mirror of
				https://github.com/Proxmark/proxmark3.git
				synced 2025-11-04 12:06:38 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			570 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			570 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*  crapto1.c
 | 
						|
 | 
						|
    This program is free software; you can redistribute it and/or
 | 
						|
    modify it under the terms of the GNU General Public License
 | 
						|
    as published by the Free Software Foundation; either version 2
 | 
						|
    of the License, or (at your option) any later version.
 | 
						|
 | 
						|
    This program is distributed in the hope that it will be useful,
 | 
						|
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
    GNU General Public License for more details.
 | 
						|
 | 
						|
    You should have received a copy of the GNU General Public License
 | 
						|
    along with this program; if not, write to the Free Software
 | 
						|
    Foundation, Inc., 51 Franklin Street, Fifth Floor,
 | 
						|
    Boston, MA  02110-1301, US$
 | 
						|
 | 
						|
    Copyright (C) 2008-2008 bla <blapost@gmail.com>
 | 
						|
*/
 | 
						|
#include "crapto1.h"
 | 
						|
#include <stdlib.h>
 | 
						|
 | 
						|
#if !defined LOWMEM && defined __GNUC__
 | 
						|
static uint8_t filterlut[1 << 20];
 | 
						|
static void __attribute__((constructor)) fill_lut()
 | 
						|
{
 | 
						|
        uint32_t i;
 | 
						|
        for(i = 0; i < 1 << 20; ++i)
 | 
						|
                filterlut[i] = filter(i);
 | 
						|
}
 | 
						|
#define filter(x) (filterlut[(x) & 0xfffff])
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
 | 
						|
typedef struct bucket {
 | 
						|
	uint32_t *head;
 | 
						|
	uint32_t *bp;
 | 
						|
} bucket_t;
 | 
						|
 | 
						|
typedef bucket_t bucket_array_t[2][0x100];
 | 
						|
 | 
						|
typedef struct bucket_info {
 | 
						|
	struct {
 | 
						|
		uint32_t *head, *tail;
 | 
						|
		} bucket_info[2][0x100];
 | 
						|
		uint32_t numbuckets;
 | 
						|
	} bucket_info_t;
 | 
						|
	
 | 
						|
 | 
						|
static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop,
 | 
						|
								  uint32_t* const ostart, uint32_t* const ostop,
 | 
						|
								  bucket_info_t *bucket_info, bucket_array_t bucket)
 | 
						|
{
 | 
						|
	uint32_t *p1, *p2;
 | 
						|
	uint32_t *start[2];
 | 
						|
	uint32_t *stop[2];
 | 
						|
	
 | 
						|
	start[0] = estart;
 | 
						|
	stop[0] = estop;
 | 
						|
	start[1] = ostart;
 | 
						|
	stop[1] = ostop;
 | 
						|
	
