proxmark3/common/i2c.c

612 lines
12 KiB
C
Raw Normal View History

//-----------------------------------------------------------------------------
// Willok, June 2018
// Edits by Iceman, July 2018
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// The main i2c code, for communications with smart card module
//-----------------------------------------------------------------------------
#include "i2c.h"
// <09><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define GPIO_RST AT91C_PIO_PA1
#define GPIO_SCL AT91C_PIO_PA5
#define GPIO_SDA AT91C_PIO_PA7
#define SCL_H HIGH(GPIO_SCL)
#define SCL_L LOW(GPIO_SCL)
#define SDA_H HIGH(GPIO_SDA)
#define SDA_L LOW(GPIO_SDA)
#define SCL_read (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SCL)
#define SDA_read (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SDA)
2018-07-05 20:38:31 +08:00
#define I2C_ERROR "I2C_WaitAck Error"
2018-07-04 21:29:27 +08:00
volatile unsigned long c;
// ֱ<><D6B1>ʹ<EFBFBD><CAB9>ѭ<EFBFBD><D1AD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1>һ<EFBFBD><D2BB>ѭ<EFBFBD><D1AD> 6 <20><>ָ<EFBFBD>48M<38><4D> Delay=1 <20><><EFBFBD><EFBFBD>Ϊ 200kbps
2018-07-04 21:29:27 +08:00
//void I2CSpinDelayClk(uint16_t delay) ;
void __attribute__((optimize("O0"))) I2CSpinDelayClk(uint16_t delay) {
for (c = delay * 2; c; c--) {};
}
2018-07-04 21:29:27 +08:00
/*
#define I2C_DELAY_1CLK I2CSpinDelayClk(1)
#define I2C_DELAY_2CLK I2CSpinDelayClk(2)
#define I2C_DELAY_XCLK(x) I2CSpinDelayClk((x))
*/
// ͨѶ<CDA8>ӳٺ<D3B3><D9BA><EFBFBD> ommunication delay function
#define I2C_DELAY_1CLK I2C_DELAY_1()
#define I2C_DELAY_2CLK I2C_DELAY_2()
#define I2C_DELAY_XCLK(x) I2C_DELAY_X((x))
void I2C_DELAY_1(void) { I2CSpinDelayClk(1);}
void I2C_DELAY_2(void) { I2CSpinDelayClk(2);}
void I2C_DELAY_X(uint16_t delay) { I2CSpinDelayClk(delay);}
void I2C_init(void) {
// <20><><EFBFBD>ø<EFBFBD>λ<EFBFBD><CEBB><EFBFBD>ţ<EFBFBD><C5A3>ر<EFBFBD><D8B1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ĭ<EFBFBD>ϸ<EFBFBD>
// Configure reset pin, close up pull up, push-pull output, default high
AT91C_BASE_PIOA->PIO_PPUDR = GPIO_RST;
AT91C_BASE_PIOA->PIO_MDDR = GPIO_RST;
// <20><><EFBFBD><EFBFBD> I2C <20><><EFBFBD>ţ<EFBFBD><C5A3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>©<EFBFBD><C2A9><EFBFBD><EFBFBD>
// Configure I2C pin, open up, open leakage
AT91C_BASE_PIOA->PIO_PPUER = GPIO_SCL | GPIO_SDA; // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Open up the pull up
AT91C_BASE_PIOA->PIO_MDER = GPIO_SCL | GPIO_SDA;
// Ĭ<><C4AC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȫ<EFBFBD><C8AB><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// default three lines all pull up
AT91C_BASE_PIOA->PIO_SODR = GPIO_SCL | GPIO_SDA | GPIO_RST;
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// allow output
AT91C_BASE_PIOA->PIO_OER = GPIO_SCL | GPIO_SDA | GPIO_RST;
AT91C_BASE_PIOA->PIO_PER = GPIO_SCL | GPIO_SDA | GPIO_RST;
}
// <20><><EFBFBD>ø<EFBFBD>λ״̬
// set the reset state
void I2C_SetResetStatus(uint8_t LineRST, uint8_t LineSCK, uint8_t LineSDA) {
if (LineRST)
HIGH(GPIO_RST);
else
LOW(GPIO_RST);
if (LineSCK)
HIGH(GPIO_SCL);
else
LOW(GPIO_SCL);
if (LineSDA)
HIGH(GPIO_SDA);
else
LOW(GPIO_SDA);
}
// <20><>λ<EFBFBD><CEBB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// Reset the SIM_Adapter, then enter the main program
// Note: the SIM_Adapter will not enter the main program after power up. Please run this function before use SIM_Adapter.
