mirror of
https://github.com/Proxmark/proxmark3.git
synced 2024-11-11 09:59:45 +08:00
2418 lines
65 KiB
C
2418 lines
65 KiB
C
//-----------------------------------------------------------------------------
|
|
// Merlok - June 2011
|
|
// Gerhard de Koning Gans - May 2008
|
|
// Hagen Fritsch - June 2010
|
|
//
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// Routines to support ISO 14443 type A.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "proxmark3.h"
|
|
#include "apps.h"
|
|
#include "util.h"
|
|
#include "string.h"
|
|
|
|
#include "iso14443crc.h"
|
|
#include "iso14443a.h"
|
|
#include "crapto1.h"
|
|
#include "mifareutil.h"
|
|
|
|
static uint32_t iso14a_timeout;
|
|
uint8_t *trace = (uint8_t *) BigBuf;
|
|
int traceLen = 0;
|
|
int rsamples = 0;
|
|
int tracing = TRUE;
|
|
uint8_t trigger = 0;
|
|
|
|
// CARD TO READER - manchester
|
|
// Sequence D: 11110000 modulation with subcarrier during first half
|
|
// Sequence E: 00001111 modulation with subcarrier during second half
|
|
// Sequence F: 00000000 no modulation with subcarrier
|
|
// READER TO CARD - miller
|
|
// Sequence X: 00001100 drop after half a period
|
|
// Sequence Y: 00000000 no drop
|
|
// Sequence Z: 11000000 drop at start
|
|
#define SEC_D 0xf0
|
|
#define SEC_E 0x0f
|
|
#define SEC_F 0x00
|
|
#define SEC_X 0x0c
|
|
#define SEC_Y 0x00
|
|
#define SEC_Z 0xc0
|
|
|
|
const uint8_t OddByteParity[256] = {
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
|
|
};
|
|
|
|
|
|
void iso14a_set_trigger(int enable) {
|
|
trigger = enable;
|
|
}
|
|
|
|
void iso14a_clear_tracelen(void) {
|
|
traceLen = 0;
|
|
}
|
|
void iso14a_set_tracing(int enable) {
|
|
tracing = enable;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Generate the parity value for a byte sequence
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
byte_t oddparity (const byte_t bt)
|
|
{
|
|
return OddByteParity[bt];
|
|
}
|
|
|
|
uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
|
|
{
|
|
int i;
|
|
uint32_t dwPar = 0;
|
|
|
|
// Generate the encrypted data
|
|
for (i = 0; i < iLen; i++) {
|
|
// Save the encrypted parity bit
|
|
dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
|
|
}
|
|
return dwPar;
|
|
}
|
|
|
|
void AppendCrc14443a(uint8_t* data, int len)
|
|
{
|
|
ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
|
|
}
|
|
|
|
// The function LogTrace() is also used by the iClass implementation in iClass.c
|
|
int LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader)
|
|
{
|
|
// Return when trace is full
|
|
if (traceLen >= TRACE_SIZE) return FALSE;
|
|
|
|
// Trace the random, i'm curious
|
|
rsamples += iSamples;
|
|
trace[traceLen++] = ((rsamples >> 0) & 0xff);
|
|
trace[traceLen++] = ((rsamples >> 8) & 0xff);
|
|
trace[traceLen++] = ((rsamples >> 16) & 0xff);
|
|
trace[traceLen++] = ((rsamples >> 24) & 0xff);
|
|
if (!bReader) {
|
|
trace[traceLen - 1] |= 0x80;
|
|
}
|
|
trace[traceLen++] = ((dwParity >> 0) & 0xff);
|
|
trace[traceLen++] = ((dwParity >> 8) & 0xff);
|
|
trace[traceLen++] = ((dwParity >> 16) & 0xff);
|
|
trace[traceLen++] = ((dwParity >> 24) & 0xff);
|
|
trace[traceLen++] = iLen;
|
|
memcpy(trace + traceLen, btBytes, iLen);
|
|
traceLen += iLen;
|
|
return TRUE;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// The software UART that receives commands from the reader, and its state
|
|
// variables.
|
|
//-----------------------------------------------------------------------------
|
|
static struct {
|
|
enum {
|
|
STATE_UNSYNCD,
|
|
STATE_START_OF_COMMUNICATION,
|
|
STATE_MILLER_X,
|
|
STATE_MILLER_Y,
|
|
STATE_MILLER_Z,
|
|
STATE_ERROR_WAIT
|
|
} state;
|
|
uint16_t shiftReg;
|
|
int bitCnt;
|
|
int byteCnt;
|
|
int byteCntMax;
|
|
int posCnt;
|
|
int syncBit;
|
|
int parityBits;
|
|
int samples;
|
|
int highCnt;
|
|
int bitBuffer;
|
|
enum {
|
|
DROP_NONE,
|
|
DROP_FIRST_HALF,
|
|
DROP_SECOND_HALF
|
|
} drop;
|
|
uint8_t *output;
|
|
} Uart;
|
|
|
|
static RAMFUNC int MillerDecoding(int bit)
|
|
{
|
|
//int error = 0;
|
|
int bitright;
|
|
|
|
if(!Uart.bitBuffer) {
|
|
Uart.bitBuffer = bit ^ 0xFF0;
|
|
return FALSE;
|
|
}
|
|
else {
|
|
Uart.bitBuffer <<= 4;
|
|
Uart.bitBuffer ^= bit;
|
|
}
|
|
|
|
int EOC = FALSE;
|
|
|
|
if(Uart.state != STATE_UNSYNCD) {
|
|
Uart.posCnt++;
|
|
|
|
if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
|
|
bit = 0x00;
|
|
}
|
|
else {
|
|
bit = 0x01;
|
|
}
|
|
if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
|
|
bitright = 0x00;
|
|
}
|
|
else {
|
|
bitright = 0x01;
|
|
}
|
|
if(bit != bitright) { bit = bitright; }
|
|
|
|
if(Uart.posCnt == 1) {
|
|
// measurement first half bitperiod
|
|
if(!bit) {
|
|
Uart.drop = DROP_FIRST_HALF;
|
|
}
|
|
}
|
|
else {
|
|
// measurement second half bitperiod
|
|
if(!bit & (Uart.drop == DROP_NONE)) {
|
|
Uart.drop = DROP_SECOND_HALF;
|
|
}
|
|
else if(!bit) {
|
|
// measured a drop in first and second half
|
|
// which should not be possible
|
|
Uart.state = STATE_ERROR_WAIT;
|
|
//error = 0x01;
|
|
}
|
|
|
|
Uart.posCnt = 0;
|
|
|
|
switch(Uart.state) {
|
|
case STATE_START_OF_COMMUNICATION:
|
|
Uart.shiftReg = 0;
|
|
if(Uart.drop == DROP_SECOND_HALF) {
|
|
// error, should not happen in SOC
|
|
Uart.state = STATE_ERROR_WAIT;
|
|
//error = 0x02;
|
|
}
|
|
else {
|
|
// correct SOC
|
|
Uart.state = STATE_MILLER_Z;
|
|
}
|
|
break;
|
|
|
|
case STATE_MILLER_Z:
|
|
Uart.bitCnt++;
|
|
Uart.shiftReg >>= 1;
|
|
if(Uart.drop == DROP_NONE) {
|
|
// logic '0' followed by sequence Y
|
|
// end of communication
|
|
Uart.state = STATE_UNSYNCD;
|
|
EOC = TRUE;
|
|
}
|
|
// if(Uart.drop == DROP_FIRST_HALF) {
|
|
// Uart.state = STATE_MILLER_Z; stay the same
|
|
// we see a logic '0' }
|
|
if(Uart.drop == DROP_SECOND_HALF) {
|
|
// we see a logic '1'
|
|
Uart.shiftReg |= 0x100;
|
|
Uart.state = STATE_MILLER_X;
|
|
}
|
|
break;
|
|
|
|
case STATE_MILLER_X:
|
|
Uart.shiftReg >>= 1;
|
|
if(Uart.drop == DROP_NONE) {
|
|
// sequence Y, we see a '0'
|
|
Uart.state = STATE_MILLER_Y;
|
|
Uart.bitCnt++;
|
|
}
|
|
if(Uart.drop == DROP_FIRST_HALF) {
|
|
// Would be STATE_MILLER_Z
|
|
// but Z does not follow X, so error
|
|
Uart.state = STATE_ERROR_WAIT;
|
|
//error = 0x03;
|
|
}
|
|
if(Uart.drop == DROP_SECOND_HALF) {
|
|
// We see a '1' and stay in state X
|
|
Uart.shiftReg |= 0x100;
|
|
Uart.bitCnt++;
|
|
}
|
|
break;
|
|
|
|
case STATE_MILLER_Y:
|
|
Uart.bitCnt++;
|
|
Uart.shiftReg >>= 1;
|
|
if(Uart.drop == DROP_NONE) {
|
|
// logic '0' followed by sequence Y
|
|
// end of communication
|
|
Uart.state = STATE_UNSYNCD;
|
|
EOC = TRUE;
|
|
}
|
|
if(Uart.drop == DROP_FIRST_HALF) {
|
|
// we see a '0'
|
|
Uart.state = STATE_MILLER_Z;
|
|
}
|
|
if(Uart.drop == DROP_SECOND_HALF) {
|
|
// We see a '1' and go to state X
|
|
Uart.shiftReg |= 0x100;
|
|
Uart.state = STATE_MILLER_X;
|
|
}
|
|
break;
|
|
|
|
case STATE_ERROR_WAIT:
|
|
// That went wrong. Now wait for at least two bit periods
|
|
// and try to sync again
|
|
if(Uart.drop == DROP_NONE) {
|
|
Uart.highCnt = 6;
|
|
Uart.state = STATE_UNSYNCD;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
Uart.state = STATE_UNSYNCD;
|
|
Uart.highCnt = 0;
|
|
break;
|
|
}
|
|
|
|
Uart.drop = DROP_NONE;
|
|
|
|
// should have received at least one whole byte...
