mirror of
https://github.com/Proxmark/proxmark3.git
synced 2024-11-11 09:59:45 +08:00
1250 lines
32 KiB
C
1250 lines
32 KiB
C
//-----------------------------------------------------------------------------
|
|
// Jonathan Westhues, split Nov 2006
|
|
//
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// Routines to support ISO 14443. This includes both the reader software and
|
|
// the `fake tag' modes. At the moment only the Type B modulation is
|
|
// supported.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "proxmark3.h"
|
|
#include "apps.h"
|
|
#include "util.h"
|
|
#include "string.h"
|
|
|
|
#include "iso14443crc.h"
|
|
|
|
//static void GetSamplesFor14443(int weTx, int n);
|
|
|
|
/*#define DEMOD_TRACE_SIZE 4096
|
|
#define READER_TAG_BUFFER_SIZE 2048
|
|
#define TAG_READER_BUFFER_SIZE 2048
|
|
#define DEMOD_DMA_BUFFER_SIZE 1024
|
|
*/
|
|
//=============================================================================
|
|
// An ISO 14443 Type B tag. We listen for commands from the reader, using
|
|
// a UART kind of thing that's implemented in software. When we get a
|
|
// frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
|
|
// If it's good, then we can do something appropriate with it, and send
|
|
// a response.
|
|
//=============================================================================
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Code up a string of octets at layer 2 (including CRC, we don't generate
|
|
// that here) so that they can be transmitted to the reader. Doesn't transmit
|
|
// them yet, just leaves them ready to send in ToSend[].
|
|
//-----------------------------------------------------------------------------
|
|
static void CodeIso14443bAsTag(const uint8_t *cmd, int len)
|
|
{
|
|
int i;
|
|
|
|
ToSendReset();
|
|
|
|
// Transmit a burst of ones, as the initial thing that lets the
|
|
// reader get phase sync. This (TR1) must be > 80/fs, per spec,
|
|
// but tag that I've tried (a Paypass) exceeds that by a fair bit,
|
|
// so I will too.
|
|
for(i = 0; i < 20; i++) {
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
}
|
|
|
|
// Send SOF.
|
|
for(i = 0; i < 10; i++) {
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
}
|
|
for(i = 0; i < 2; i++) {
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
}
|
|
|
|
for(i = 0; i < len; i++) {
|
|
int j;
|
|
uint8_t b = cmd[i];
|
|
|
|
// Start bit
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
|
|
// Data bits
|
|
for(j = 0; j < 8; j++) {
|
|
if(b & 1) {
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
} else {
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
}
|
|
b >>= 1;
|
|
}
|
|
|
|
// Stop bit
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
}
|
|
|
|
// Send SOF.
|
|
for(i = 0; i < 10; i++) {
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
ToSendStuffBit(0);
|
|
}
|
|
for(i = 0; i < 10; i++) {
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
}
|
|
|
|
// Convert from last byte pos to length
|
|
ToSendMax++;
|
|
|
|
// Add a few more for slop
|
|
ToSendMax += 2;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// The software UART that receives commands from the reader, and its state
|
|
// variables.
|
|
//-----------------------------------------------------------------------------
|
|
static struct {
|
|
enum {
|
|
STATE_UNSYNCD,
|
|
STATE_GOT_FALLING_EDGE_OF_SOF,
|
|
STATE_AWAITING_START_BIT,
|
|
STATE_RECEIVING_DATA,
|
|
STATE_ERROR_WAIT
|
|
} state;
|
|
uint16_t shiftReg;
|
|
int bitCnt;
|
|
int byteCnt;
|
|
int byteCntMax;
|
|
int posCnt;
|
|
uint8_t *output;
|
|
} Uart;
|
|
|
|
/* Receive & handle a bit coming from the reader.
|
|
*
|
|
* LED handling:
|
|
* LED A -> ON once we have received the SOF and are expecting the rest.
|
|
* LED A -> OFF once we have received EOF or are in error state or unsynced
|
|
*
|
|
* Returns: true if we received a EOF
|
|
* false if we are still waiting for some more
|
|
*/
|
|
static int Handle14443UartBit(int bit)
|
|
{
|
|
switch(Uart.state) {
|
|
case STATE_UNSYNCD:
|
|
LED_A_OFF();
|
|
if(!bit) {
|
|
// we went low, so this could be the beginning
|
|
// of an SOF
|
|
Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
|
|
Uart.posCnt = 0;
|
|
Uart.bitCnt = 0;
|
|
}
|
|
break;
|
|
|
|
case STATE_GOT_FALLING_EDGE_OF_SOF:
|
|
Uart.posCnt++;
|
|
if(Uart.posCnt == 2) {
|
|
if(bit) {
|
|
if(Uart.bitCnt >= 10) {
|
|
// we've seen enough consecutive
|
|
// zeros that it's a valid SOF
|
|
Uart.posCnt = 0;
|
|
Uart.byteCnt = 0;
|
|
Uart.state = STATE_AWAITING_START_BIT;
|
|
LED_A_ON(); // Indicate we got a valid SOF
|
|
} else {
|
|
// didn't stay down long enough
|
|
// before going high, error
|
|
Uart.state = STATE_ERROR_WAIT;
|
|
}
|
|
} else {
|
|
// do nothing, keep waiting
|
|
}
|
|
Uart.bitCnt++;
|
|
}
|
|
if(Uart.posCnt >= 4) Uart.posCnt = 0;
|
|
if(Uart.bitCnt > 14) {
|
|
// Give up if we see too many zeros without
|
|
// a one, too.