 | 
						|
	// init buckets to be empty
 | 
						|
	for (uint32_t i = 0; i < 2; i++) {
 | 
						|
		for (uint32_t j = 0x00; j <= 0xff; j++) {
 | 
						|
			bucket[i][j].bp = bucket[i][j].head;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	
 | 
						|
	// sort the lists into the buckets based on the MSB (contribution bits)
 | 
						|
	for (uint32_t i = 0; i < 2; i++) { 
 | 
						|
		for (p1 = start[i]; p1 <= stop[i]; p1++) {
 | 
						|
			uint32_t bucket_index = (*p1 & 0xff000000) >> 24;
 | 
						|
			*(bucket[i][bucket_index].bp++) = *p1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	
 | 
						|
	// write back intersecting buckets as sorted list.
 | 
						|
	// fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.
 | 
						|
	uint32_t nonempty_bucket;
 | 
						|
	for (uint32_t i = 0; i < 2; i++) {
 | 
						|
		p1 = start[i];
 | 
						|
		nonempty_bucket = 0;
 | 
						|
		for (uint32_t j = 0x00; j <= 0xff; j++) {
 | 
						|
			if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only
 | 
						|
				bucket_info->bucket_info[i][nonempty_bucket].head = p1;
 | 
						|
				for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++);
 | 
						|
				bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1;
 | 
						|
				nonempty_bucket++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		bucket_info->numbuckets = nonempty_bucket;
 | 
						|
		}
 | 
						|
}
 | 
						|
 | 
						|
/** binsearch
 | 
						|
 * Binary search for the first occurence of *stop's MSB in sorted [start,stop]
 | 
						|
 */
 | 
						|
static inline uint32_t*
 | 
						|
binsearch(uint32_t *start, uint32_t *stop)
 | 
						|
{
 | 
						|
	uint32_t mid, val = *stop & 0xff000000;
 | 
						|
	while(start != stop)
 | 
						|
		if(start[mid = (stop - start) >> 1] > val)
 | 
						|
			stop = &start[mid];
 | 
						|
		else
 | 
						|
			start += mid + 1;
 | 
						|
 | 
						|
	return start;
 | 
						|
}
 | 
						|
 | 
						|
/** update_contribution
 | 
						|
 * helper, calculates the partial linear feedback contributions and puts in MSB
 | 
						|
 */
 | 
						|
static inline void
 | 
						|
update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
 | 
						|
{
 | 
						|
	uint32_t p = *item >> 25;
 | 
						|
 | 
						|
	p = p << 1 | parity(*item & mask1);
 | 
						|
	p = p << 1 | parity(*item & mask2);
 | 
						|
	*item = p << 24 | (*item & 0xffffff);
 | 
						|
}
 | 
						|
 | 
						|
/** extend_table
 | 
						|
 * using a bit of the keystream extend the table of possible lfsr states
 | 
						|
 */
 | 
						|
static inline void
 | 
						|
extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
 | 
						|
{
 | 
						|
	in <<= 24;
 | 
						|
 | 
						|
	for(uint32_t *p = tbl; p <= *end; p++) {
 | 
						|
		*p <<= 1;
 | 
						|
		if(filter(*p) != filter(*p | 1)) {			 	// replace
 | 
						|
			*p |= filter(*p) ^ bit;
 | 
						|
			update_contribution(p, m1, m2);
 | 
						|
			*p ^= in;
 | 
						|
		} else if(filter(*p) == bit) {					// insert
 | 
						|
			*++*end = p[1];
 | 
						|
			p[1] = p[0] | 1;
 | 
						|
			update_contribution(p, m1, m2);
 | 
						|
			*p++ ^= in;
 | 
						|
			update_contribution(p, m1, m2);
 | 
						|
			*p ^= in;
 | 
						|
		} else {										// drop
 | 
						|
			*p-- = *(*end)--;
 | 
						|
		} 
 | 
						|
	}
 | 
						|
	
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/** extend_table_simple
 | 
						|
 * using a bit of the keystream extend the table of possible lfsr states
 | 
						|
 */
 | 
						|
static inline void
 | 
						|
extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
 | 
						|
{
 | 
						|
	for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)	
 | 
						|
		if(filter(*tbl) ^ filter(*tbl | 1)) {	// replace
 | 
						|
			*tbl |= filter(*tbl) ^ bit;
 | 
						|
		} else if(filter(*tbl) == bit) {		// insert
 | 
						|
			*++*end = *++tbl;
 | 
						|
			*tbl = tbl[-1] | 1;
 | 
						|
		} else									// drop
 | 
						|
			*tbl-- = *(*end)--;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/** recover
 | 
						|
 * recursively narrow down the search space, 4 bits of keystream at a time
 | 
						|
 */
 | 
						|
static struct Crypto1State*
 | 
						|
recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
 | 
						|
	uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
 | 
						|
	struct Crypto1State *sl, uint32_t in, bucket_array_t bucket)
 | 
						|
{
 | 
						|
	uint32_t *o, *e;
 | 
						|
	bucket_info_t bucket_info;
 | 
						|
 | 
						|
	if(rem == -1) {
 | 
						|
		for(e = e_head; e <= e_tail; ++e) {
 | 
						|
			*e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
 | 
						|
			for(o = o_head; o <= o_tail; ++o, ++sl) {
 | 
						|
				sl->even = *o;
 | 
						|
				sl->odd = *e ^ parity(*o & LF_POLY_ODD);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		sl->odd = sl->even = 0;
 | 
						|
		return sl;
 | 
						|
	}
 | 
						|
 | 
						|
	for(uint32_t i = 0; i < 4 && rem--; i++) {
 | 
						|
		extend_table(o_head, &o_tail, (oks >>= 1) & 1,
 | 
						|
			LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);
 | 
						|
		if(o_head > o_tail)
 | 
						|
			return sl;
 | 
						|
 | 
						|
		extend_table(e_head, &e_tail, (eks >>= 1) & 1,
 | 
						|
			LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, (in >>= 2) & 3);
 | 
						|
		if(e_head > e_tail)
 | 
						|
			return sl;
 | 
						|
	}
 | 
						|
 | 
						|
	bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket);
 | 
						|
	