|
|
if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {
|
|
return TRUE;
|
|
}
|
|
|
|
if(Uart.bitCnt == 9) {
|
|
Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
|
|
Uart.byteCnt++;
|
|
|
|
Uart.parityBits <<= 1;
|
|
Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);
|
|
|
|
if(EOC) {
|
|
// when End of Communication received and
|
|
// all data bits processed..
|
|
return TRUE;
|
|
}
|
|
Uart.bitCnt = 0;
|
|
}
|
|
|
|
/*if(error) {
|
|
Uart.output[Uart.byteCnt] = 0xAA;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = error & 0xFF;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = 0xAA;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = 0xAA;
|
|
Uart.byteCnt++;
|
|
return TRUE;
|
|
}*/
|
|
}
|
|
|
|
}
|
|
else {
|
|
bit = Uart.bitBuffer & 0xf0;
|
|
bit >>= 4;
|
|
bit ^= 0x0F;
|
|
if(bit) {
|
|
// should have been high or at least (4 * 128) / fc
|
|
// according to ISO this should be at least (9 * 128 + 20) / fc
|
|
if(Uart.highCnt == 8) {
|
|
// we went low, so this could be start of communication
|
|
// it turns out to be safer to choose a less significant
|
|
// syncbit... so we check whether the neighbour also represents the drop
|
|
Uart.posCnt = 1; // apparently we are busy with our first half bit period
|
|
Uart.syncBit = bit & 8;
|
|
Uart.samples = 3;
|
|
if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
|
|
else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
|
|
if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
|
|
else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
|
|
if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
|
|
if(Uart.syncBit && (Uart.bitBuffer & 8)) {
|
|
Uart.syncBit = 8;
|
|
|
|
// the first half bit period is expected in next sample
|
|
Uart.posCnt = 0;
|
|
Uart.samples = 3;
|
|
}
|
|
}
|
|
else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
|
|
|
|
Uart.syncBit <<= 4;
|
|
Uart.state = STATE_START_OF_COMMUNICATION;
|
|
Uart.drop = DROP_FIRST_HALF;
|
|
Uart.bitCnt = 0;
|
|
Uart.byteCnt = 0;
|
|
Uart.parityBits = 0;
|
|
//error = 0;
|
|
}
|
|
else {
|
|
Uart.highCnt = 0;
|
|
}
|
|
}
|
|
else {
|
|
if(Uart.highCnt < 8) {
|
|
Uart.highCnt++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
//=============================================================================
|
|
// ISO 14443 Type A - Manchester
|
|
//=============================================================================
|
|
|
|
static struct {
|
|
enum {
|
|
DEMOD_UNSYNCD,
|
|
DEMOD_START_OF_COMMUNICATION,
|
|
DEMOD_MANCHESTER_D,
|
|
DEMOD_MANCHESTER_E,
|
|
DEMOD_MANCHESTER_F,
|
|
DEMOD_ERROR_WAIT
|
|
} state;
|
|
int bitCount;
|
|
int posCount;
|
|
int syncBit;
|
|
int parityBits;
|
|
uint16_t shiftReg;
|
|
int buffer;
|
|
int buff;
|
|
int samples;
|
|
int len;
|
|
enum {
|
|
SUB_NONE,
|
|
SUB_FIRST_HALF,
|
|
SUB_SECOND_HALF
|
|
} sub;
|
|
uint8_t *output;
|
|
} Demod;
|
|
|
|
static RAMFUNC int ManchesterDecoding(int v)
|
|
{
|
|
int bit;
|
|
int modulation;
|
|
//int error = 0;
|
|
|
|
if(!Demod.buff) {
|
|
Demod.buff = 1;
|
|
Demod.buffer = v;
|
|
return FALSE;
|
|
}
|
|
else {
|
|
bit = Demod.buffer;
|
|
Demod.buffer = v;
|
|
}
|
|
|
|
if(Demod.state==DEMOD_UNSYNCD) {
|
|
Demod.output[Demod.len] = 0xfa;
|
|
Demod.syncBit = 0;
|
|
//Demod.samples = 0;
|
|
Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
|
|
|
|
if(bit & 0x08) {
|
|
Demod.syncBit = 0x08;
|
|
}
|
|
|
|
if(bit & 0x04) {
|
|
if(Demod.syncBit) {
|
|
bit <<= 4;
|
|
}
|
|
Demod.syncBit = 0x04;
|
|
}
|
|
|
|
if(bit & 0x02) {
|
|
if(Demod.syncBit) {
|
|
bit <<= 2;
|
|
}
|
|
Demod.syncBit = 0x02;
|
|
}
|
|
|
|
if(bit & 0x01 && Demod.syncBit) {
|
|
Demod.syncBit = 0x01;
|
|
}
|
|
|
|
if(Demod.syncBit) {
|
|
Demod.len = 0;
|
|
Demod.state = DEMOD_START_OF_COMMUNICATION;
|
|
Demod.sub = SUB_FIRST_HALF;
|
|
Demod.bitCount = 0;
|
|
Demod.shiftReg = 0;
|
|
Demod.parityBits = 0;
|
|
Demod.samples = 0;
|
|
if(Demod.posCount) {
|
|
if(trigger) LED_A_OFF();
|
|
switch(Demod.syncBit) {
|
|
case 0x08: Demod.samples = 3; break;
|
|
case 0x04: Demod.samples = 2; break;
|
|
case 0x02: Demod.samples = 1; break;
|
|
case 0x01: Demod.samples = 0; break;
|
|
}
|
|
}
|
|
//error = 0;
|
|
}
|
|
}
|
|
else {
|
|
//modulation = bit & Demod.syncBit;
|
|
modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
|
|
|
|
Demod.samples += 4;
|
|
|
|
if(Demod.posCount==0) {
|
|
Demod.posCount = 1;
|
|
if(modulation) {
|
|
Demod.sub = SUB_FIRST_HALF;
|
|
}
|
|
else {
|
|
Demod.sub = SUB_NONE;
|
|
}
|
|
}
|
|
else {
|
|
Demod.posCount = 0;
|
|
if(modulation && (Demod.sub == SUB_FIRST_HALF)) {
|
|
if(Demod.state!=DEMOD_ERROR_WAIT) {
|
|
Demod.state = DEMOD_ERROR_WAIT;
|
|
Demod.output[Demod.len] = 0xaa;
|
|
//error = 0x01;
|
|
}
|
|
}
|
|
else if(modulation) {
|
|
Demod.sub = SUB_SECOND_HALF;
|
|
}
|
|
|
|
switch(Demod.state) {
|
|
case DEMOD_START_OF_COMMUNICATION:
|
|
if(Demod.sub == SUB_FIRST_HALF) {
|
|
Demod.state = DEMOD_MANCHESTER_D;
|
|
}
|
|
else {
|
|
Demod.output[Demod.len] = 0xab;
|
|
Demod.state = DEMOD_ERROR_WAIT;
|
|
//error = 0x02;
|
|
}
|
|
break;
|
|
|
|
case DEMOD_MANCHESTER_D:
|
|
case DEMOD_MANCHESTER_E:
|
|
if(Demod.sub == SUB_FIRST_HALF) {
|
|
Demod.bitCount++;
|
|
Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
|
|
Demod.state = DEMOD_MANCHESTER_D;
|
|
}
|
|
else if(Demod.sub == SUB_SECOND_HALF) {
|
|
Demod.bitCount++;
|
|
Demod.shiftReg >>= 1;
|
|
Demod.state = DEMOD_MANCHESTER_E;
|
|
}
|
|
else {
|
|
Demod.state = DEMOD_MANCHESTER_F;
|
|
}
|
|
break;
|
|
|
|
case DEMOD_MANCHESTER_F:
|
|
// Tag response does not need to be a complete byte!
|
|
if(Demod.len > 0 || Demod.bitCount > 0) {
|
|
if(Demod.bitCount > 0) {
|
|
Demod.shiftReg >>= (9 - Demod.bitCount);
|
|
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
|
|
Demod.len++;
|
|
// No parity bit, so just shift a 0
|
|
Demod.parityBits <<= 1;
|
|
}
|
|
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
return TRUE;
|
|
}
|
|
else {
|
|
Demod.output[Demod.len] = 0xad;
|
|
Demod.state = DEMOD_ERROR_WAIT;
|
|
//error = 0x03;
|
|
}
|
|
break;
|
|
|
|
case DEMOD_ERROR_WAIT:
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
break;
|
|
|
|
default:
|
|
Demod.output[Demod.len] = 0xdd;
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
break;
|
|
}
|
|
|
|
if(Demod.bitCount>=9) {
|
|
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
|
|
Demod.len++;
|
|
|
|
Demod.parityBits <<= 1;
|
|
Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
|
|
|
|
Demod.bitCount = 0;
|
|
Demod.shiftReg = 0;
|
|
}
|
|
|
|
/*if(error) {
|
|
Demod.output[Demod.len] = 0xBB;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = error & 0xFF;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = 0xBB;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = bit & 0xFF;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = Demod.buffer & 0xFF;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = Demod.syncBit & 0xFF;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = 0xBB;
|
|
Demod.len++;
|
|
return TRUE;
|
|
}*/
|
|
|
|
}
|
|
|
|
} // end (state != UNSYNCED)
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
//=============================================================================
|
|
// Finally, a `sniffer' for ISO 14443 Type A
|
|
// Both sides of communication!