|
|
Uart.state = STATE_ERROR_WAIT;
|
|
}
|
|
break;
|
|
|
|
case STATE_AWAITING_START_BIT:
|
|
Uart.posCnt++;
|
|
if(bit) {
|
|
if(Uart.posCnt > 25) {
|
|
// stayed high for too long between
|
|
// characters, error
|
|
Uart.state = STATE_ERROR_WAIT;
|
|
}
|
|
} else {
|
|
// falling edge, this starts the data byte
|
|
Uart.posCnt = 0;
|
|
Uart.bitCnt = 0;
|
|
Uart.shiftReg = 0;
|
|
Uart.state = STATE_RECEIVING_DATA;
|
|
LED_A_ON(); // Indicate we're receiving
|
|
}
|
|
break;
|
|
|
|
case STATE_RECEIVING_DATA:
|
|
Uart.posCnt++;
|
|
if(Uart.posCnt == 2) {
|
|
// time to sample a bit
|
|
Uart.shiftReg >>= 1;
|
|
if(bit) {
|
|
Uart.shiftReg |= 0x200;
|
|
}
|
|
Uart.bitCnt++;
|
|
}
|
|
if(Uart.posCnt >= 4) {
|
|
Uart.posCnt = 0;
|
|
}
|
|
if(Uart.bitCnt == 10) {
|
|
if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
|
|
{
|
|
// this is a data byte, with correct
|
|
// start and stop bits
|
|
Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
|
|
Uart.byteCnt++;
|
|
|
|
if(Uart.byteCnt >= Uart.byteCntMax) {
|
|
// Buffer overflowed, give up
|
|
Uart.posCnt = 0;
|
|
Uart.state = STATE_ERROR_WAIT;
|
|
} else {
|
|
// so get the next byte now
|
|
Uart.posCnt = 0;
|
|
Uart.state = STATE_AWAITING_START_BIT;
|
|
}
|
|
} else if(Uart.shiftReg == 0x000) {
|
|
// this is an EOF byte
|
|
LED_A_OFF(); // Finished receiving
|
|
return TRUE;
|
|
} else {
|
|
// this is an error
|
|
Uart.posCnt = 0;
|
|
Uart.state = STATE_ERROR_WAIT;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case STATE_ERROR_WAIT:
|
|
// We're all screwed up, so wait a little while
|
|
// for whatever went wrong to finish, and then
|
|
// start over.
|
|
Uart.posCnt++;
|
|
if(Uart.posCnt > 10) {
|
|
Uart.state = STATE_UNSYNCD;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
Uart.state = STATE_UNSYNCD;
|
|
break;
|
|
}
|
|
|
|
// This row make the error blew circular buffer in hf 14b snoop
|
|
//if (Uart.state == STATE_ERROR_WAIT) LED_A_OFF(); // Error
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Receive a command (from the reader to us, where we are the simulated tag),
|
|
// and store it in the given buffer, up to the given maximum length. Keeps
|
|
// spinning, waiting for a well-framed command, until either we get one
|
|
// (returns TRUE) or someone presses the pushbutton on the board (FALSE).
|
|
//
|
|
// Assume that we're called with the SSC (to the FPGA) and ADC path set
|
|
// correctly.
|
|
//-----------------------------------------------------------------------------
|
|
static int GetIso14443CommandFromReader(uint8_t *received, int *len, int maxLen)
|
|
{
|
|
uint8_t mask;
|
|
int i, bit;
|
|
|
|
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
|
|
// only, since we are receiving, not transmitting).
|
|
// Signal field is off with the appropriate LED
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
|
|
|
|
|
|
// Now run a `software UART' on the stream of incoming samples.
|
|
Uart.output = received;
|
|
Uart.byteCntMax = maxLen;
|
|
Uart.state = STATE_UNSYNCD;
|
|
|
|
for(;;) {
|
|
WDT_HIT();
|
|
|
|
if(BUTTON_PRESS()) return FALSE;
|
|
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = 0x00;
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
|
|
mask = 0x80;
|
|
for(i = 0; i < 8; i++, mask >>= 1) {
|
|
bit = (b & mask);
|
|
if(Handle14443UartBit(bit)) {
|
|
*len = Uart.byteCnt;
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Main loop of simulated tag: receive commands from reader, decide what
|
|
// response to send, and send it.
|
|
//-----------------------------------------------------------------------------
|
|
void SimulateIso14443Tag(void)
|
|
{
|
|
static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
|
|
static const uint8_t response1[] = {
|
|
0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
|
|
0x00, 0x21, 0x85, 0x5e, 0xd7
|
|
};
|
|
|
|
uint8_t *resp;
|
|
int respLen;
|
|
|
|
uint8_t *resp1 = BigBuf_get_addr() + 800;
|
|
int resp1Len;
|
|
|
|
uint8_t *receivedCmd = BigBuf_get_addr();
|
|
int len;
|
|
|
|
int i;
|
|
|
|
int cmdsRecvd = 0;
|
|
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
memset(receivedCmd, 0x44, 400);
|
|
|
|
CodeIso14443bAsTag(response1, sizeof(response1));
|
|
memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
|
|
|
|
// We need to listen to the high-frequency, peak-detected path.