void I2C_Reset_EnterMainProgram(void) {
I2C_SetResetStatus(0, 0, 0); // <09><><EFBFBD>͸<EFBFBD>λ<EFBFBD><CEBB>
SpinDelay(100);
I2C_SetResetStatus(1, 0, 0); // <09><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>λ
SpinDelay(100);
I2C_SetResetStatus(1, 1, 1); // <09><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
}
// <20><>λ<EFBFBD><CEBB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ģʽ
// Reset the SIM_Adapter, then enter the bootloader program
// Reserve<76><65>For firmware update.
void I2C_Reset_EnterBootloader(void) {
I2C_SetResetStatus(0, 1, 1); // <09><><EFBFBD>͸<EFBFBD>λ<EFBFBD><CEBB>
SpinDelay(100);
I2C_SetResetStatus(1, 1, 1); // <09><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>λ
}
// <09>ȴ<EFBFBD>ʱ<EFBFBD>ӱ<EFBFBD><D3B1><EFBFBD>
// Wait for the clock to go High.
2018-07-04 21:29:27 +08:00
volatile uint16_t count;
bool WaitSCL_H(void) {
2018-07-04 21:29:27 +08:00
count = 5000;
while (count--) {
if (SCL_read) {
return true;
}
I2C_DELAY_1CLK;
}
return false;
}
bool I2C_Start(void) {
I2C_DELAY_XCLK(4);
SDA_H;
I2C_DELAY_1CLK;
SCL_H;
if (!WaitSCL_H()) return false;
I2C_DELAY_2CLK;
if (!SCL_read) return false;
if (!SDA_read) return false;
SDA_L; I2C_DELAY_2CLK;
return true;
}
// send i2c STOP
void I2C_Stop(void) {
SCL_L; I2C_DELAY_2CLK;
SDA_L; I2C_DELAY_2CLK;
SCL_H; I2C_DELAY_2CLK;
SDA_H;
I2C_DELAY_2CLK;
I2C_DELAY_2CLK;
I2C_DELAY_2CLK;
I2C_DELAY_2CLK;
}
// Send i2c ACK
void I2C_Ack(void) {
SCL_L; I2C_DELAY_2CLK;
SDA_L; I2C_DELAY_2CLK;
SCL_H; I2C_DELAY_2CLK;
SCL_L; I2C_DELAY_2CLK;
}
// Send i2c NACK
void I2C_NoAck(void) {
SCL_L; I2C_DELAY_2CLK;
SDA_H; I2C_DELAY_2CLK;
SCL_H; I2C_DELAY_2CLK;
SCL_L; I2C_DELAY_2CLK;
}
bool I2C_WaitAck(void) {
SCL_L; I2C_DELAY_1CLK;
SDA_H; I2C_DELAY_1CLK;
SCL_H;
if (!WaitSCL_H())
return false;
I2C_DELAY_2CLK;
if (SDA_read) {
SCL_L;
return false;
}
SCL_L;
return true;
}
void I2C_SendByte(uint8_t data) {
uint8_t i = 8;
while (i--) {
SCL_L; I2C_DELAY_1CLK;
if (data & 0x80)
SDA_H;
else
SDA_L;
data <<= 1;
I2C_DELAY_1CLK;
SCL_H;
if (!WaitSCL_H())
return;
I2C_DELAY_2CLK;
}
SCL_L;
}
2018-07-04 21:29:27 +08:00
uint8_t I2C_ReadByte(void) {
uint8_t i = 8, b = 0;
SDA_H;
while (i--) {
b <<= 1;
SCL_L; I2C_DELAY_2CLK;
SCL_H;
if (!WaitSCL_H())
return 0;
I2C_DELAY_2CLK;
if (SDA_read)
b |= 0x01;
}
SCL_L;
return b;
}
2018-07-05 22:32:10 +08:00
// Only send address, and cmd. For ATR
bool I2C_WriteCmd(uint8_t device_cmd, uint8_t device_address) {
bool bBreak = true;
do {
if (!I2C_Start())
return false;
I2C_SendByte(device_address & 0xFE);
if (!I2C_WaitAck())
break;