|
|
//=============================================================================
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Record the sequence of commands sent by the reader to the tag, with
|
|
// triggering so that we start recording at the point that the tag is moved
|
|
// near the reader.
|
|
//-----------------------------------------------------------------------------
|
|
void RAMFUNC SnoopIso14443a(void)
|
|
{
|
|
// #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values
|
|
// #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values
|
|
// #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values
|
|
// #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values
|
|
// #define TRACE_SIZE 2000 // original (working as of 21/2/09) values
|
|
|
|
// We won't start recording the frames that we acquire until we trigger;
|
|
// a good trigger condition to get started is probably when we see a
|
|
// response from the tag.
|
|
int triggered = FALSE; // FALSE to wait first for card
|
|
|
|
// The command (reader -> tag) that we're receiving.
|
|
// The length of a received command will in most cases be no more than 18 bytes.
|
|
// So 32 should be enough!
|
|
uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
|
|
// The response (tag -> reader) that we're receiving.
|
|
uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
|
|
|
|
// As we receive stuff, we copy it from receivedCmd or receivedResponse
|
|
// into trace, along with its length and other annotations.
|
|
//uint8_t *trace = (uint8_t *)BigBuf;
|
|
|
|
traceLen = 0; // uncommented to fix ISSUE 15 - gerhard - jan2011
|
|
|
|
// The DMA buffer, used to stream samples from the FPGA
|
|
int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
|
|
int lastRxCounter;
|
|
int8_t *upTo;
|
|
int smpl;
|
|
int maxBehindBy = 0;
|
|
|
|
// Count of samples received so far, so that we can include timing
|
|
// information in the trace buffer.
|
|
int samples = 0;
|
|
int rsamples = 0;
|
|
|
|
memset(trace, 0x44, TRACE_SIZE);
|
|
|
|
// Set up the demodulator for tag -> reader responses.
|
|
Demod.output = receivedResponse;
|
|
Demod.len = 0;
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
|
|
// Setup for the DMA.
|
|
FpgaSetupSsc();
|
|
upTo = dmaBuf;
|
|
lastRxCounter = DMA_BUFFER_SIZE;
|
|
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
|
|
|
|
// And the reader -> tag commands
|
|
memset(&Uart, 0, sizeof(Uart));
|
|
Uart.output = receivedCmd;
|
|
Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
|
|
Uart.state = STATE_UNSYNCD;
|
|
|
|
// And put the FPGA in the appropriate mode
|
|
// Signal field is off with the appropriate LED
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
|
|
|
|
// And now we loop, receiving samples.
|
|
for(;;) {
|
|
LED_A_ON();
|
|
WDT_HIT();
|
|
int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
|
|
(DMA_BUFFER_SIZE-1);
|
|
if(behindBy > maxBehindBy) {
|
|
maxBehindBy = behindBy;
|
|
if(behindBy > 400) {
|
|
Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
|
|
goto done;
|
|
}
|
|
}
|
|
if(behindBy < 1) continue;
|
|
|
|
LED_A_OFF();
|
|
smpl = upTo[0];
|
|
upTo++;
|
|
lastRxCounter -= 1;
|
|
if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
|
|
upTo -= DMA_BUFFER_SIZE;
|
|
lastRxCounter += DMA_BUFFER_SIZE;
|
|
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
|
|
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
|
|
}
|
|
|
|
samples += 4;
|
|
if(MillerDecoding((smpl & 0xF0) >> 4)) {
|
|
rsamples = samples - Uart.samples;
|
|
LED_C_ON();
|
|
if(triggered) {
|
|
trace[traceLen++] = ((rsamples >> 0) & 0xff);
|
|
trace[traceLen++] = ((rsamples >> 8) & 0xff);
|
|
trace[traceLen++] = ((rsamples >> 16) & 0xff);
|
|
trace[traceLen++] = ((rsamples >> 24) & 0xff);
|
|
trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff);
|
|
trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff);
|
|
trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff);
|
|
trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff);
|
|
trace[traceLen++] = Uart.byteCnt;
|
|
memcpy(trace+traceLen, receivedCmd, Uart.byteCnt);
|
|
traceLen += Uart.byteCnt;
|
|
if(traceLen > TRACE_SIZE) break;
|
|
}
|
|
/* And ready to receive another command. */
|
|
Uart.state = STATE_UNSYNCD;
|
|
/* And also reset the demod code, which might have been */
|
|
/* false-triggered by the commands from the reader. */
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
LED_B_OFF();
|
|
}
|
|
|
|
if(ManchesterDecoding(smpl & 0x0F)) {
|
|
rsamples = samples - Demod.samples;
|
|
LED_B_ON();
|
|
|
|
// timestamp, as a count of samples
|
|
trace[traceLen++] = ((rsamples >> 0) & 0xff);
|
|
trace[traceLen++] = ((rsamples >> 8) & 0xff);
|
|
trace[traceLen++] = ((rsamples >> 16) & 0xff);
|
|
trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
|
|
trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);
|
|
trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);
|
|
trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
|
|
trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
|
|
// length
|
|
trace[traceLen++] = Demod.len;
|
|
memcpy(trace+traceLen, receivedResponse, Demod.len);
|
|
traceLen += Demod.len;
|
|
if(traceLen > TRACE_SIZE) break;
|
|
|
|
triggered = TRUE;
|
|
|
|
// And ready to receive another response.
|
|
memset(&Demod, 0, sizeof(Demod));
|
|
Demod.output = receivedResponse;
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
LED_C_OFF();
|
|
}
|
|
|
|
if(BUTTON_PRESS()) {
|
|
DbpString("cancelled_a");
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
DbpString("COMMAND FINISHED");
|
|
|
|
done:
|
|
AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
|
|
Dbprintf("maxBehindBy=%x, Uart.state=%x, Uart.byteCnt=%x", maxBehindBy, Uart.state, Uart.byteCnt);
|
|
Dbprintf("Uart.byteCntMax=%x, traceLen=%x, Uart.output[0]=%x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
|
|
LED_A_OFF();
|
|
LED_B_OFF();
|
|
LED_C_OFF();
|
|
LED_D_OFF();
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Prepare tag messages
|
|
//-----------------------------------------------------------------------------
|
|
static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity)
|
|
{
|
|
int i;
|
|
|
|
ToSendReset();
|
|
|
|
// Correction bit, might be removed when not needed
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(1); // 1
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
|
|
// Send startbit
|
|
ToSend[++ToSendMax] = SEC_D;
|
|
|
|
for(i = 0; i < len; i++) {
|
|
int j;
|
|
uint8_t b = cmd[i];
|
|
|
|
// Data bits
|
|
for(j = 0; j < 8; j++) {
|
|
if(b & 1) {
|
|
ToSend[++ToSendMax] = SEC_D;
|
|
} else {
|
|
ToSend[++ToSendMax] = SEC_E;
|
|
}
|
|
b >>= 1;
|
|
}
|
|
|
|
// Get the parity bit
|
|
if ((dwParity >> i) & 0x01) {
|
|
ToSend[++ToSendMax] = SEC_D;
|
|
} else {
|
|
ToSend[++ToSendMax] = SEC_E;
|
|
}
|
|
}
|
|
|
|
// Send stopbit
|
|
ToSend[++ToSendMax] = SEC_F;
|
|
|
|
// Convert from last byte pos to length
|
|
ToSendMax++;
|
|
}
|
|
|
|
static void CodeIso14443aAsTag(const uint8_t *cmd, int len){
|
|
CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len));
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
|
|
//-----------------------------------------------------------------------------
|
|
static void CodeStrangeAnswerAsTag()
|
|
{
|
|
int i;
|
|
|
|
ToSendReset();
|
|
|
|
// Correction bit, might be removed when not needed
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(1); // 1
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
|
|
// Send startbit
|
|
ToSend[++ToSendMax] = SEC_D;
|
|
|
|
// 0
|
|
ToSend[++ToSendMax] = SEC_E;
|
|
|
|
// 0
|
|
ToSend[++ToSendMax] = SEC_E;
|
|
|
|
// 1
|
|
ToSend[++ToSendMax] = SEC_D;
|
|
|
|
// Send stopbit
|
|
ToSend[++ToSendMax] = SEC_F;
|
|
|
|
// Flush the buffer in FPGA!!
|
|
for(i = 0; i < 5; i++) {
|
|
ToSend[++ToSendMax] = SEC_F;
|
|
}
|
|
|
|
// Convert from last byte pos to length
|
|
ToSendMax++;
|
|
}
|
|
|
|
static void Code4bitAnswerAsTag(uint8_t cmd)
|
|
{
|
|
int i;
|
|
|
|
ToSendReset();
|
|
|
|
// Correction bit, might be removed when not needed
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(1); // 1
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
|
|
// Send startbit
|
|
ToSend[++ToSendMax] = SEC_D;
|
|
|
|
uint8_t b = cmd;
|
|
for(i = 0; i < 4; i++) {
|
|
if(b & 1) {
|
|
ToSend[++ToSendMax] = SEC_D;
|
|
} else {
|
|
ToSend[++ToSendMax] = SEC_E;
|
|
}
|
|
b >>= 1;
|
|
}
|
|
|
|
// Send stopbit
|
|
ToSend[++ToSendMax] = SEC_F;
|
|
|
|
// Flush the buffer in FPGA!!