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
FpgaSetupSsc();
|
|
|
|
cmdsRecvd = 0;
|
|
|
|
for(;;) {
|
|
uint8_t b1, b2;
|
|
|
|
if(!GetIso14443CommandFromReader(receivedCmd, &len, 100)) {
|
|
Dbprintf("button pressed, received %d commands", cmdsRecvd);
|
|
break;
|
|
}
|
|
|
|
// Good, look at the command now.
|
|
|
|
if(len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len)==0) {
|
|
resp = resp1; respLen = resp1Len;
|
|
} else {
|
|
Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd);
|
|
// And print whether the CRC fails, just for good measure
|
|
ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2);
|
|
if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) {
|
|
// Not so good, try again.
|
|
DbpString("+++CRC fail");
|
|
} else {
|
|
DbpString("CRC passes");
|
|
}
|
|
break;
|
|
}
|
|
|
|
memset(receivedCmd, 0x44, 32);
|
|
|
|
cmdsRecvd++;
|
|
|
|
if(cmdsRecvd > 0x30) {
|
|
DbpString("many commands later...");
|
|
break;
|
|
}
|
|
|
|
if(respLen <= 0) continue;
|
|
|
|
// Modulate BPSK
|
|
// Signal field is off with the appropriate LED
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK);
|
|
AT91C_BASE_SSC->SSC_THR = 0xff;
|
|
FpgaSetupSsc();
|
|
|
|
// Transmit the response.
|
|
i = 0;
|
|
for(;;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
uint8_t b = resp[i];
|
|
|
|
AT91C_BASE_SSC->SSC_THR = b;
|
|
|
|
i++;
|
|
if(i > respLen) {
|
|
break;
|
|
}
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
(void)b;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
// An ISO 14443 Type B reader. We take layer two commands, code them
|
|
// appropriately, and then send them to the tag. We then listen for the
|
|
// tag's response, which we leave in the buffer to be demodulated on the
|
|
// PC side.
|
|
//=============================================================================
|
|
|
|
static struct {
|
|
enum {
|
|
DEMOD_UNSYNCD,
|
|
DEMOD_PHASE_REF_TRAINING,
|
|
DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
|
|
DEMOD_GOT_FALLING_EDGE_OF_SOF,
|
|
DEMOD_AWAITING_START_BIT,
|
|
DEMOD_RECEIVING_DATA,
|
|
DEMOD_ERROR_WAIT
|
|
} state;
|
|
int bitCount;
|
|
int posCount;
|
|
int thisBit;
|
|
int metric;
|
|
int metricN;
|
|
uint16_t shiftReg;
|
|
uint8_t *output;
|
|
int len;
|
|
int sumI;
|
|
int sumQ;
|
|
} Demod;
|
|
|
|
/*
|
|
* Handles reception of a bit from the tag
|
|
*
|
|
* LED handling:
|
|
* LED C -> ON once we have received the SOF and are expecting the rest.
|
|
* LED C -> OFF once we have received EOF or are unsynced
|
|
*
|
|
* Returns: true if we received a EOF
|
|
* false if we are still waiting for some more
|
|
*
|
|
*/
|
|
static RAMFUNC int Handle14443SamplesDemod(int ci, int cq)
|
|
{
|
|
int v;
|
|
|
|
// The soft decision on the bit uses an estimate of just the
|
|
// quadrant of the reference angle, not the exact angle.