I2C_SendByte(device_cmd);
if (!I2C_WaitAck())
break;
bBreak = false;
} while (false);
if (bBreak) {
I2C_Stop();
if ( MF_DBGLEVEL > 3 ) DbpString(I2C_ERROR);
return false;
}
I2C_Stop();
return true;
}
// д<><D0B4>1<EFBFBD>ֽ<EFBFBD><D6BD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>д<EFBFBD><D0B4><EFBFBD><EFBFBD><EFBFBD>ݣ<EFBFBD><DDA3><EFBFBD>д<EFBFBD><D0B4><EFBFBD><EFBFBD>ַ<EFBFBD><D6B7><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͣ<EFBFBD>
// Writes 1 byte data (Data to be written,command to be written , SlaveDevice address ).
bool I2C_WriteByte(uint8_t data, uint8_t device_cmd, uint8_t device_address) {
bool bBreak = true;
do {
if (!I2C_Start())
return false;
I2C_SendByte(device_address & 0xFE);
if (!I2C_WaitAck())
break;
I2C_SendByte(device_cmd);
if (!I2C_WaitAck())
break;
I2C_SendByte(data);
if (!I2C_WaitAck())
break;
bBreak = false;
} while (false);
if (bBreak) {
I2C_Stop();
2018-07-05 20:38:31 +08:00
if ( MF_DBGLEVEL > 3 ) DbpString(I2C_ERROR);
return false;
}
I2C_Stop();
return true;
}
// д<><D0B4>1<EFBFBD><31><EFBFBD><EFBFBD><EFBFBD>ݣ<EFBFBD><DDA3><EFBFBD>д<EFBFBD><D0B4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ַ<EFBFBD><D6B7><EFBFBD><EFBFBD>д<EFBFBD><EFBFBD>ȣ<EFBFBD><C8A3><EFBFBD>д<EFBFBD><D0B4><EFBFBD><EFBFBD>ַ<EFBFBD><D6B7><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͣ<EFBFBD>
// Write 1 strings of data (Array address, length, command to be written , SlaveDevice address ).
// len = uint8 (max buffer to write 256bytes)
bool I2C_BufferWrite(uint8_t *data, uint8_t len, uint8_t device_cmd, uint8_t device_address) {
bool bBreak = true;
do {
if (!I2C_Start())
return false;
I2C_SendByte(device_address & 0xFE);
if (!I2C_WaitAck())
break;
I2C_SendByte(device_cmd);
if (!I2C_WaitAck())
break;
while (len) {
2018-07-05 20:38:31 +08:00
I2C_SendByte(*data);
if (!I2C_WaitAck())
break;
len--;
data++;
}
if (len == 0)
bBreak = false;
} while (false);
2018-07-05 20:38:31 +08:00
I2C_Stop();
if (bBreak) {
2018-07-05 20:38:31 +08:00
if ( MF_DBGLEVEL > 3 ) DbpString(I2C_ERROR);
return false;
}
return true;
}
// <20><><EFBFBD><EFBFBD>1<EFBFBD><31><EFBFBD><EFBFBD><EFBFBD>ݣ<EFBFBD><DDA3><EFBFBD><EFBFBD>Ŷ<EFBFBD><C5B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ݣ<EFBFBD><DDA3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȣ<EFBFBD><C8A3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ַ<EFBFBD><D6B7><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͣ<EFBFBD>
// read 1 strings of data (Data storage array, Readout length, command to be written , SlaveDevice address ).
