averaging = param_getchar(Cmd,cmdp+1) == '1';
cmdp+=2;
break;
default:
PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = 1;
break;
}
if(errors) break;
}
if(cmdp == 0)
{
errors = 1;// No args
}
//Validations
if(errors)
{
return usage_lf_config();
}
//Bps is limited to 8, so fits in lower half of arg1
if(bps >> 8) bps = 8;
sample_config config = {
decimation,bps,averaging,divisor,trigger_threshold
};
//Averaging is a flag on high-bit of arg[1]
UsbCommand c = {CMD_SET_LF_SAMPLING_CONFIG};
memcpy(c.d.asBytes,&config,sizeof(sample_config));
SendCommand(&c);
return 0;
}
int CmdLFRead(const char *Cmd)
{
uint8_t cmdp =0;
if(param_getchar(Cmd, cmdp) == 'h')
{
return usage_lf_read();
}
//And ship it to device
UsbCommand c = {CMD_ACQUIRE_RAW_ADC_SAMPLES_125K};
SendCommand(&c);
WaitForResponse(CMD_ACK,NULL);
return 0;
}
int CmdLFSnoop(const char *Cmd)
{
uint8_t cmdp =0;
if(param_getchar(Cmd, cmdp) == 'h')
{
return usage_lf_snoop();
}
UsbCommand c = {CMD_LF_SNOOP_RAW_ADC_SAMPLES};
SendCommand(&c);
WaitForResponse(CMD_ACK,NULL);
return 0;
}
static void ChkBitstream(const char *str)
{
int i;
/* convert to bitstream if necessary */
for (i = 0; i < (int)(GraphTraceLen / 2); i++){
if (GraphBuffer[i] > 1 || GraphBuffer[i] < 0) {
CmdBitstream(str);
break;
}
}
}
//appears to attempt to simulate manchester
int CmdLFSim(const char *Cmd)
{
int i,j;
static int gap;
sscanf(Cmd, "%i", &gap);
/* convert to bitstream if necessary */
ChkBitstream(Cmd);
printf("Sending [%d bytes]", GraphTraceLen);
for (i = 0; i < GraphTraceLen; i += USB_CMD_DATA_SIZE) {
UsbCommand c={CMD_DOWNLOADED_SIM_SAMPLES_125K, {i, 0, 0}};
for (j = 0; j < USB_CMD_DATA_SIZE; j++) {
c.d.asBytes[j] = GraphBuffer[i+j];
}
SendCommand(&c);
WaitForResponse(CMD_ACK,NULL);
printf(".");
}
printf("\n");
PrintAndLog("Starting to simulate");
UsbCommand c = {CMD_SIMULATE_TAG_125K, {GraphTraceLen, gap, 0}};
SendCommand(&c);
return 0;
}
int CmdLFSimBidir(const char *Cmd)
{
// Set ADC to twice the carrier for a slight supersampling
// HACK: not implemented in ARMSRC.
PrintAndLog("Not implemented yet.");
UsbCommand c = {CMD_LF_SIMULATE_BIDIR, {47, 384, 0}};
SendCommand(&c);
return 0;
}
/* simulate an LF Manchester encoded tag with specified bitstream, clock rate and inter-id gap */
int CmdLFSimManchester(const char *Cmd)
{
static int clock, gap;
static char data[1024], gapstring[8];
sscanf(Cmd, "%i %s %i", &clock, &data[0], &gap);
ClearGraph(0);
for (int i = 0; i < strlen(data) ; ++i)
AppendGraph(0, clock, data[i]- '0');
CmdManchesterMod("");
RepaintGraphWindow();
sprintf(&gapstring[0], "%i", gap);
CmdLFSim(gapstring);
return 0;
}
int CmdVchDemod(const char *Cmd)
{
// Is this the entire sync pattern, or does this also include some
// data bits that happen to be the same everywhere? That would be
// lovely to know.
static const int SyncPattern[] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
};
// So first, we correlate for the sync pattern, and mark that.
int bestCorrel = 0, bestPos = 0;
int i;
// It does us no good to find the sync pattern, with fewer than
// 2048 samples after it...