 | 
						|
	for (int i = bucket_info.numbuckets - 1; i >= 0; i--) {
 | 
						|
		sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks,
 | 
						|
				     bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks,
 | 
						|
					 rem, sl, in, bucket);
 | 
						|
	}
 | 
						|
	
 | 
						|
	return sl;
 | 
						|
}
 | 
						|
/** lfsr_recovery
 | 
						|
 * recover the state of the lfsr given 32 bits of the keystream
 | 
						|
 * additionally you can use the in parameter to specify the value
 | 
						|
 * that was fed into the lfsr at the time the keystream was generated
 | 
						|
 */
 | 
						|
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
 | 
						|
{
 | 
						|
	struct Crypto1State *statelist;
 | 
						|
	uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
 | 
						|
	uint32_t *even_head = 0, *even_tail = 0, eks = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	// split the keystream into an odd and even part
 | 
						|
	for(i = 31; i >= 0; i -= 2)
 | 
						|
		oks = oks << 1 | BEBIT(ks2, i);
 | 
						|
	for(i = 30; i >= 0; i -= 2)
 | 
						|
 		eks = eks << 1 | BEBIT(ks2, i);
 | 
						|
 | 
						|
	odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
 | 
						|
	even_head = even_tail = malloc(sizeof(uint32_t) << 21);
 | 
						|
	statelist =  malloc(sizeof(struct Crypto1State) << 18);
 | 
						|
	if(!odd_tail-- || !even_tail-- || !statelist) {
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	statelist->odd = statelist->even = 0;
 | 
						|
 | 
						|
	// allocate memory for out of place bucket_sort
 | 
						|
	bucket_array_t bucket;
 | 
						|
	for (uint32_t i = 0; i < 2; i++)
 | 
						|
		for (uint32_t j = 0; j <= 0xff; j++) {
 | 
						|
			bucket[i][j].head = malloc(sizeof(uint32_t)<<14);
 | 
						|
			if (!bucket[i][j].head) {
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
	
 | 
						|
	// initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
 | 
						|
	for(i = 1 << 20; i >= 0; --i) {
 | 
						|
		if(filter(i) == (oks & 1))
 | 
						|
			*++odd_tail = i;
 | 
						|
		if(filter(i) == (eks & 1))
 | 
						|
			*++even_tail = i;
 | 
						|
	}
 | 
						|
 | 
						|
	// extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
 | 
						|
	for(i = 0; i < 4; i++) {
 | 
						|
		extend_table_simple(odd_head,  &odd_tail, (oks >>= 1) & 1);
 | 
						|
		extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
 | 
						|
	}
 | 
						|
 | 
						|
	// the statelists now contain all states which could have generated the last 10 Bits of the keystream.
 | 
						|
	// 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
 | 
						|
	// parameter into account.
 | 
						|
 | 
						|
	in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);		// Byte swapping
 | 
						|
 | 
						|
	recover(odd_head, odd_tail, oks,
 | 
						|
		even_head, even_tail, eks, 11, statelist, in << 1, bucket);
 | 
						|
 | 
						|
 | 
						|
out:
 | 
						|
	free(odd_head);
 | 
						|
	free(even_head);
 | 
						|
	for (uint32_t i = 0; i < 2; i++)
 | 
						|
		for (uint32_t j = 0; j <= 0xff; j++)
 | 
						|
			free(bucket[i][j].head);
 | 
						|
	