// len = uint8 (max buffer to read 256bytes)
uint8_t I2C_BufferRead(uint8_t *data, uint8_t len, uint8_t device_cmd, uint8_t device_address) {
bool bBreak = true;
uint8_t readcount = 0;
// sending
do {
if (!I2C_Start())
return 0;
// 0xB0 or 0xC0 i2c write
I2C_SendByte(device_address & 0xFE);
if (!I2C_WaitAck())
break;
I2C_SendByte(device_cmd);
if (!I2C_WaitAck())
break;
// 0xB1 or 0xC1 read
I2C_Start();
I2C_SendByte(device_address | 1);
if (!I2C_WaitAck())
break;
bBreak = false;
} while (false);
if (bBreak) {
I2C_Stop();
2018-07-05 20:38:31 +08:00
if ( MF_DBGLEVEL > 3 ) DbpString(I2C_ERROR);
return 0;
}
// reading
while (len) {
len--;
2018-07-04 21:29:27 +08:00
*data = I2C_ReadByte();
// <20><>ȡ<EFBFBD>ĵ<EFBFBD>һ<EFBFBD><D2BB><EFBFBD>ֽ<EFBFBD>Ϊ<EFBFBD><CEAA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// The first byte read is the message length
if (!readcount && (len > *data))
len = *data;
if (len == 0)
I2C_NoAck();
else
I2C_Ack();
data++;
readcount++;
}
I2C_Stop();
return readcount;
}
2018-07-05 20:38:31 +08:00
uint8_t I2C_ReadFW(uint8_t *data, uint8_t len, uint8_t msb, uint8_t lsb, uint8_t device_address) {
//START, 0xB0, 0x00, 0x00, START, 0xB1, xx, yy, zz, ......, STOP
bool bBreak = true;
uint8_t readcount = 0;
// sending
do {
if (!I2C_Start())
return 0;
// 0xB0 or 0xC0 i2c write
I2C_SendByte(device_address & 0xFE);
if (!I2C_WaitAck())
break;
// msb
I2C_SendByte(msb);
if (!I2C_WaitAck())
break;
// lsb
I2C_SendByte(lsb);
if (!I2C_WaitAck())
break;
// 0xB1 or 0xC1 read
I2C_Start();
I2C_SendByte(device_address | 1);
if (!I2C_WaitAck())
break;
bBreak = false;
} while (false);
if (bBreak) {
I2C_Stop();
2018-07-05 20:38:31 +08:00
if ( MF_DBGLEVEL > 3 ) DbpString(I2C_ERROR);
return 0;
}
// reading
while (len) {
len--;
*data = I2C_ReadByte();
if (len == 0)
I2C_NoAck();
else
I2C_Ack();
data++;
readcount++;
}
I2C_Stop();
return readcount;
}
2018-07-05 20:38:31 +08:00
bool I2C_WriteFW(uint8_t *data, uint8_t len, uint8_t msb, uint8_t lsb, uint8_t device_address) {
//START, 0xB0, 0x00, 0x00, xx, yy, zz, ......, STOP
bool bBreak = true;
do {
if (!I2C_Start())
return false;
// 0xB0
I2C_SendByte(device_address & 0xFE);
if (!I2C_WaitAck())
break;
// msb
I2C_SendByte(msb);
if (!I2C_WaitAck())
break;
// lsb
I2C_SendByte(lsb);
if (!I2C_WaitAck())
break;
while (len) {
I2C_SendByte(*data);
if (!I2C_WaitAck())
break;
len--;
data++;
}
if (len == 0)
bBreak = false;
} while (false);
I2C_Stop();
if (bBreak) {
if ( MF_DBGLEVEL > 3 ) DbpString(I2C_ERROR);
return false;
}
return true;
}
2018-07-04 21:29:27 +08:00
void I2C_print_status(void) {
I2C_init();
I2C_Reset_EnterMainProgram();
2018-07-04 21:29:27 +08:00
uint8_t resp[4] = {0};
uint8_t len = I2C_BufferRead(resp, 4, I2C_DEVICE_CMD_GETVERSION, I2C_DEVICE_ADDRESS_MAIN);
DbpString("Smart card module (ISO 7816)");
2018-07-05 20:38:31 +08:00
if ( len )
Dbprintf(" FW version................v%x.%02x", resp[1], resp[2]);
else
DbpString(" FW version................FAILED");
2018-07-05 22:32:10 +08:00
}
void SmartCardAtr(void) {
StartTicks();
I2C_Reset_EnterMainProgram();
// Send ATR
// start [C0 01] stop
I2C_WriteCmd(I2C_DEVICE_CMD_GENERATE_ATR, I2C_DEVICE_ADDRESS_MAIN);
// writing takes time.