|
|
#define MAKE_SOFT_DECISION() { \
|
|
if(Demod.sumI > 0) { \
|
|
v = ci; \
|
|
} else { \
|
|
v = -ci; \
|
|
} \
|
|
if(Demod.sumQ > 0) { \
|
|
v += cq; \
|
|
} else { \
|
|
v -= cq; \
|
|
} \
|
|
}
|
|
|
|
switch(Demod.state) {
|
|
case DEMOD_UNSYNCD:
|
|
v = ci;
|
|
if(v < 0) v = -v;
|
|
if(cq > 0) {
|
|
v += cq;
|
|
} else {
|
|
v -= cq;
|
|
}
|
|
if(v > 40) {
|
|
Demod.posCount = 0;
|
|
Demod.state = DEMOD_PHASE_REF_TRAINING;
|
|
Demod.sumI = 0;
|
|
Demod.sumQ = 0;
|
|
}
|
|
break;
|
|
|
|
case DEMOD_PHASE_REF_TRAINING:
|
|
if(Demod.posCount < 8) {
|
|
Demod.sumI += ci;
|
|
Demod.sumQ += cq;
|
|
} else if(Demod.posCount > 100) {
|
|
// error, waited too long
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
} else {
|
|
MAKE_SOFT_DECISION();
|
|
if(v < 0) {
|
|
Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
|
|
Demod.posCount = 0;
|
|
}
|
|
}
|
|
Demod.posCount++;
|
|
break;
|
|
|
|
case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
|
|
MAKE_SOFT_DECISION();
|
|
if(v < 0) {
|
|
Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
|
|
Demod.posCount = 0;
|
|
} else {
|
|
if(Demod.posCount > 100) {
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
}
|
|
}
|
|
Demod.posCount++;
|
|
break;
|
|
|
|
case DEMOD_GOT_FALLING_EDGE_OF_SOF:
|
|
MAKE_SOFT_DECISION();
|
|
if(v > 0) {
|
|
if(Demod.posCount < 12) {
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
} else {
|
|
LED_C_ON(); // Got SOF
|
|
Demod.state = DEMOD_AWAITING_START_BIT;
|
|
Demod.posCount = 0;
|
|
Demod.len = 0;
|
|
Demod.metricN = 0;
|
|
Demod.metric = 0;
|
|
}
|
|
} else {
|
|
if(Demod.posCount > 100) {
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
}
|
|
}
|
|
Demod.posCount++;
|
|
break;
|
|
|
|
case DEMOD_AWAITING_START_BIT:
|
|
MAKE_SOFT_DECISION();
|
|
if(v > 0) {
|
|
if(Demod.posCount > 10) {
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
}
|
|
} else {
|
|
Demod.bitCount = 0;
|
|
Demod.posCount = 1;
|
|
Demod.thisBit = v;
|
|
Demod.shiftReg = 0;
|
|
Demod.state = DEMOD_RECEIVING_DATA;
|
|
}
|
|
break;
|
|
|
|
case DEMOD_RECEIVING_DATA:
|
|
MAKE_SOFT_DECISION();
|
|
if(Demod.posCount == 0) {
|
|
Demod.thisBit = v;
|
|
Demod.posCount = 1;
|
|
} else {
|
|
Demod.thisBit += v;
|
|
|
|
if(Demod.thisBit > 0) {
|
|
Demod.metric += Demod.thisBit;
|
|
} else {
|
|
Demod.metric -= Demod.thisBit;
|
|
}
|
|
(Demod.metricN)++;
|
|
|
|
Demod.shiftReg >>= 1;
|
|
if(Demod.thisBit > 0) {
|
|
Demod.shiftReg |= 0x200;
|
|
}
|
|
|
|
Demod.bitCount++;
|
|
if(Demod.bitCount == 10) {
|
|
uint16_t s = Demod.shiftReg;
|
|
if((s & 0x200) && !(s & 0x001)) {
|
|
uint8_t b = (s >> 1);
|
|
Demod.output[Demod.len] = b;
|
|
Demod.len++;
|
|
Demod.state = DEMOD_AWAITING_START_BIT;
|
|
} else if(s == 0x000) {
|
|
// This is EOF
|
|
LED_C_OFF();
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
return TRUE;
|
|
} else {
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
}
|
|
}
|
|
Demod.posCount = 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
break;
|
|
}
|
|
|
|
if (Demod.state == DEMOD_UNSYNCD) LED_C_OFF(); // Not synchronized...
|
|
return FALSE;
|
|
}
|
|
static void DemodReset()
|
|
{
|
|
// Clear out the state of the "UART" that receives from the tag.
|
|
Demod.len = 0;
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
memset(Demod.output, 0x00, MAX_FRAME_SIZE);
|
|
}
|
|
static void DemodInit(uint8_t *data)
|
|
{
|
|
Demod.output = data;
|
|
DemodReset();
|
|
}
|
|
|
|
static void UartReset()
|
|
{
|
|
Uart.byteCntMax = MAX_FRAME_SIZE;
|
|
Uart.state = STATE_UNSYNCD;
|
|
Uart.byteCnt = 0;
|
|
Uart.bitCnt = 0;
|
|
}
|
|
static void UartInit(uint8_t *data)
|
|
{
|
|
Uart.output = data;
|
|
UartReset();
|
|
}
|
|
|
|
/*
|
|
* Demodulate the samples we received from the tag, also log to tracebuffer
|
|
* weTx: set to 'TRUE' if we behave like a reader
|
|
* set to 'FALSE' if we behave like a snooper
|
|
* quiet: set to 'TRUE' to disable debug output
|
|
*/
|
|
static void GetSamplesFor14443Demod(int weTx, int n, int quiet)
|
|
{
|
|
int max = 0;
|
|
int gotFrame = FALSE;
|
|
int lastRxCounter, ci, cq, samples = 0;
|
|
|
|
// Allocate memory from BigBuf for some buffers
|
|
// free all previous allocations first
|
|
BigBuf_free();
|
|
|
|
// The command (reader -> tag) that we're receiving.
|
|
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
|
|
|
|
// The response (tag -> reader) that we're receiving.