|
|
for(i = 0; i < 5; i++) {
|
|
ToSend[++ToSendMax] = SEC_F;
|
|
}
|
|
|
|
// Convert from last byte pos to length
|
|
ToSendMax++;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Wait for commands from reader
|
|
// Stop when button is pressed
|
|
// Or return TRUE when command is captured
|
|
//-----------------------------------------------------------------------------
|
|
static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen)
|
|
{
|
|
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
|
|
// only, since we are receiving, not transmitting).
|
|
// Signal field is off with the appropriate LED
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
|
|
|
|
// Now run a `software UART' on the stream of incoming samples.
|
|
Uart.output = received;
|
|
Uart.byteCntMax = maxLen;
|
|
Uart.state = STATE_UNSYNCD;
|
|
|
|
for(;;) {
|
|
WDT_HIT();
|
|
|
|
if(BUTTON_PRESS()) return FALSE;
|
|
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = 0x00;
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
if(MillerDecoding((b & 0xf0) >> 4)) {
|
|
*len = Uart.byteCnt;
|
|
return TRUE;
|
|
}
|
|
if(MillerDecoding(b & 0x0f)) {
|
|
*len = Uart.byteCnt;
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded);
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Main loop of simulated tag: receive commands from reader, decide what
|
|
// response to send, and send it.
|
|
//-----------------------------------------------------------------------------
|
|
void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd)
|
|
{
|
|
// Enable and clear the trace
|
|
tracing = TRUE;
|
|
traceLen = 0;
|
|
memset(trace, 0x44, TRACE_SIZE);
|
|
|
|
// This function contains the tag emulation
|
|
uint8_t sak;
|
|
|
|
// The first response contains the ATQA (note: bytes are transmitted in reverse order).
|
|
uint8_t response1[2];
|
|
|
|
switch (tagType) {
|
|
case 1: { // MIFARE Classic
|
|
// Says: I am Mifare 1k - original line
|
|
response1[0] = 0x04;
|
|
response1[1] = 0x00;
|
|
sak = 0x08;
|
|
} break;
|
|
case 2: { // MIFARE Ultralight
|
|
// Says: I am a stupid memory tag, no crypto
|
|
response1[0] = 0x04;
|
|
response1[1] = 0x00;
|
|
sak = 0x00;
|
|
} break;
|
|
case 3: { // MIFARE DESFire
|
|
// Says: I am a DESFire tag, ph33r me
|
|
response1[0] = 0x04;
|
|
response1[1] = 0x03;
|
|
sak = 0x20;
|
|
} break;
|
|
case 4: { // ISO/IEC 14443-4
|
|
// Says: I am a javacard (JCOP)
|
|
response1[0] = 0x04;
|
|
response1[1] = 0x00;
|
|
sak = 0x28;
|
|
} break;
|
|
default: {
|
|
Dbprintf("Error: unkown tagtype (%d)",tagType);
|
|
return;
|
|
} break;
|
|
}
|
|
|
|
// The second response contains the (mandatory) first 24 bits of the UID
|
|
uint8_t response2[5];
|
|
|
|
// Check if the uid uses the (optional) part
|
|
uint8_t response2a[5];
|
|
if (uid_2nd) {
|
|
response2[0] = 0x88;
|
|
num_to_bytes(uid_1st,3,response2+1);
|
|
num_to_bytes(uid_2nd,4,response2a);
|
|
response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
|
|
|
|
// Configure the ATQA and SAK accordingly
|
|
response1[0] |= 0x40;
|
|
sak |= 0x04;
|
|
} else {
|
|
num_to_bytes(uid_1st,4,response2);
|
|
// Configure the ATQA and SAK accordingly
|
|
response1[0] &= 0xBF;
|
|
sak &= 0xFB;
|
|
}
|
|
|
|
// Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
|
|
response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
|
|
|
|
// Prepare the mandatory SAK (for 4 and 7 byte UID)
|
|
uint8_t response3[3];
|
|
response3[0] = sak;
|
|
ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
|
|
|
|
// Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
|
|
uint8_t response3a[3];
|
|
response3a[0] = sak & 0xFB;
|
|
ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
|
|
|
|
uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
|
|
uint8_t response6[] = { 0x03, 0x3B, 0x00, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
|
|
ComputeCrc14443(CRC_14443_A, response6, 3, &response6[3], &response6[4]);
|
|
|
|
uint8_t *resp;
|
|
int respLen;
|
|
|
|
// Longest possible response will be 16 bytes + 2 CRC = 18 bytes
|
|
// This will need
|
|
// 144 data bits (18 * 8)
|
|
// 18 parity bits
|
|
// 2 Start and stop
|
|
// 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
|
|
// 1 just for the case
|
|
// ----------- +
|
|
// 166
|
|
//
|
|
// 166 bytes, since every bit that needs to be send costs us a byte
|
|
//
|
|
|
|
// Respond with card type
|
|
uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
|
|
int resp1Len;
|
|
|
|
// Anticollision cascade1 - respond with uid
|
|
uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 166);
|
|
int resp2Len;
|
|
|
|
// Anticollision cascade2 - respond with 2nd half of uid if asked
|
|
// we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
|
|
uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140);
|
|
int resp2aLen;
|
|
|
|
// Acknowledge select - cascade 1
|
|
uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*2));
|
|
int resp3Len;
|
|
|
|
// Acknowledge select - cascade 2
|
|
uint8_t *resp3a = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*3));
|
|
int resp3aLen;
|
|
|
|
// Response to a read request - not implemented atm
|
|
uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*4));
|
|
int resp4Len;
|
|
|
|
// Authenticate response - nonce
|
|
uint8_t *resp5 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*5));
|
|
int resp5Len;
|
|
|
|
// Authenticate response - nonce
|
|
uint8_t *resp6 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*6));
|
|
int resp6Len;
|
|
|
|
uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
|
|
int len;
|
|
|
|
// To control where we are in the protocol
|
|
int order = 0;
|
|
int lastorder;
|
|
|
|
// Just to allow some checks
|
|
int happened = 0;
|
|
int happened2 = 0;
|
|
|
|
int cmdsRecvd = 0;
|
|
uint8_t* respdata = NULL;
|
|
int respsize = 0;
|
|
uint8_t nack = 0x04;
|
|
|
|
memset(receivedCmd, 0x44, RECV_CMD_SIZE);
|
|
|
|
// Prepare the responses of the anticollision phase
|
|
// there will be not enough time to do this at the moment the reader sends it REQA
|
|
|
|
// Answer to request
|
|
CodeIso14443aAsTag(response1, sizeof(response1));
|
|
memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
|
|
|
|
// Send our UID (cascade 1)
|
|
CodeIso14443aAsTag(response2, sizeof(response2));
|
|
memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
|
|
|
|
// Answer to select (cascade1)
|
|
CodeIso14443aAsTag(response3, sizeof(response3));
|
|
memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
|
|
|
|
// Send the cascade 2 2nd part of the uid
|
|
CodeIso14443aAsTag(response2a, sizeof(response2a));
|
|
memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;
|
|
|
|
// Answer to select (cascade 2)
|
|
CodeIso14443aAsTag(response3a, sizeof(response3a));
|
|
memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;
|
|
|
|
// Strange answer is an example of rare message size (3 bits)
|
|
CodeStrangeAnswerAsTag();
|
|
memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
|
|
|
|
// Authentication answer (random nonce)
|
|
CodeIso14443aAsTag(response5, sizeof(response5));
|
|
memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;
|
|
|
|
// dummy ATS (pseudo-ATR), answer to RATS
|
|
CodeIso14443aAsTag(response6, sizeof(response6));
|
|
memcpy(resp6, ToSend, ToSendMax); resp6Len = ToSendMax;
|
|
|
|
// We need to listen to the high-frequency, peak-detected path.
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
FpgaSetupSsc();
|
|
|
|
cmdsRecvd = 0;
|
|
|
|
LED_A_ON();
|
|
for(;;) {
|
|
|
|
if(!GetIso14443aCommandFromReader(receivedCmd, &len, RECV_CMD_SIZE)) {
|
|
DbpString("button press");
|
|
break;
|
|
}
|
|
// doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
|
|
// Okay, look at the command now.