 | 
						|
	return statelist;
 | 
						|
}
 | 
						|
 | 
						|
static const uint32_t S1[] = {     0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
 | 
						|
	0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
 | 
						|
	0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
 | 
						|
static const uint32_t S2[] = {  0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
 | 
						|
	0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
 | 
						|
	0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
 | 
						|
	0x7EC7EE90, 0x7F63F748, 0x79117020};
 | 
						|
static const uint32_t T1[] = {
 | 
						|
	0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
 | 
						|
	0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
 | 
						|
	0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
 | 
						|
	0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
 | 
						|
static const uint32_t T2[] = {  0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
 | 
						|
	0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
 | 
						|
	0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
 | 
						|
	0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
 | 
						|
	0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
 | 
						|
	0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
 | 
						|
static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
 | 
						|
static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
 | 
						|
/** Reverse 64 bits of keystream into possible cipher states
 | 
						|
 * Variation mentioned in the paper. Somewhat optimized version
 | 
						|
 */
 | 
						|
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
 | 
						|
{
 | 
						|
	struct Crypto1State *statelist, *sl;
 | 
						|
	uint8_t oks[32], eks[32], hi[32];
 | 
						|
	uint32_t low = 0,  win = 0;
 | 
						|
	uint32_t *tail, table[1 << 16];
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
 | 
						|
	if(!sl)
 | 
						|
		return 0;
 | 
						|
	sl->odd = sl->even = 0;
 | 
						|
 | 
						|
	for(i = 30; i >= 0; i -= 2) {
 | 
						|
		oks[i >> 1] = BIT(ks2, i ^ 24);
 | 
						|
		oks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
 | 
						|
	}
 | 
						|
	for(i = 31; i >= 0; i -= 2) {
 | 
						|
		eks[i >> 1] = BIT(ks2, i ^ 24);
 | 
						|
		eks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
 | 
						|
	}
 | 
						|
 | 
						|
	for(i = 0xfffff; i >= 0; --i) {
 | 
						|
		if (filter(i) != oks[0])
 | 
						|
			continue;
 | 
						|
 | 
						|
		*(tail = table) = i;
 | 
						|
		for(j = 1; tail >= table && j < 29; ++j)
 | 
						|
			extend_table_simple(table, &tail, oks[j]);
 | 
						|
 | 
						|
		if(tail < table)
 | 
						|
			continue;
 | 
						|
 | 
						|
		for(j = 0; j < 19; ++j)
 | 
						|
			low = low << 1 | parity(i & S1[j]);
 | 
						|
		for(j = 0; j < 32; ++j)
 | 
						|
			hi[j] = parity(i & T1[j]);
 | 
						|
 | 
						|
		for(; tail >= table; --tail) {
 | 
						|
			for(j = 0; j < 3; ++j) {
 | 
						|
				*tail = *tail << 1;
 | 
						|
				*tail |= parity((i & C1[j]) ^ (*tail & C2[j]));
 | 
						|
				if(filter(*tail) != oks[29 + j])
 | 
						|
					goto continue2;
 | 
						|
			}
 | 
						|
 | 
						|
			for(j = 0; j < 19; ++j)
 | 
						|
				win = win << 1 | parity(*tail & S2[j]);
 | 
						|
 | 
						|
			win ^= low;
 | 
						|
			for(j = 0; j < 32; ++j) {
 | 
						|
				win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
 | 
						|
				if(filter(win) != eks[j])
 | 
						|
					goto continue2;
 | 
						|
			}
 | 
						|
 | 
						|
			*tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
 | 
						|
			sl->odd = *tail ^ parity(LF_POLY_ODD & win);
 | 
						|
			sl->even = win;
 | 
						|
			++sl;
 | 
						|
			sl->odd = sl->even = 0;
 | 
						|
			continue2:;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return statelist;
 | 
						|
}
 | 
						|
 | 
						|