|
|
uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
|
|
|
|
// The DMA buffer, used to stream samples from the FPGA
|
|
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
|
|
|
|
// Set up the demodulator for tag -> reader responses.
|
|
DemodInit(receivedResponse);
|
|
// Set up the demodulator for the reader -> tag commands
|
|
UartInit(receivedCmd);
|
|
|
|
// Setup and start DMA.
|
|
FpgaSetupSscDma(dmaBuf, DMA_BUFFER_SIZE);
|
|
|
|
uint8_t *upTo= dmaBuf;
|
|
lastRxCounter = DMA_BUFFER_SIZE;
|
|
|
|
// Signal field is ON with the appropriate LED:
|
|
if (weTx) LED_D_ON(); else LED_D_OFF();
|
|
// And put the FPGA in the appropriate mode
|
|
FpgaWriteConfWord(
|
|
FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ |
|
|
(weTx ? 0 : FPGA_HF_READER_RX_XCORR_SNOOP));
|
|
|
|
for(;;) {
|
|
int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
|
|
if(behindBy > max) max = behindBy;
|
|
|
|
while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1))
|
|
> 2)
|
|
{
|
|
ci = upTo[0];
|
|
cq = upTo[1];
|
|
upTo += 2;
|
|
if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
|
|
upTo -= DMA_BUFFER_SIZE;
|
|
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
|
|
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
|
|
}
|
|
lastRxCounter -= 2;
|
|
if(lastRxCounter <= 0) {
|
|
lastRxCounter += DMA_BUFFER_SIZE;
|
|
}
|
|
|
|
samples += 2;
|
|
|
|
Handle14443UartBit(1);
|
|
Handle14443UartBit(1);
|
|
|
|
if(Handle14443SamplesDemod(ci, cq)) {
|
|
gotFrame = 1;
|
|
}
|
|
}
|
|
|
|
if(samples > 2000) {
|
|
break;
|
|
}
|
|
}
|
|
AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
|
|
if (!quiet) Dbprintf("%x %x %x", max, gotFrame, Demod.len);
|
|
//Tracing
|
|
if (tracing && Demod.len > 0) {
|
|
uint8_t parity[MAX_PARITY_SIZE];
|
|
GetParity(Demod.output , Demod.len, parity);
|
|
LogTrace(Demod.output,Demod.len, 0, 0, parity, FALSE);
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Read the tag's response. We just receive a stream of slightly-processed
|
|
// samples from the FPGA, which we will later do some signal processing on,
|
|
// to get the bits.
|
|
//-----------------------------------------------------------------------------
|
|
/*static void GetSamplesFor14443(int weTx, int n)
|
|
{
|
|
uint8_t *dest = (uint8_t *)BigBuf;
|
|
int c;
|
|
|
|
FpgaWriteConfWord(
|
|
FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ |
|
|
(weTx ? 0 : FPGA_HF_READER_RX_XCORR_SNOOP));
|
|
|
|
c = 0;
|
|
for(;;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = 0x43;
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
int8_t b;
|
|
b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
|
|
dest[c++] = (uint8_t)b;
|
|
|
|
if(c >= n) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}*/
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Transmit the command (to the tag) that was placed in ToSend[].
|
|
//-----------------------------------------------------------------------------
|
|
static void TransmitFor14443(void)
|
|
{
|
|
int c;
|
|
|
|
FpgaSetupSsc();
|
|
|
|
while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = 0xff;
|
|
}
|
|
|
|
// Signal field is ON with the appropriate Red LED
|
|
LED_D_ON();
|
|
// Signal we are transmitting with the Green LED
|
|
LED_B_ON();
|
|
FpgaWriteConfWord(
|
|
FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
|
|
|
|
for(c = 0; c < 10;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = 0xff;
|
|
c++;
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
|
|
(void)r;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
|
|
c = 0;
|
|
for(;;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = ToSend[c];
|
|
c++;
|
|
if(c >= ToSendMax) {
|
|
break;
|
|
}
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
|
|
(void)r;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
LED_B_OFF(); // Finished sending
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Code a layer 2 command (string of octets, including CRC) into ToSend[],
|
|
// so that it is ready to transmit to the tag using TransmitFor14443().
|
|
//-----------------------------------------------------------------------------
|
|
static void CodeIso14443bAsReader(const uint8_t *cmd, int len)
|
|
{
|
|
int i, j;
|
|
uint8_t b;
|
|
|
|
ToSendReset();
|
|
|
|
// Establish initial reference level
|
|
for(i = 0; i < 40; i++) {
|
|
ToSendStuffBit(1);
|
|
}
|
|
// Send SOF
|
|
for(i = 0; i < 10; i++) {
|
|
ToSendStuffBit(0);
|
|
}
|
|
|
|
for(i = 0; i < len; i++) {
|
|
// Stop bits/EGT
|
|
ToSendStuffBit(1);
|
|
ToSendStuffBit(1);
|
|
// Start bit
|
|
ToSendStuffBit(0);
|
|
// Data bits
|
|
b = cmd[i];
|
|
for(j = 0; j < 8; j++) {
|
|
if(b & 1) {
|
|
ToSendStuffBit(1);
|
|
} else {
|
|
ToSendStuffBit(0);
|
|
}
|
|
b >>= 1;
|
|
}
|
|
}
|
|
// Send EOF
|
|
ToSendStuffBit(1);
|
|
for(i = 0; i < 10; i++) {
|
|
ToSendStuffBit(0);
|
|
}
|
|
for(i = 0; i < 8; i++) {
|
|
ToSendStuffBit(1);
|
|
}
|
|
|
|
// And then a little more, to make sure that the last character makes
|
|
// it out before we switch to rx mode.