|
|
lastorder = order;
|
|
if(receivedCmd[0] == 0x26) { // Received a REQUEST
|
|
resp = resp1; respLen = resp1Len; order = 1;
|
|
respdata = response1;
|
|
respsize = sizeof(response1);
|
|
} else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
|
|
resp = resp1; respLen = resp1Len; order = 6;
|
|
respdata = response1;
|
|
respsize = sizeof(response1);
|
|
} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
|
|
resp = resp2; respLen = resp2Len; order = 2;
|
|
respdata = response2;
|
|
respsize = sizeof(response2);
|
|
} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
|
|
resp = resp2a; respLen = resp2aLen; order = 20;
|
|
respdata = response2a;
|
|
respsize = sizeof(response2a);
|
|
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
|
|
resp = resp3; respLen = resp3Len; order = 3;
|
|
respdata = response3;
|
|
respsize = sizeof(response3);
|
|
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
|
|
resp = resp3a; respLen = resp3aLen; order = 30;
|
|
respdata = response3a;
|
|
respsize = sizeof(response3a);
|
|
} else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
|
|
resp = resp4; respLen = resp4Len; order = 4; // Do nothing
|
|
Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
|
|
respdata = &nack;
|
|
respsize = sizeof(nack); // 4-bit answer
|
|
} else if(receivedCmd[0] == 0x50) { // Received a HALT
|
|
DbpString("Reader requested we HALT!:");
|
|
// Do not respond
|
|
resp = resp1; respLen = 0; order = 0;
|
|
respdata = NULL;
|
|
respsize = 0;
|
|
} else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
|
|
resp = resp5; respLen = resp5Len; order = 7;
|
|
respdata = response5;
|
|
respsize = sizeof(response5);
|
|
} else if(receivedCmd[0] == 0xE0) { // Received a RATS request
|
|
resp = resp6; respLen = resp6Len; order = 70;
|
|
respdata = response6;
|
|
respsize = sizeof(response6);
|
|
} else {
|
|
// Never seen this command before
|
|
Dbprintf("Received (len=%d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",
|
|
len,
|
|
receivedCmd[0], receivedCmd[1], receivedCmd[2],
|
|
receivedCmd[3], receivedCmd[4], receivedCmd[5],
|
|
receivedCmd[6], receivedCmd[7], receivedCmd[8]);
|
|
// Do not respond
|
|
resp = resp1; respLen = 0; order = 0;
|
|
respdata = NULL;
|
|
respsize = 0;
|
|
}
|
|
|
|
// Count number of wakeups received after a halt
|
|
if(order == 6 && lastorder == 5) { happened++; }
|
|
|
|
// Count number of other messages after a halt
|
|
if(order != 6 && lastorder == 5) { happened2++; }
|
|
|
|
// Look at last parity bit to determine timing of answer
|
|
if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {
|
|
// 1236, so correction bit needed
|
|
//i = 0;
|
|
}
|
|
|
|
if(cmdsRecvd > 999) {
|
|
DbpString("1000 commands later...");
|
|
break;
|
|
} else {
|
|
cmdsRecvd++;
|
|
}
|
|
|
|
if(respLen > 0) {
|
|
EmSendCmd14443aRaw(resp, respLen, receivedCmd[0] == 0x52);
|
|
}
|
|
|
|
if (tracing) {
|
|
LogTrace(receivedCmd,len, 0, Uart.parityBits, TRUE);
|
|
if (respdata != NULL) {
|
|
LogTrace(respdata,respsize, 0, SwapBits(GetParity(respdata,respsize),respsize), FALSE);
|
|
}
|
|
if(traceLen > TRACE_SIZE) {
|
|
DbpString("Trace full");
|
|
break;
|
|
}
|
|
}
|
|
|
|
memset(receivedCmd, 0x44, RECV_CMD_SIZE);
|
|
}
|
|
|
|
Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
|
|
LED_A_OFF();
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Transmit the command (to the tag) that was placed in ToSend[].
|
|
//-----------------------------------------------------------------------------
|
|
static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait)
|
|
{
|
|
int c;
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
|
|
|
|
if (wait)
|
|
if(*wait < 10)
|
|
*wait = 10;
|
|
|
|
for(c = 0; c < *wait;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
|
|
c++;
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
|
|
(void)r;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
|
|
c = 0;
|
|
for(;;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = cmd[c];
|
|
c++;
|
|
if(c >= len) {
|
|
break;
|
|
}
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
|
|
(void)r;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
if (samples) *samples = (c + *wait) << 3;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Code a 7-bit command without parity bit
|
|
// This is especially for 0x26 and 0x52 (REQA and WUPA)
|
|
//-----------------------------------------------------------------------------
|
|
void ShortFrameFromReader(const uint8_t bt)
|
|
{
|
|
int j;
|
|
int last;
|
|
uint8_t b;
|
|
|
|
ToSendReset();
|
|
|
|
// Start of Communication (Seq. Z)
|
|
ToSend[++ToSendMax] = SEC_Z;
|
|
last = 0;
|
|
|
|
b = bt;
|
|
for(j = 0; j < 7; j++) {
|
|
if(b & 1) {
|
|
// Sequence X
|
|
ToSend[++ToSendMax] = SEC_X;
|
|
last = 1;
|
|
} else {
|
|
if(last == 0) {
|
|
// Sequence Z
|
|
ToSend[++ToSendMax] = SEC_Z;
|
|
}
|
|
else {
|
|
// Sequence Y
|
|
ToSend[++ToSendMax] = SEC_Y;
|
|
last = 0;
|
|
}
|
|
}
|
|
b >>= 1;
|
|
}
|
|
|
|
// End of Communication
|
|
if(last == 0) {
|
|
// Sequence Z
|
|
ToSend[++ToSendMax] = SEC_Z;
|
|
}
|
|
else {
|
|
// Sequence Y
|
|
ToSend[++ToSendMax] = SEC_Y;
|
|
last = 0;
|
|
}
|
|
// Sequence Y
|
|
ToSend[++ToSendMax] = SEC_Y;
|
|
|
|
// Just to be sure!
|
|
ToSend[++ToSendMax] = SEC_Y;
|
|
ToSend[++ToSendMax] = SEC_Y;
|
|
ToSend[++ToSendMax] = SEC_Y;
|
|
|
|
// Convert from last character reference to length
|
|
ToSendMax++;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Prepare reader command to send to FPGA
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
|
|
{
|
|
int i, j;
|
|
int last;
|
|
uint8_t b;
|
|
|
|
ToSendReset();
|
|
|
|
// Start of Communication (Seq. Z)
|
|
ToSend[++ToSendMax] = SEC_Z;
|
|
last = 0;
|
|
|
|
// Generate send structure for the data bits
|
|
for (i = 0; i < len; i++) {
|
|
// Get the current byte to send
|
|
b = cmd[i];
|
|
|
|
for (j = 0; j < 8; j++) {
|
|
if (b & 1) {
|
|
// Sequence X
|
|
ToSend[++ToSendMax] = SEC_X;
|
|
last = 1;
|
|
} else {
|
|
if (last == 0) {
|
|
// Sequence Z
|
|
ToSend[++ToSendMax] = SEC_Z;
|
|
} else {
|
|
// Sequence Y
|
|
ToSend[++ToSendMax] = SEC_Y;
|
|
last = 0;
|
|
}
|
|
}
|
|
b >>= 1;
|
|
}
|
|
|
|
// Get the parity bit
|
|
if ((dwParity >> i) & 0x01) {
|
|
// Sequence X
|
|
ToSend[++ToSendMax] = SEC_X;
|
|
last = 1;
|
|
} else {
|
|
if (last == 0) {
|
|
// Sequence Z
|
|
ToSend[++ToSendMax] = SEC_Z;
|
|
} else {
|
|
// Sequence Y
|
|
ToSend[++ToSendMax] = SEC_Y;
|
|
last = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// End of Communication
|
|
if (last == 0) {
|
|
// Sequence Z
|
|
ToSend[++ToSendMax] = SEC_Z;
|
|
} else {
|
|
// Sequence Y
|
|
ToSend[++ToSendMax] = SEC_Y;
|
|
last = 0;
|
|
}
|
|
// Sequence Y
|
|
ToSend[++ToSendMax] = SEC_Y;
|
|
|
|
// Just to be sure!
|
|
ToSend[++ToSendMax] = SEC_Y;
|
|
ToSend[++ToSendMax] = SEC_Y;
|
|
ToSend[++ToSendMax] = SEC_Y;
|
|
|
|
// Convert from last character reference to length
|
|
ToSendMax++;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Wait for commands from reader
|
|
// Stop when button is pressed (return 1) or field was gone (return 2)
|
|
// Or return 0 when command is captured
|
|
//-----------------------------------------------------------------------------
|
|
static int EmGetCmd(uint8_t *received, int *len, int maxLen)
|
|
{
|
|
*len = 0;
|
|
|
|
uint32_t timer = 0, vtime = 0;
|
|
int analogCnt = 0;
|
|
int analogAVG = 0;
|
|
|
|
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
|
|
// only, since we are receiving, not transmitting).
|
|
// Signal field is off with the appropriate LED
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
|
|
|
|
// Set ADC to read field strength
|
|
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
|
|
AT91C_BASE_ADC->ADC_MR =
|
|
ADC_MODE_PRESCALE(32) |
|
|
ADC_MODE_STARTUP_TIME(16) |
|
|
ADC_MODE_SAMPLE_HOLD_TIME(8);
|
|
AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
|
|
// start ADC
|
|
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
|
|
|
|
// Now run a 'software UART' on the stream of incoming samples.