WaitMS(50);
uint8_t resp[31] = {0};
smart_card_atr_t *card = (smart_card_atr_t *)resp;
// start [C0 03 start C1 len aa bb cc stop]
uint8_t len = I2C_BufferRead(card->atr, sizeof(card->atr), I2C_DEVICE_CMD_READ, I2C_DEVICE_ADDRESS_MAIN);
card->atr_len = len;
// print ATR
Dbhexdump(len, resp, false);
StopTicks();
cmd_send(CMD_ACK, len, 0, 0, resp, sizeof(smart_card_atr_t));
}
void SmartCardRaw( uint64_t arg0, uint8_t *data ) {
#define ISO7618_MAX_FRAME 255
StartTicks();
I2C_Reset_EnterMainProgram();
// Send ATR
// start [C0 01] stop
I2C_WriteCmd(I2C_DEVICE_CMD_GENERATE_ATR, I2C_DEVICE_ADDRESS_MAIN);
// writing takes time.
WaitMS(50);
// sample:
// start [C0 02] A0 A4 00 00 02 stop
// asBytes = A0 A4 00 00 02
// arg0 = len 5
I2C_BufferWrite(data, arg0, I2C_DEVICE_CMD_SEND, I2C_DEVICE_ADDRESS_MAIN);
uint8_t *resp = BigBuf_malloc(ISO7618_MAX_FRAME);
// start [C0 03 start C1 len aa bb cc stop]
uint8_t len = I2C_BufferRead(resp, ISO7618_MAX_FRAME, I2C_DEVICE_CMD_READ, I2C_DEVICE_ADDRESS_MAIN);
StopTicks();
cmd_send(CMD_ACK, len, 0, 0, resp, len);
}
void SmartCardUpgrade(uint64_t arg0) {
#define I2C_BLOCK_SIZE 128
// write. Sector0, with 11,22,33,44
// erase is 128bytes.
StartTicks();
I2C_Reset_EnterBootloader();
bool isOK = true;
uint8_t res = 0;
uint16_t length = arg0;
uint16_t pos = 0;
uint8_t *fwdata = BigBuf_get_addr();
uint8_t *verfiydata = BigBuf_malloc(I2C_BLOCK_SIZE);
while (length) {
uint8_t msb = (pos >> 8) & 0xFF;
uint8_t lsb = pos & 0xFF;
Dbprintf("FW %02X %02X", msb, lsb);
size_t size = MIN(I2C_BLOCK_SIZE, length);
// write
res = I2C_WriteFW(fwdata+pos, size, msb, lsb, I2C_DEVICE_ADDRESS_BOOT);
if ( !res ) {
Dbprintf("Writing failed");
isOK = false;
break;
}
// writing takes time.
WaitMS(50);
// read
res = I2C_ReadFW(verfiydata, size, msb, lsb, I2C_DEVICE_ADDRESS_BOOT);
if ( res == 0) {
Dbprintf("Reading back failed");
isOK = false;
break;
}
// cmp
if ( 0 != memcmp(fwdata+pos, verfiydata, size)) {
Dbprintf("not equal data");
isOK = false;
break;
}
length -= size;
pos += size;
}
StopTicks();
cmd_send(CMD_ACK, isOK, pos, 0, 0, 0);
}