|
|
for(i = 0; i < 24; i++) {
|
|
ToSendStuffBit(1);
|
|
}
|
|
|
|
// Convert from last character reference to length
|
|
ToSendMax++;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Read an ISO 14443 tag. We send it some set of commands, and record the
|
|
// responses.
|
|
// The command name is misleading, it actually decodes the reponse in HEX
|
|
// into the output buffer (read the result using hexsamples, not hisamples)
|
|
//
|
|
// obsolete function only for test
|
|
//-----------------------------------------------------------------------------
|
|
void AcquireRawAdcSamplesIso14443(uint32_t parameter)
|
|
{
|
|
uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
|
|
|
|
SendRawCommand14443B(sizeof(cmd1),1,1,cmd1);
|
|
}
|
|
|
|
/**
|
|
Convenience function to encode, transmit and trace iso 14443b comms
|
|
**/
|
|
static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len)
|
|
{
|
|
CodeIso14443bAsReader(cmd, len);
|
|
TransmitFor14443();
|
|
if (tracing) {
|
|
uint8_t parity[MAX_PARITY_SIZE];
|
|
GetParity(cmd, len, parity);
|
|
LogTrace(cmd,len, 0, 0, parity, TRUE);
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Read a SRI512 ISO 14443 tag.
|
|
//
|
|
// SRI512 tags are just simple memory tags, here we're looking at making a dump
|
|
// of the contents of the memory. No anticollision algorithm is done, we assume
|
|
// we have a single tag in the field.
|
|
//
|
|
// I tried to be systematic and check every answer of the tag, every CRC, etc...
|
|
//-----------------------------------------------------------------------------
|
|
void ReadSTMemoryIso14443(uint32_t dwLast)
|
|
{
|
|
clear_trace();
|
|
set_tracing(TRUE);
|
|
|
|
uint8_t i = 0x00;
|
|
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
// Make sure that we start from off, since the tags are stateful;
|
|
// confusing things will happen if we don't reset them between reads.
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
SpinDelay(200);
|
|
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
FpgaSetupSsc();
|
|
|
|
// Now give it time to spin up.
|
|
// Signal field is on with the appropriate LED
|
|
LED_D_ON();
|
|
FpgaWriteConfWord(
|
|
FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
|
|
SpinDelay(200);
|
|
|
|
// First command: wake up the tag using the INITIATE command
|
|
uint8_t cmd1[] = { 0x06, 0x00, 0x97, 0x5b};
|
|
|
|
CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
|
|
// LED_A_ON();
|
|
GetSamplesFor14443Demod(TRUE, 2000,TRUE);
|
|
// LED_A_OFF();
|
|
|
|
if (Demod.len == 0) {
|
|
DbpString("No response from tag");
|
|
return;
|
|
} else {
|
|
Dbprintf("Randomly generated UID from tag (+ 2 byte CRC): %x %x %x",
|
|
Demod.output[0], Demod.output[1],Demod.output[2]);
|
|
}
|
|
// There is a response, SELECT the uid
|
|
DbpString("Now SELECT tag:");
|
|
cmd1[0] = 0x0E; // 0x0E is SELECT
|
|
cmd1[1] = Demod.output[0];
|
|
ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
|
|
CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
|
|
|
|
// LED_A_ON();
|
|
GetSamplesFor14443Demod(TRUE, 2000,TRUE);
|
|
// LED_A_OFF();
|
|
if (Demod.len != 3) {
|
|
Dbprintf("Expected 3 bytes from tag, got %d", Demod.len);
|
|
return;
|
|
}
|
|
// Check the CRC of the answer:
|
|
ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]);
|
|
if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) {
|
|
DbpString("CRC Error reading select response.");
|
|
return;
|
|
}
|
|
// Check response from the tag: should be the same UID as the command we just sent:
|
|
if (cmd1[1] != Demod.output[0]) {
|
|
Dbprintf("Bad response to SELECT from Tag, aborting: %x %x", cmd1[1], Demod.output[0]);
|
|
return;
|
|
}
|
|
// Tag is now selected,
|
|
// First get the tag's UID:
|
|
cmd1[0] = 0x0B;
|
|
ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]);
|
|
CodeAndTransmit14443bAsReader(cmd1, 3); // Only first three bytes for this one
|
|
|
|
// LED_A_ON();
|
|
GetSamplesFor14443Demod(TRUE, 2000,TRUE);
|
|
// LED_A_OFF();
|
|
if (Demod.len != 10) {
|
|
Dbprintf("Expected 10 bytes from tag, got %d", Demod.len);
|
|
return;
|
|
}
|
|
// The check the CRC of the answer (use cmd1 as temporary variable):
|
|
ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]);
|
|
if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) {
|
|
Dbprintf("CRC Error reading block! - Below: expected, got %x %x",
|
|
(cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]);
|
|
// Do not return;, let's go on... (we should retry, maybe ?)