|
|
Uart.output = received;
|
|
Uart.byteCntMax = maxLen;
|
|
Uart.state = STATE_UNSYNCD;
|
|
|
|
for(;;) {
|
|
WDT_HIT();
|
|
|
|
if (BUTTON_PRESS()) return 1;
|
|
|
|
// test if the field exists
|
|
if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
|
|
analogCnt++;
|
|
analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
|
|
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
|
|
if (analogCnt >= 32) {
|
|
if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
|
|
vtime = GetTickCount();
|
|
if (!timer) timer = vtime;
|
|
// 50ms no field --> card to idle state
|
|
if (vtime - timer > 50) return 2;
|
|
} else
|
|
if (timer) timer = 0;
|
|
analogCnt = 0;
|
|
analogAVG = 0;
|
|
}
|
|
}
|
|
// transmit none
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = 0x00;
|
|
}
|
|
// receive and test the miller decoding
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
if(MillerDecoding((b & 0xf0) >> 4)) {
|
|
*len = Uart.byteCnt;
|
|
if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE);
|
|
return 0;
|
|
}
|
|
if(MillerDecoding(b & 0x0f)) {
|
|
*len = Uart.byteCnt;
|
|
if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded)
|
|
{
|
|
int i, u = 0;
|
|
uint8_t b = 0;
|
|
|
|
// Modulate Manchester
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
|
|
AT91C_BASE_SSC->SSC_THR = 0x00;
|
|
FpgaSetupSsc();
|
|
|
|
// include correction bit
|
|
i = 1;
|
|
if((Uart.parityBits & 0x01) || correctionNeeded) {
|
|
// 1236, so correction bit needed
|
|
i = 0;
|
|
}
|
|
|
|
// send cycle
|
|
for(;;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
(void)b;
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
if(i > respLen) {
|
|
b = 0xff; // was 0x00
|
|
u++;
|
|
} else {
|
|
b = resp[i];
|
|
i++;
|
|
}
|
|
AT91C_BASE_SSC->SSC_THR = b;
|
|
|
|
if(u > 4) break;
|
|
}
|
|
if(BUTTON_PRESS()) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int EmSend4bitEx(uint8_t resp, int correctionNeeded){
|
|
Code4bitAnswerAsTag(resp);
|
|
int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
|
|
if (tracing) LogTrace(&resp, 1, GetDeltaCountUS(), GetParity(&resp, 1), FALSE);
|
|
return res;
|
|
}
|
|
|
|
int EmSend4bit(uint8_t resp){
|
|
return EmSend4bitEx(resp, 0);
|
|
}
|
|
|
|
int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par){
|
|
CodeIso14443aAsTagPar(resp, respLen, par);
|
|
int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
|
|
if (tracing) LogTrace(resp, respLen, GetDeltaCountUS(), par, FALSE);
|
|
return res;
|
|
}
|
|
|
|
int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded){
|
|
return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen));
|
|
}
|
|
|
|
int EmSendCmd(uint8_t *resp, int respLen){
|
|
return EmSendCmdExPar(resp, respLen, 0, GetParity(resp, respLen));
|
|
}
|
|
|
|
int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){
|
|
return EmSendCmdExPar(resp, respLen, 0, par);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Wait a certain time for tag response
|
|
// If a response is captured return TRUE
|
|
// If it takes to long return FALSE
|
|
//-----------------------------------------------------------------------------
|
|
static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
|
|
{
|
|
// buffer needs to be 512 bytes
|
|
int c;
|
|
|
|
// Set FPGA mode to "reader listen mode", no modulation (listen
|
|
// only, since we are receiving, not transmitting).
|
|
// Signal field is on with the appropriate LED
|
|
LED_D_ON();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
// Now get the answer from the card
|
|
Demod.output = receivedResponse;
|
|
Demod.len = 0;
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
|
|
uint8_t b;
|
|
if (elapsed) *elapsed = 0;
|
|
|
|
c = 0;
|
|
for(;;) {
|
|
WDT_HIT();
|
|
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
|
|
if (elapsed) (*elapsed)++;
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
if(c < iso14a_timeout) { c++; } else { return FALSE; }
|
|
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
if(ManchesterDecoding((b>>4) & 0xf)) {
|
|
*samples = ((c - 1) << 3) + 4;
|
|
return TRUE;
|
|
}
|
|
if(ManchesterDecoding(b & 0x0f)) {
|
|
*samples = c << 3;
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ReaderTransmitShort(const uint8_t* bt)
|
|
{
|
|
int wait = 0;
|
|
int samples = 0;
|
|
|
|
ShortFrameFromReader(*bt);
|
|
|
|
// Select the card
|
|
TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
|
|
|
|
// Store reader command in buffer
|
|
if (tracing) LogTrace(bt,1,0,GetParity(bt,1),TRUE);
|
|
}
|
|
|
|
void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par)
|
|
{
|
|
int wait = 0;
|
|
int samples = 0;
|
|
|
|
// This is tied to other size changes
|
|
// uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
|
|
CodeIso14443aAsReaderPar(frame,len,par);
|
|
|
|
// Select the card
|
|
TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
|
|
if(trigger)
|
|
LED_A_ON();
|
|
|
|
// Store reader command in buffer
|
|
if (tracing) LogTrace(frame,len,0,par,TRUE);
|
|
}
|
|
|
|
|
|
void ReaderTransmit(uint8_t* frame, int len)
|
|
{
|
|
// Generate parity and redirect
|
|
ReaderTransmitPar(frame,len,GetParity(frame,len));
|
|
}
|
|
|
|
int ReaderReceive(uint8_t* receivedAnswer)
|
|
{
|
|
int samples = 0;
|
|
if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
|
|
if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
|
|
if(samples == 0) return FALSE;
|
|
return Demod.len;
|
|
}
|
|
|
|
int ReaderReceivePar(uint8_t* receivedAnswer, uint32_t * parptr)
|
|
{
|
|
int samples = 0;
|
|
if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
|
|
if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
|
|
*parptr = Demod.parityBits;
|
|
if(samples == 0) return FALSE;
|
|
return Demod.len;
|
|
}
|
|
|
|
/* performs iso14443a anticolision procedure
|
|
* fills the uid pointer unless NULL
|
|
* fills resp_data unless NULL */
|
|
int iso14443a_select_card(uint8_t * uid_ptr, iso14a_card_select_t * resp_data, uint32_t * cuid_ptr) {
|
|
uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
|
|
uint8_t sel_all[] = { 0x93,0x20 };
|
|
uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
|
|
uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
|
|
|
|
uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
|
|
|
|
uint8_t sak = 0x04; // cascade uid
|
|
int cascade_level = 0;
|
|
|
|
int len;
|
|
|
|
// clear uid
|
|
memset(uid_ptr, 0, 8);
|
|
|
|
// Broadcast for a card, WUPA (0x52) will force response from all cards in the field
|
|
ReaderTransmitShort(wupa);
|
|
// Receive the ATQA
|
|
if(!ReaderReceive(resp)) return 0;
|
|
|
|
if(resp_data)
|
|
memcpy(resp_data->atqa, resp, 2);
|
|
|
|
// OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
|
|
// which case we need to make a cascade 2 request and select - this is a long UID
|
|
// While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
|
|
for(; sak & 0x04; cascade_level++)
|
|
{
|
|
// SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
|
|
sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
|
|
|
|
// SELECT_ALL
|
|
ReaderTransmit(sel_all,sizeof(sel_all));
|
|
if (!ReaderReceive(resp)) return 0;
|
|
if(uid_ptr) memcpy(uid_ptr + cascade_level*4, resp, 4);
|
|
|
|
// calculate crypto UID
|
|
if(cuid_ptr) *cuid_ptr = bytes_to_num(resp, 4);
|
|
|
|
// Construct SELECT UID command
|
|
memcpy(sel_uid+2,resp,5);
|
|
AppendCrc14443a(sel_uid,7);
|
|
ReaderTransmit(sel_uid,sizeof(sel_uid));
|
|
|
|
// Receive the SAK
|
|
if (!ReaderReceive(resp)) return 0;
|
|
sak = resp[0];
|
|
}
|
|
if(resp_data) {
|
|
resp_data->sak = sak;
|
|
resp_data->ats_len = 0;
|
|
}
|
|
//-- this byte not UID, it CT. http://www.nxp.com/documents/application_note/AN10927.pdf page 3
|
|
if (uid_ptr[0] == 0x88) {
|
|
memcpy(uid_ptr, uid_ptr + 1, 7);
|
|
uid_ptr[7] = 0;
|
|
}
|
|
|
|
if( (sak & 0x20) == 0)
|
|
return 2; // non iso14443a compliant tag
|
|
|
|
// Request for answer to select
|
|
if(resp_data) { // JCOP cards - if reader sent RATS then there is no MIFARE session at all!!!
|
|
AppendCrc14443a(rats, 2);
|
|
ReaderTransmit(rats, sizeof(rats));
|
|
|
|
if (!(len = ReaderReceive(resp))) return 0;
|
|
|
|
memcpy(resp_data->ats, resp, sizeof(resp_data->ats));
|
|
resp_data->ats_len = len;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
void iso14443a_setup() {
|
|
// Setup SSC
|
|
FpgaSetupSsc();
|
|
// Start from off (no field generated)
|
|
// Signal field is off with the appropriate LED
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
SpinDelay(200);
|
|
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
|
|
// Now give it time to spin up.