/** lfsr_rollback_bit
 | 
						|
 * Rollback the shift register in order to get previous states
 | 
						|
 */
 | 
						|
void lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
 | 
						|
{
 | 
						|
	int out;
 | 
						|
 | 
						|
	s->odd &= 0xffffff;
 | 
						|
	s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
 | 
						|
 | 
						|
	out = s->even & 1;
 | 
						|
	out ^= LF_POLY_EVEN & (s->even >>= 1);
 | 
						|
	out ^= LF_POLY_ODD & s->odd;
 | 
						|
	out ^= !!in;
 | 
						|
	out ^= filter(s->odd) & !!fb;
 | 
						|
 | 
						|
	s->even |= parity(out) << 23;
 | 
						|
}
 | 
						|
/** lfsr_rollback_byte
 | 
						|
 * Rollback the shift register in order to get previous states
 | 
						|
 */
 | 
						|
void lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	for (i = 7; i >= 0; --i)
 | 
						|
		lfsr_rollback_bit(s, BEBIT(in, i), fb);
 | 
						|
}
 | 
						|
/** lfsr_rollback_word
 | 
						|
 * Rollback the shift register in order to get previous states
 | 
						|
 */
 | 
						|
void lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	for (i = 31; i >= 0; --i)
 | 
						|
		lfsr_rollback_bit(s, BEBIT(in, i), fb);
 | 
						|
}
 | 
						|
 | 
						|
/** nonce_distance
 | 
						|
 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
 | 
						|
 */
 | 
						|
static uint16_t *dist = 0;
 | 
						|
int nonce_distance(uint32_t from, uint32_t to)
 | 
						|
{
 | 
						|
	uint16_t x, i;
 | 
						|
	if(!dist) {
 | 
						|
		dist = malloc(2 << 16);
 | 
						|
		if(!dist)
 | 
						|
			return -1;
 | 
						|
		for (x = i = 1; i; ++i) {
 | 
						|
			dist[(x & 0xff) << 8 | x >> 8] = i;
 | 
						|
			x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static uint32_t fastfwd[2][8] = {
 | 
						|
	{ 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
 | 
						|
	{ 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
 | 
						|
 | 
						|
 | 
						|
/** lfsr_prefix_ks
 | 
						|
 *
 | 
						|
 * Is an exported helper function from the common prefix attack
 | 
						|
 * Described in the "dark side" paper. It returns an -1 terminated array
 | 
						|
 * of possible partial(21 bit) secret state.
 | 
						|
 * The required keystream(ks) needs to contain the keystream that was used to
 | 
						|
 * encrypt the NACK which is observed when varying only the 4 last bits of Nr
 | 
						|
 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
 | 
						|
 */
 | 
						|
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
 | 
						|
{
 | 
						|
	uint32_t *candidates = malloc(4 << 21);
 | 
						|
	uint32_t c,  entry;
 | 
						|
	int size, i;
 | 
						|
 | 
						|
	if(!candidates)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	size = (1 << 21) - 1;
 | 
						|
	for(i = 0; i <= size; ++i)
 | 
						|
		candidates[i] = i;
 | 
						|
 | 
						|
	for(c = 0;  c < 8; ++c)
 | 
						|
		for(i = 0;i <= size; ++i) {
 | 
						|
			entry = candidates[i] ^ fastfwd[isodd][c];
 | 
						|
 | 
						|
			if(filter(entry >> 1) == BIT(ks[c], isodd))
 | 
						|
				if(filter(entry) == BIT(ks[c], isodd + 2))
 | 
						|
					continue;
 | 
						|
 | 
						|
			candidates[i--] = candidates[size--];
 | 
						|
		}
 | 
						|
 | 
						|
	candidates[size + 1] = -1;
 | 
						|
 | 
						|
	return candidates;
 | 
						|
}
 | 
						|
 | 
						|
/** brute_top
 | 
						|
 * helper function which eliminates possible secret states using parity bits
 | 
						|
 */
 | 
						|
static struct Crypto1State*
 | 
						|
brute_top(uint32_t prefix, uint32_t rresp, unsigned char parities[8][8],
 | 
						|
          uint32_t odd, uint32_t even, struct Crypto1State* sl, uint8_t no_chk)
 | 
						|
{
 | 
						|
	struct Crypto1State s;
 | 
						|
	uint32_t ks1, nr, ks2, rr, ks3, good, c;
 | 
						|
 | 
						|
	for(c = 0; c < 8; ++c) {
 | 
						|
		s.odd = odd ^ fastfwd[1][c];
 | 
						|
		s.even = even ^ fastfwd[0][c];
 | 
						|
		