|
|
}
|
|
Dbprintf("Tag UID (64 bits): %08x %08x",
|
|
(Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4],
|
|
(Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]);
|
|
|
|
// Now loop to read all 16 blocks, address from 0 to last block
|
|
Dbprintf("Tag memory dump, block 0 to %d",dwLast);
|
|
cmd1[0] = 0x08;
|
|
i = 0x00;
|
|
dwLast++;
|
|
for (;;) {
|
|
if (i == dwLast) {
|
|
DbpString("System area block (0xff):");
|
|
i = 0xff;
|
|
}
|
|
cmd1[1] = i;
|
|
ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
|
|
CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
|
|
|
|
// LED_A_ON();
|
|
GetSamplesFor14443Demod(TRUE, 2000,TRUE);
|
|
// LED_A_OFF();
|
|
if (Demod.len != 6) { // Check if we got an answer from the tag
|
|
DbpString("Expected 6 bytes from tag, got less...");
|
|
return;
|
|
}
|
|
// The check the CRC of the answer (use cmd1 as temporary variable):
|
|
ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]);
|
|
if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) {
|
|
Dbprintf("CRC Error reading block! - Below: expected, got %x %x",
|
|
(cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]);
|
|
// Do not return;, let's go on... (we should retry, maybe ?)
|
|
}
|
|
// Now print out the memory location:
|
|
Dbprintf("Address=%x, Contents=%x, CRC=%x", i,
|
|
(Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0],
|
|
(Demod.output[4]<<8)+Demod.output[5]);
|
|
if (i == 0xff) {
|
|
break;
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
// Finally, the `sniffer' combines elements from both the reader and
|
|
// simulated tag, to show both sides of the conversation.
|
|
//=============================================================================
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Record the sequence of commands sent by the reader to the tag, with
|
|
// triggering so that we start recording at the point that the tag is moved
|
|
// near the reader.
|
|
//-----------------------------------------------------------------------------
|
|
/*
|
|
* Memory usage for this function, (within BigBuf)
|
|
* 0-4095 : Demodulated samples receive (4096 bytes) - DEMOD_TRACE_SIZE
|
|
* 4096-6143 : Last Received command, 2048 bytes (reader->tag) - READER_TAG_BUFFER_SIZE
|
|
* 6144-8191 : Last Received command, 2048 bytes(tag->reader) - TAG_READER_BUFFER_SIZE
|
|
* 8192-9215 : DMA Buffer, 1024 bytes (samples) - DEMOD_DMA_BUFFER_SIZE
|
|
*/
|
|
void RAMFUNC SnoopIso14443(void)
|
|
{
|
|
// We won't start recording the frames that we acquire until we trigger;
|
|
// a good trigger condition to get started is probably when we see a
|
|
// response from the tag.
|
|
int triggered = TRUE;
|
|
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
BigBuf_free();
|
|
|
|
clear_trace();
|
|
set_tracing(TRUE);
|
|
|
|
// The DMA buffer, used to stream samples from the FPGA
|
|
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
|
|
int lastRxCounter;
|
|
uint8_t *upTo;
|
|
int ci, cq;
|
|
int maxBehindBy = 0;
|
|
|
|
// Count of samples received so far, so that we can include timing
|
|
// information in the trace buffer.
|
|
int samples = 0;
|
|
|
|
DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
|
|
UartInit(BigBuf_malloc(MAX_FRAME_SIZE));
|
|
|
|
// Print some debug information about the buffer sizes
|
|
Dbprintf("Snooping buffers initialized:");
|
|
Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
|
|
Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE);
|
|
Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE);
|
|
Dbprintf(" DMA: %i bytes", DMA_BUFFER_SIZE);
|
|
|
|
// Signal field is off with the appropriate LED
|
|
LED_D_OFF();
|
|
|
|
// And put the FPGA in the appropriate mode
|
|
FpgaWriteConfWord(
|
|
FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ |
|
|
FPGA_HF_READER_RX_XCORR_SNOOP);
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
|
|
// Setup for the DMA.
|
|
FpgaSetupSsc();
|
|
upTo = dmaBuf;
|
|
lastRxCounter = DMA_BUFFER_SIZE;
|
|
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
|
|
uint8_t parity[MAX_PARITY_SIZE];
|
|
LED_A_ON();
|
|
|
|
// And now we loop, receiving samples.
|
|
for(;;) {
|
|
int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
|
|
(DMA_BUFFER_SIZE-1);
|
|
if(behindBy > maxBehindBy) {
|
|
maxBehindBy = behindBy;
|
|
if(behindBy > (9*DMA_BUFFER_SIZE/10)) { // TODO: understand whether we can increase/decrease as we want or not?