|
|
// Signal field is on with the appropriate LED
|
|
LED_D_ON();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
|
|
SpinDelay(200);
|
|
|
|
iso14a_timeout = 2048; //default
|
|
}
|
|
|
|
int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
|
|
uint8_t real_cmd[cmd_len+4];
|
|
real_cmd[0] = 0x0a; //I-Block
|
|
real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
|
|
memcpy(real_cmd+2, cmd, cmd_len);
|
|
AppendCrc14443a(real_cmd,cmd_len+2);
|
|
|
|
ReaderTransmit(real_cmd, cmd_len+4);
|
|
size_t len = ReaderReceive(data);
|
|
if(!len)
|
|
return -1; //DATA LINK ERROR
|
|
|
|
return len;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Read an ISO 14443a tag. Send out commands and store answers.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void ReaderIso14443a(UsbCommand * c, UsbCommand * ack)
|
|
{
|
|
iso14a_command_t param = c->arg[0];
|
|
uint8_t * cmd = c->d.asBytes;
|
|
size_t len = c->arg[1];
|
|
|
|
if(param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(1);
|
|
|
|
if(param & ISO14A_CONNECT) {
|
|
iso14443a_setup();
|
|
ack->arg[0] = iso14443a_select_card(ack->d.asBytes, (iso14a_card_select_t *) (ack->d.asBytes+12), NULL);
|
|
UsbSendPacket((void *)ack, sizeof(UsbCommand));
|
|
}
|
|
|
|
if(param & ISO14A_SET_TIMEOUT) {
|
|
iso14a_timeout = c->arg[2];
|
|
}
|
|
|
|
if(param & ISO14A_SET_TIMEOUT) {
|
|
iso14a_timeout = c->arg[2];
|
|
}
|
|
|
|
if(param & ISO14A_APDU) {
|
|
ack->arg[0] = iso14_apdu(cmd, len, ack->d.asBytes);
|
|
UsbSendPacket((void *)ack, sizeof(UsbCommand));
|
|
}
|
|
|
|
if(param & ISO14A_RAW) {
|
|
if(param & ISO14A_APPEND_CRC) {
|
|
AppendCrc14443a(cmd,len);
|
|
len += 2;
|
|
}
|
|
ReaderTransmit(cmd,len);
|
|
ack->arg[0] = ReaderReceive(ack->d.asBytes);
|
|
UsbSendPacket((void *)ack, sizeof(UsbCommand));
|
|
}
|
|
|
|
if(param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(0);
|
|
|
|
if(param & ISO14A_NO_DISCONNECT)
|
|
return;
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
}
|
|
//-----------------------------------------------------------------------------
|
|
// Read an ISO 14443a tag. Send out commands and store answers.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void ReaderMifare(uint32_t parameter)
|
|
{
|
|
// Mifare AUTH
|
|
uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
|
|
uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
|
|
|
|
uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
|
|
traceLen = 0;
|
|
tracing = false;
|
|
|
|
iso14443a_setup();
|
|
|
|
LED_A_ON();
|
|
LED_B_OFF();
|
|
LED_C_OFF();
|
|
|
|
byte_t nt_diff = 0;
|
|
LED_A_OFF();
|
|
byte_t par = 0;
|
|
//byte_t par_mask = 0xff;
|
|
byte_t par_low = 0;
|
|
int led_on = TRUE;
|
|
uint8_t uid[8];
|
|
uint32_t cuid;
|
|
|
|
tracing = FALSE;
|
|
byte_t nt[4] = {0,0,0,0};
|
|
byte_t nt_attacked[4], nt_noattack[4];
|
|
byte_t par_list[8] = {0,0,0,0,0,0,0,0};
|
|
byte_t ks_list[8] = {0,0,0,0,0,0,0,0};
|
|
num_to_bytes(parameter, 4, nt_noattack);
|
|
int isOK = 0, isNULL = 0;
|
|
|
|
while(TRUE)
|
|
{
|
|
LED_C_ON();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
SpinDelay(200);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
|
|
LED_C_OFF();
|
|
|
|
// Test if the action was cancelled
|
|
if(BUTTON_PRESS()) {
|
|
break;
|
|
}
|
|
|
|
if(!iso14443a_select_card(uid, NULL, &cuid)) continue;
|
|
|
|
// Transmit MIFARE_CLASSIC_AUTH
|
|
ReaderTransmit(mf_auth, sizeof(mf_auth));
|
|
|
|
// Receive the (16 bit) "random" nonce
|
|
if (!ReaderReceive(receivedAnswer)) continue;
|
|
memcpy(nt, receivedAnswer, 4);
|
|
|
|
// Transmit reader nonce and reader answer
|
|
ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar),par);
|
|
|
|
// Receive 4 bit answer
|
|
if (ReaderReceive(receivedAnswer))
|
|
{
|
|
if ( (parameter != 0) && (memcmp(nt, nt_noattack, 4) == 0) ) continue;
|
|
|
|
isNULL = (nt_attacked[0] == 0) && (nt_attacked[1] == 0) && (nt_attacked[2] == 0) && (nt_attacked[3] == 0);
|
|
if ( (isNULL != 0 ) && (memcmp(nt, nt_attacked, 4) != 0) ) continue;
|
|
|
|
if (nt_diff == 0)
|
|
{
|
|
LED_A_ON();
|
|
memcpy(nt_attacked, nt, 4);
|
|
//par_mask = 0xf8;
|
|
par_low = par & 0x07;
|
|
}
|
|
|
|
led_on = !led_on;
|
|
if(led_on) LED_B_ON(); else LED_B_OFF();
|
|
par_list[nt_diff] = par;
|
|
ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
|
|
|
|
// Test if the information is complete
|
|
if (nt_diff == 0x07) {
|
|
isOK = 1;
|
|
break;
|
|
}
|
|
|
|
nt_diff = (nt_diff + 1) & 0x07;
|
|
mf_nr_ar[3] = nt_diff << 5;
|
|
par = par_low;
|
|
} else {
|
|
if (nt_diff == 0)
|
|
{
|
|
par++;
|
|
} else {
|
|
par = (((par >> 3) + 1) << 3) | par_low;
|
|
}
|
|
}
|
|
}
|
|
|
|
LogTrace(nt, 4, 0, GetParity(nt, 4), TRUE);
|
|
LogTrace(par_list, 8, 0, GetParity(par_list, 8), TRUE);
|
|
LogTrace(ks_list, 8, 0, GetParity(ks_list, 8), TRUE);
|
|
|
|
UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
|
|
memcpy(ack.d.asBytes + 0, uid, 4);
|
|
memcpy(ack.d.asBytes + 4, nt, 4);
|
|
memcpy(ack.d.asBytes + 8, par_list, 8);
|
|
memcpy(ack.d.asBytes + 16, ks_list, 8);
|
|
|
|
LED_B_ON();
|
|
UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
|
|
LED_B_OFF();
|
|
|
|
// Thats it...
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
tracing = TRUE;
|
|
|
|
if (MF_DBGLEVEL >= 1) DbpString("COMMAND mifare FINISHED");
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// MIFARE 1K simulate.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void Mifare1ksim(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
|
|
{
|
|
int cardSTATE = MFEMUL_NOFIELD;
|
|
int _7BUID = 0;
|
|
int vHf = 0; // in mV
|
|
//int nextCycleTimeout = 0;
|
|
int res;
|
|
// uint32_t timer = 0;
|
|
uint32_t selTimer = 0;
|
|
uint32_t authTimer = 0;
|
|
uint32_t par = 0;
|
|
int len = 0;
|
|
uint8_t cardWRBL = 0;
|
|
uint8_t cardAUTHSC = 0;
|
|
uint8_t cardAUTHKEY = 0xff; // no authentication
|
|
//uint32_t cardRn = 0;
|
|
uint32_t cardRr = 0;
|
|
uint32_t cuid = 0;
|
|
//uint32_t rn_enc = 0;
|
|
uint32_t ans = 0;
|
|
uint32_t cardINTREG = 0;
|
|
uint8_t cardINTBLOCK = 0;
|
|
struct Crypto1State mpcs = {0, 0};
|
|
struct Crypto1State *pcs;
|
|
pcs = &mpcs;
|
|
|
|
uint8_t* receivedCmd = eml_get_bigbufptr_recbuf();
|
|
uint8_t *response = eml_get_bigbufptr_sendbuf();
|
|
|
|
static uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
|
|
|
|
static uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
|
|
static uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
|
|
|
|
static uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
|
|
static uint8_t rSAK1[] = {0x04, 0xda, 0x17};
|
|
|
|
static uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
|
|
// static uint8_t rAUTH_NT[] = {0x1a, 0xac, 0xff, 0x4f};
|
|
static uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
|
|
|
|
// clear trace
|
|
traceLen = 0;
|
|
tracing = true;
|
|
|
|
// Authenticate response - nonce
|
|
uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
|
|
|
|
// get UID from emul memory
|
|
emlGetMemBt(receivedCmd, 7, 1);
|
|
_7BUID = !(receivedCmd[0] == 0x00);
|
|
if (!_7BUID) { // ---------- 4BUID
|
|
rATQA[0] = 0x04;
|
|
|
|
emlGetMemBt(rUIDBCC1, 0, 4);
|
|
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
|
|
} else { // ---------- 7BUID
|
|
rATQA[0] = 0x44;
|
|
|
|
rUIDBCC1[0] = 0x88;
|
|
emlGetMemBt(&rUIDBCC1[1], 0, 3);
|
|
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
|
|
emlGetMemBt(rUIDBCC2, 3, 4);
|
|
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
|
|
}
|
|
|
|
// -------------------------------------- test area
|
|
|
|
// -------------------------------------- END test area
|
|
// start mkseconds counter
|
|
StartCountUS();
|
|
|
|
// We need to listen to the high-frequency, peak-detected path.