for (i = 0; i < (GraphTraceLen-2048); i++) {
int sum = 0;
int j;
for (j = 0; j < arraylen(SyncPattern); j++) {
sum += GraphBuffer[i+j]*SyncPattern[j];
}
if (sum > bestCorrel) {
bestCorrel = sum;
bestPos = i;
}
}
PrintAndLog("best sync at %d [metric %d]", bestPos, bestCorrel);
char bits[257];
bits[256] = '\0';
int worst = INT_MAX;
int worstPos = 0;
for (i = 0; i < 2048; i += 8) {
int sum = 0;
int j;
for (j = 0; j < 8; j++) {
sum += GraphBuffer[bestPos+i+j];
}
if (sum < 0) {
bits[i/8] = '.';
} else {
bits[i/8] = '1';
}
if(abs(sum) < worst) {
worst = abs(sum);
worstPos = i;
}
}
PrintAndLog("bits:");
PrintAndLog("%s", bits);
PrintAndLog("worst metric: %d at pos %d", worst, worstPos);
if (strcmp(Cmd, "clone")==0) {
GraphTraceLen = 0;
char *s;
for(s = bits; *s; s++) {
int j;
for(j = 0; j < 16; j++) {
GraphBuffer[GraphTraceLen++] = (*s == '1') ? 1 : 0;
}
}
RepaintGraphWindow();
}
return 0;
}
//by marshmellow
int CmdLFfind(const char *Cmd)
{
int ans=0;
char cmdp = param_getchar(Cmd, 0);
char testRaw = param_getchar(Cmd, 1);
if (strlen(Cmd) > 2 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: lf search <0|1> [u]");
PrintAndLog(" <use data from Graphbuffer> , if not set, try reading data from tag.");
PrintAndLog(" [Search for Unknown tags] , if not set, reads only known tags.");
PrintAndLog("");
PrintAndLog(" sample: lf search = try reading data from tag & search for known tags");
PrintAndLog(" : lf search 1 = use data from GraphBuffer & search for known tags");
PrintAndLog(" : lf search u = try reading data from tag & search for known and unknown tags");
PrintAndLog(" : lf search 1 u = use data from GraphBuffer & search for known and unknown tags");
return 0;
}
if (!offline && (cmdp != '1')){
ans=CmdLFRead("");
ans=CmdSamples("20000");
} else if (GraphTraceLen < 1000) {
PrintAndLog("Data in Graphbuffer was too small.");
return 0;
}
if (cmdp == 'u' || cmdp == 'U') testRaw = 'u';
PrintAndLog("NOTE: some demods output possible binary\n if it finds something that looks like a tag");
PrintAndLog("False Positives ARE possible\n");
PrintAndLog("\nChecking for known tags:\n");
ans=CmdFSKdemodIO("");
if (ans>0) {
PrintAndLog("\nValid IO Prox ID Found!");
return 1;
}
ans=CmdFSKdemodPyramid("");
if (ans>0) {
PrintAndLog("\nValid Pyramid ID Found!");
return 1;
}
ans=CmdFSKdemodParadox("");
if (ans>0) {
PrintAndLog("\nValid Paradox ID Found!");
return 1;
}
ans=CmdFSKdemodAWID("");
if (ans>0) {
PrintAndLog("\nValid AWID ID Found!");
return 1;
}
ans=CmdFSKdemodHID("");
if (ans>0) {
PrintAndLog("\nValid HID Prox ID Found!");
return 1;
}
//add psk and indala
ans=CmdIndalaDecode("");
if (ans>0) {
PrintAndLog("\nValid Indala ID Found!");
return 1;
}
ans=CmdAskEM410xDemod("");
if (ans>0) {
PrintAndLog("\nValid EM410x ID Found!");
return 1;
}
PrintAndLog("\nNo Known Tags Found!\n");
if (testRaw=='u' || testRaw=='U'){
//test unknown tag formats (raw mode)
PrintAndLog("\nChecking for Unknown tags:\n");
ans=CmdDetectClockRate("f");
if (ans != 0){ //fsk
ans=CmdFSKrawdemod("");
if (ans>0) {
PrintAndLog("\nUnknown FSK Modulated Tag Found!");
return 1;
}
}
ans=Cmdaskmandemod("");
if (ans>0) {
PrintAndLog("\nUnknown ASK Modulated and Manchester encoded Tag Found!");
return 1;
}
ans=CmdPSK1rawDemod("");
if (ans>0) {
PrintAndLog("Possible unknown PSK1 Modulated Tag Found above!\n\nCould also be PSK2 - try 'data psk2rawdemod'");
PrintAndLog("\nCould also be PSK3 - [currently not supported]");
PrintAndLog("\nCould also be NRZ - try 'data nrzrawdemod");
return 1;
}
PrintAndLog("\nNo Data Found!\n");
}
return 0;
}
static command_t CommandTable[] =
{
{"help", CmdHelp, 1, "This help"},
{"cmdread", CmdLFCommandRead, 0, "<off period> <'0' period> <'1' period> <command> ['h'] -- Modulate LF reader field to send command before read (all periods in microseconds) (option 'h' for 134)"},
{"em4x", CmdLFEM4X, 1, "{ EM4X RFIDs... }"},
{"config", CmdLFSetConfig, 0, "Set config for LF sampling, bit/sample, decimation, frequency"},
{"flexdemod", CmdFlexdemod, 1, "Demodulate samples for FlexPass"},
{"hid", CmdLFHID, 1, "{ HID RFIDs... }"},
{"io", CmdLFIO, 1, "{ ioProx tags... }"},
{"indalademod", CmdIndalaDemod, 1, "['224'] -- Demodulate samples for Indala 64 bit UID (option '224' for 224 bit)"},
{"indalaclone", CmdIndalaClone, 0, "<UID> ['l']-- Clone Indala to T55x7 (tag must be in antenna)(UID in HEX)(option 'l' for 224 UID"},
{"read", CmdLFRead, 0, "Read 125/134 kHz LF ID-only tag. Do 'lf read h' for help"},
{"search", CmdLFfind, 1, "[offline] ['u'] Read and Search for valid known tag (in offline mode it you can load first then search) - 'u' to search for unknown tags"},
{"sim", CmdLFSim, 0, "[GAP] -- Simulate LF tag from buffer with optional GAP (in microseconds)"},
{"simbidir", CmdLFSimBidir, 0, "Simulate LF tag (with bidirectional data transmission between reader and tag)"},
{"simman", CmdLFSimManchester, 0, "<Clock> <Bitstream> [GAP] Simulate arbitrary Manchester LF tag"},
{"snoop", CmdLFSnoop, 0, "['l'|'h'|<divisor>] [trigger threshold]-- Snoop LF (l:125khz, h:134khz)"},
{"ti", CmdLFTI, 1, "{ TI RFIDs... }"},
{"hitag", CmdLFHitag, 1, "{ Hitag tags and transponders... }"},
{"vchdemod", CmdVchDemod, 1, "['clone'] -- Demodulate samples for VeriChip"},
{"t55xx", CmdLFT55XX, 1, "{ T55xx RFIDs... }"},
{"pcf7931", CmdLFPCF7931, 1, "{PCF7931 RFIDs...}"},
{NULL, NULL, 0, NULL}
};
int CmdLF(const char *Cmd)
{
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd)
{
CmdsHelp(CommandTable);
return 0;
}