|
|
Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
|
|
break;
|
|
}
|
|
}
|
|
if(behindBy < 2) continue;
|
|
|
|
ci = upTo[0];
|
|
cq = upTo[1];
|
|
upTo += 2;
|
|
lastRxCounter -= 2;
|
|
if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
|
|
upTo -= DMA_BUFFER_SIZE;
|
|
lastRxCounter += DMA_BUFFER_SIZE;
|
|
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
|
|
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
|
|
}
|
|
|
|
samples += 2;
|
|
|
|
if(Handle14443UartBit(ci & 1)) {
|
|
if(triggered && tracing) {
|
|
GetParity(Uart.output, Uart.byteCnt, parity);
|
|
LogTrace(Uart.output,Uart.byteCnt,samples, samples,parity,TRUE);
|
|
}
|
|
if(Uart.byteCnt==0) Dbprintf("[1] Error, Uart.byteCnt==0, Uart.bitCnt=%d", Uart.bitCnt);
|
|
|
|
/* And ready to receive another command. */
|
|
UartReset();
|
|
/* And also reset the demod code, which might have been */
|
|
/* false-triggered by the commands from the reader. */
|
|
DemodReset();
|
|
}
|
|
if(Handle14443UartBit(cq & 1)) {
|
|
if(triggered && tracing) {
|
|
GetParity(Uart.output, Uart.byteCnt, parity);
|
|
LogTrace(Uart.output,Uart.byteCnt,samples, samples,parity,TRUE);
|
|
}
|
|
if(Uart.byteCnt==0) Dbprintf("[2] Error, Uart.byteCnt==0, Uart.bitCnt=%d", Uart.bitCnt);
|
|
|
|
/* And ready to receive another command. */
|
|
UartReset();
|
|
/* And also reset the demod code, which might have been */
|
|
/* false-triggered by the commands from the reader. */
|
|
DemodReset();
|
|
}
|
|
|
|
if(Handle14443SamplesDemod(ci, cq)) {
|
|
|
|
//Use samples as a time measurement
|
|
if(tracing)
|
|
{
|
|
uint8_t parity[MAX_PARITY_SIZE];
|
|
GetParity(Demod.output, Demod.len, parity);
|
|
LogTrace(Demod.output,Demod.len,samples, samples,parity,FALSE);
|
|
}
|
|
triggered = TRUE;
|
|
LED_A_OFF();
|
|
LED_B_ON();
|
|
|
|
// And ready to receive another response.
|
|
DemodReset();
|
|
}
|
|
WDT_HIT();
|
|
|
|
if(!tracing) {
|
|
DbpString("Reached trace limit");
|
|
break;
|
|
}
|
|
|
|
if(BUTTON_PRESS()) {
|
|
DbpString("cancelled");
|
|
break;
|
|
}
|
|
}
|
|
FpgaDisableSscDma();
|
|
LED_A_OFF();
|
|
LED_B_OFF();
|
|
LED_C_OFF();
|
|
AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
|
|
DbpString("Snoop statistics:");
|
|
Dbprintf(" Max behind by: %i", maxBehindBy);
|
|
Dbprintf(" Uart State: %x", Uart.state);
|
|
Dbprintf(" Uart ByteCnt: %i", Uart.byteCnt);
|
|
Dbprintf(" Uart ByteCntMax: %i", Uart.byteCntMax);
|
|
Dbprintf(" Trace length: %i", BigBuf_get_traceLen());
|
|
}
|
|
|
|
/*
|
|
* Send raw command to tag ISO14443B
|
|
* @Input
|
|
* datalen len of buffer data
|
|
* recv bool when true wait for data from tag and send to client
|
|
* powerfield bool leave the field on when true
|
|
* data buffer with byte to send
|
|
*
|
|
* @Output
|
|
* none
|
|
*
|
|
*/
|
|
|
|
void SendRawCommand14443B(uint32_t datalen, uint32_t recv,uint8_t powerfield, uint8_t data[])
|
|
{
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
if(!powerfield)
|
|
{
|
|
// Make sure that we start from off, since the tags are stateful;
|
|
// confusing things will happen if we don't reset them between reads.
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LED_D_OFF();
|
|
SpinDelay(200);
|
|
}
|
|
|
|
if(!GETBIT(GPIO_LED_D))
|
|
{
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
FpgaSetupSsc();
|
|
|
|
// Now give it time to spin up.
|
|
// Signal field is on with the appropriate LED
|
|
LED_D_ON();
|
|
FpgaWriteConfWord(
|
|
FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
|
|
SpinDelay(200);
|
|
}
|
|
|
|
CodeAndTransmit14443bAsReader(data, datalen);
|
|
|
|
if(recv)
|
|
{
|
|
uint16_t iLen = MIN(Demod.len,USB_CMD_DATA_SIZE);
|
|
GetSamplesFor14443Demod(TRUE, 2000, TRUE);
|
|
cmd_send(CMD_ACK,iLen,0,0,Demod.output,iLen);
|
|
}
|
|
if(!powerfield)
|
|
{
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LED_D_OFF();
|
|
}
|
|
}
|
|
|