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
FpgaSetupSsc();
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
|
|
SpinDelay(200);
|
|
|
|
if (MF_DBGLEVEL >= 1) Dbprintf("Started. 7buid=%d", _7BUID);
|
|
// calibrate mkseconds counter
|
|
GetDeltaCountUS();
|
|
while (true) {
|
|
WDT_HIT();
|
|
|
|
if(BUTTON_PRESS()) {
|
|
break;
|
|
}
|
|
|
|
// find reader field
|
|
// Vref = 3300mV, and an 10:1 voltage divider on the input
|
|
// can measure voltages up to 33000 mV
|
|
if (cardSTATE == MFEMUL_NOFIELD) {
|
|
vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
|
|
if (vHf > MF_MINFIELDV) {
|
|
cardSTATE_TO_IDLE();
|
|
LED_A_ON();
|
|
}
|
|
}
|
|
|
|
if (cardSTATE != MFEMUL_NOFIELD) {
|
|
res = EmGetCmd(receivedCmd, &len, RECV_CMD_SIZE); // (+ nextCycleTimeout)
|
|
if (res == 2) {
|
|
cardSTATE = MFEMUL_NOFIELD;
|
|
LEDsoff();
|
|
continue;
|
|
}
|
|
if(res) break;
|
|
}
|
|
|
|
//nextCycleTimeout = 0;
|
|
|
|
// if (len) Dbprintf("len:%d cmd: %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3]);
|
|
|
|
if (len != 4 && cardSTATE != MFEMUL_NOFIELD) { // len != 4 <---- speed up the code 4 authentication
|
|
// REQ or WUP request in ANY state and WUP in HALTED state
|
|
if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
|
|
selTimer = GetTickCount();
|
|
EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
|
|
cardSTATE = MFEMUL_SELECT1;
|
|
|
|
// init crypto block
|
|
LED_B_OFF();
|
|
LED_C_OFF();
|
|
crypto1_destroy(pcs);
|
|
cardAUTHKEY = 0xff;
|
|
}
|
|
}
|
|
|
|
switch (cardSTATE) {
|
|
case MFEMUL_NOFIELD:{
|
|
break;
|
|
}
|
|
case MFEMUL_HALTED:{
|
|
break;
|
|
}
|
|
case MFEMUL_IDLE:{
|
|
break;
|
|
}
|
|
case MFEMUL_SELECT1:{
|
|
// select all
|
|
if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
|
|
EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
|
|
break;
|
|
}
|
|
|
|
// select card
|
|
if (len == 9 &&
|
|
(receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
|
|
if (!_7BUID)
|
|
EmSendCmd(rSAK, sizeof(rSAK));
|
|
else
|
|
EmSendCmd(rSAK1, sizeof(rSAK1));
|
|
|
|
cuid = bytes_to_num(rUIDBCC1, 4);
|
|
if (!_7BUID) {
|
|
cardSTATE = MFEMUL_WORK;
|
|
LED_B_ON();
|
|
if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
|
|
break;
|
|
} else {
|
|
cardSTATE = MFEMUL_SELECT2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
case MFEMUL_SELECT2:{
|
|
if (!len) break;
|
|
|
|
if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
|
|
EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
|
|
break;
|
|
}
|
|
|
|
// select 2 card
|
|
if (len == 9 &&
|
|
(receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
|
|
EmSendCmd(rSAK, sizeof(rSAK));
|
|
|
|
cuid = bytes_to_num(rUIDBCC2, 4);
|
|
cardSTATE = MFEMUL_WORK;
|
|
LED_B_ON();
|
|
if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
|
|
break;
|
|
}
|
|
|
|
// i guess there is a command). go into the work state.
|
|
if (len != 4) break;
|
|
cardSTATE = MFEMUL_WORK;
|
|
goto lbWORK;
|
|
}
|
|
case MFEMUL_AUTH1:{
|
|
if (len == 8) {
|
|
// --- crypto
|
|
//rn_enc = bytes_to_num(receivedCmd, 4);
|
|
//cardRn = rn_enc ^ crypto1_word(pcs, rn_enc , 1);
|
|
cardRr = bytes_to_num(&receivedCmd[4], 4) ^ crypto1_word(pcs, 0, 0);
|
|
// test if auth OK
|
|
if (cardRr != prng_successor(nonce, 64)){
|
|
if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x", cardRr, prng_successor(nonce, 64));
|
|
cardSTATE_TO_IDLE();
|
|
break;
|
|
}
|
|
ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
|
|
num_to_bytes(ans, 4, rAUTH_AT);
|
|
// --- crypto
|
|
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
|
|
cardSTATE = MFEMUL_AUTH2;
|
|
} else {
|
|
cardSTATE_TO_IDLE();
|
|
}
|
|
if (cardSTATE != MFEMUL_AUTH2) break;
|
|
}
|
|
case MFEMUL_AUTH2:{
|
|
LED_C_ON();
|
|
cardSTATE = MFEMUL_WORK;
|
|
if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED. sec=%d, key=%d time=%d", cardAUTHSC, cardAUTHKEY, GetTickCount() - authTimer);
|
|
break;
|
|
}
|
|
case MFEMUL_WORK:{
|
|
lbWORK: if (len == 0) break;
|
|
|
|
if (cardAUTHKEY == 0xff) {
|
|
// first authentication
|
|
if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
|
|
authTimer = GetTickCount();
|
|
|
|
cardAUTHSC = receivedCmd[1] / 4; // received block num
|
|
cardAUTHKEY = receivedCmd[0] - 0x60;
|
|
|
|
// --- crypto
|
|
crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
|
|
ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
|
|
num_to_bytes(nonce, 4, rAUTH_AT);
|
|
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
|
|
// --- crypto
|
|
|
|
// last working revision
|
|
// EmSendCmd14443aRaw(resp1, resp1Len, 0);
|
|
// LogTrace(NULL, 0, GetDeltaCountUS(), 0, true);
|
|
|
|
cardSTATE = MFEMUL_AUTH1;
|
|
//nextCycleTimeout = 10;
|
|
break;
|
|
}
|
|
} else {
|
|
// decrypt seqence
|
|
mf_crypto1_decrypt(pcs, receivedCmd, len);
|
|
|
|
// nested authentication
|
|
if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
|
|
authTimer = GetTickCount();
|
|
|
|
cardAUTHSC = receivedCmd[1] / 4; // received block num
|
|
cardAUTHKEY = receivedCmd[0] - 0x60;
|
|
|
|
// --- crypto
|
|
crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
|
|
ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
|
|
num_to_bytes(ans, 4, rAUTH_AT);
|
|
EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
|
|
// --- crypto
|
|
|
|
cardSTATE = MFEMUL_AUTH1;
|
|
//nextCycleTimeout = 10;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
|
|
// BUT... ACK --> NACK
|
|
if (len == 1 && receivedCmd[0] == CARD_ACK) {
|
|
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
|
|
break;
|
|
}
|
|
|
|
// rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
|
|
if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
|
|
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
|
|
break;
|
|
}
|
|
|
|
// read block
|
|
if (len == 4 && receivedCmd[0] == 0x30) {
|
|
if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) {
|
|
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
|
|
break;
|
|
}
|
|
emlGetMem(response, receivedCmd[1], 1);
|
|
AppendCrc14443a(response, 16);
|
|
mf_crypto1_encrypt(pcs, response, 18, &par);
|
|
EmSendCmdPar(response, 18, par);
|
|
break;
|
|
}
|
|
|
|
// write block
|
|
if (len == 4 && receivedCmd[0] == 0xA0) {
|
|
if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) {
|
|
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
|
|
break;
|
|
}
|
|
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
|
|
//nextCycleTimeout = 50;
|
|
cardSTATE = MFEMUL_WRITEBL2;
|
|
cardWRBL = receivedCmd[1];
|
|
break;
|
|
}
|
|
|
|
// works with cardINTREG
|
|
|
|
// increment, decrement, restore
|
|
if (len == 4 && (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2)) {
|
|
if (receivedCmd[1] >= 16 * 4 ||
|
|
receivedCmd[1] / 4 != cardAUTHSC ||
|
|
emlCheckValBl(receivedCmd[1])) {
|
|
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
|
|
break;
|
|
}
|
|
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
|
|
if (receivedCmd[0] == 0xC1)
|
|
cardSTATE = MFEMUL_INTREG_INC;
|
|
if (receivedCmd[0] == 0xC0)
|
|
cardSTATE = MFEMUL_INTREG_DEC;
|
|
if (receivedCmd[0] == 0xC2)
|
|
cardSTATE = MFEMUL_INTREG_REST;
|
|
cardWRBL = receivedCmd[1];
|
|
|
|
break;
|
|
}
|
|
|
|
|
|
// transfer
|
|
if (len == 4 && receivedCmd[0] == 0xB0) {
|
|
if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) {
|
|
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
|
|
break;
|
|
}
|
|
|
|
if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
|
|
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
|
|
else
|
|
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
|
|
|
|
break;
|
|
}
|
|
|
|
// halt
|
|
if (len == 4 && (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00)) {
|
|
LED_B_OFF();
|
|
LED_C_OFF();
|
|
cardSTATE = MFEMUL_HALTED;
|
|
if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
|
|
break;
|
|
}
|
|
|
|
// command not allowed
|
|
if (len == 4) {
|
|
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
|
|
break;
|
|
}
|
|
|
|
// case break
|
|
break;
|
|
}
|
|
case MFEMUL_WRITEBL2:{
|
|
if (len == 18){
|
|
mf_crypto1_decrypt(pcs, receivedCmd, len);
|
|
emlSetMem(receivedCmd, cardWRBL, 1);
|
|
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
|
|
cardSTATE = MFEMUL_WORK;
|
|
break;
|
|
} else {
|
|
cardSTATE_TO_IDLE();
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case MFEMUL_INTREG_INC:{
|
|
mf_crypto1_decrypt(pcs, receivedCmd, len);
|
|
memcpy(&ans, receivedCmd, 4);
|
|
if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
|
|
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
|
|
cardSTATE_TO_IDLE();
|
|
break;
|
|
}
|
|
cardINTREG = cardINTREG + ans;
|
|
cardSTATE = MFEMUL_WORK;
|
|
break;
|
|
}
|
|
case MFEMUL_INTREG_DEC:{
|
|
mf_crypto1_decrypt(pcs, receivedCmd, len);
|
|
memcpy(&ans, receivedCmd, 4);
|
|
if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
|
|
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
|
|
cardSTATE_TO_IDLE();
|
|
break;
|
|
}
|
|
cardINTREG = cardINTREG - ans;
|
|
cardSTATE = MFEMUL_WORK;
|
|
break;
|
|
}
|
|
case MFEMUL_INTREG_REST:{
|
|
mf_crypto1_decrypt(pcs, receivedCmd, len);
|
|
memcpy(&ans, receivedCmd, 4);
|
|
if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
|
|
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
|
|
cardSTATE_TO_IDLE();
|
|
break;
|
|
}
|
|
cardSTATE = MFEMUL_WORK;
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
|
|
// add trace trailer
|
|
memset(rAUTH_NT, 0x44, 4);
|
|
LogTrace(rAUTH_NT, 4, 0, 0, TRUE);
|
|
|
|
if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen);
|
|
}
|