 | 
						|
		lfsr_rollback_bit(&s, 0, 0);
 | 
						|
		lfsr_rollback_bit(&s, 0, 0);
 | 
						|
		lfsr_rollback_bit(&s, 0, 0);
 | 
						|
		
 | 
						|
		lfsr_rollback_word(&s, 0, 0);
 | 
						|
		lfsr_rollback_word(&s, prefix | c << 5, 1);
 | 
						|
		
 | 
						|
		sl->odd = s.odd;
 | 
						|
		sl->even = s.even;
 | 
						|
		
 | 
						|
		if (no_chk)
 | 
						|
			break;
 | 
						|
	
 | 
						|
		ks1 = crypto1_word(&s, prefix | c << 5, 1);
 | 
						|
		ks2 = crypto1_word(&s,0,0);
 | 
						|
		ks3 = crypto1_word(&s, 0,0);
 | 
						|
		nr = ks1 ^ (prefix | c << 5);
 | 
						|
		rr = ks2 ^ rresp;
 | 
						|
 | 
						|
		good = 1;
 | 
						|
		good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
 | 
						|
		good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
 | 
						|
		good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2,  8);
 | 
						|
		good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2,  0);
 | 
						|
		good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ BIT(ks3, 24);
 | 
						|
 | 
						|
		if(!good)
 | 
						|
			return sl;
 | 
						|
	}
 | 
						|
 | 
						|
	return ++sl;
 | 
						|
} 
 | 
						|
 | 
						|
 | 
						|
/** lfsr_common_prefix
 | 
						|
 * Implentation of the common prefix attack.
 | 
						|
 * Requires the 28 bit constant prefix used as reader nonce (pfx)
 | 
						|
 * The reader response used (rr)
 | 
						|
 * The keystream used to encrypt the observed NACK's (ks)
 | 
						|
 * The parity bits (par)
 | 
						|
 * It returns a zero terminated list of possible cipher states after the
 | 
						|
 * tag nonce was fed in
 | 
						|
 */
 | 
						|
struct Crypto1State*
 | 
						|
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8], uint8_t no_par)
 | 
						|
{
 | 
						|
	struct Crypto1State *statelist, *s;
 | 
						|
	uint32_t *odd, *even, *o, *e, top;
 | 
						|
 | 
						|
	odd = lfsr_prefix_ks(ks, 1);
 | 
						|
	even = lfsr_prefix_ks(ks, 0);
 | 
						|
 | 
						|
	statelist = malloc((sizeof *statelist) << 21);	//how large should be? 
 | 
						|
	if(!statelist || !odd || !even)
 | 
						|
	{
 | 
						|
				free(statelist);
 | 
						|
				free(odd);
 | 
						|
				free(even);
 | 
						|
                return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	s = statelist;
 | 
						|
	for(o = odd; *o != -1; ++o)
 | 
						|
		for(e = even; *e != -1; ++e)
 | 
						|
			for(top = 0; top < 64; ++top) {
 | 
						|
				*o = (*o & 0x1fffff) | (top << 21);
 | 
						|
				*e = (*e & 0x1fffff) | (top >> 3) << 21;
 | 
						|
				s = brute_top(pfx, rr, par, *o, *e, s, no_par);
 | 
						|
			}
 | 
						|
 | 
						|
	s->odd = s->even = -1;	
 | 
						|
	//printf("state count = %d\n",s-statelist);
 | 
						|
 | 
						|
	free(odd);
 | 
						|
	free(even);
 | 
						|
 | 
						|
	return statelist;
 | 
						|
}
 |