proxmark3/armsrc/hitag2.c

1396 lines
41 KiB
C
Raw Normal View History

//-----------------------------------------------------------------------------
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Hitag2 emulation (preliminary test version)
//
// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
//-----------------------------------------------------------------------------
// Hitag2 complete rewrite of the code
// - Fixed modulation/encoding issues
// - Rewrote code for transponder emulation
// - Added snooping of transponder communication
// - Added reader functionality
//
// (c) 2012 Roel Verdult
//-----------------------------------------------------------------------------
2009-08-31 08:47:12 +08:00
#include "proxmark3.h"
2009-08-31 08:47:12 +08:00
#include "apps.h"
#include "util.h"
#include "hitag2.h"
2010-02-21 08:10:28 +08:00
#include "string.h"
#include "BigBuf.h"
2009-08-31 08:47:12 +08:00
static bool bQuiet;
static bool bCrypto;
static bool bAuthenticating;
static bool bPwd;
static bool bSuccessful;
2009-08-31 08:47:12 +08:00
struct hitag2_tag {
uint32_t uid;
enum {
TAG_STATE_RESET = 0x01, // Just powered up, awaiting GetSnr
TAG_STATE_ACTIVATING = 0x02 , // In activation phase (password mode), sent UID, awaiting reader password
TAG_STATE_ACTIVATED = 0x03, // Activation complete, awaiting read/write commands
TAG_STATE_WRITING = 0x04, // In write command, awaiting sector contents to be written
2009-08-31 08:47:12 +08:00
} state;
unsigned int active_sector;
byte_t crypto_active;
uint64_t cs;
byte_t sectors[12][4];
2009-08-31 08:47:12 +08:00
};
static struct hitag2_tag tag = {
.state = TAG_STATE_RESET,
.sectors = { // Password mode: | Crypto mode:
[0] = { 0x02, 0x4e, 0x02, 0x20}, // UID | UID
[1] = { 0x4d, 0x49, 0x4b, 0x52}, // Password RWD | 32 bit LSB key
[2] = { 0x20, 0xf0, 0x4f, 0x4e}, // Reserved | 16 bit MSB key, 16 bit reserved
[3] = { 0x0e, 0xaa, 0x48, 0x54}, // Configuration, password TAG | Configuration, password TAG
[4] = { 0x46, 0x5f, 0x4f, 0x4b}, // Data: F_OK
[5] = { 0x55, 0x55, 0x55, 0x55}, // Data: UUUU
[6] = { 0xaa, 0xaa, 0xaa, 0xaa}, // Data: ....
[7] = { 0x55, 0x55, 0x55, 0x55}, // Data: UUUU
[8] = { 0x00, 0x00, 0x00, 0x00}, // RSK Low
[9] = { 0x00, 0x00, 0x00, 0x00}, // RSK High
[10] = { 0x00, 0x00, 0x00, 0x00}, // RCF
[11] = { 0x00, 0x00, 0x00, 0x00}, // SYNC
},
2009-08-31 08:47:12 +08:00
};
// ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
// Historically it used to be FREE_BUFFER_SIZE, which was 2744.
#define AUTH_TABLE_LENGTH 2744
static byte_t* auth_table;
static size_t auth_table_pos = 0;
static size_t auth_table_len = AUTH_TABLE_LENGTH;
static byte_t password[4];
static byte_t NrAr[8];
static byte_t key[8];
static uint64_t cipher_state;
2009-08-31 08:47:12 +08:00
/* Following is a modified version of cryptolib.com/ciphers/hitag2/ */
// Software optimized 48-bit Philips/NXP Mifare Hitag2 PCF7936/46/47/52 stream cipher algorithm by I.C. Wiener 2006-2007.
// For educational purposes only.
// No warranties or guarantees of any kind.
// This code is released into the public domain by its author.
// Basic macros:
#define u8 uint8_t
#define u32 uint32_t
#define u64 uint64_t
#define rev8(x) ((((x)>>7)&1)+((((x)>>6)&1)<<1)+((((x)>>5)&1)<<2)+((((x)>>4)&1)<<3)+((((x)>>3)&1)<<4)+((((x)>>2)&1)<<5)+((((x)>>1)&1)<<6)+(((x)&1)<<7))
#define rev16(x) (rev8 (x)+(rev8 (x>> 8)<< 8))
#define rev32(x) (rev16(x)+(rev16(x>>16)<<16))
#define rev64(x) (rev32(x)+(rev32(x>>32)<<32))
#define bit(x,n) (((x)>>(n))&1)
#define bit32(x,n) ((((x)[(n)>>5])>>((n)))&1)
#define inv32(x,i,n) ((x)[(i)>>5]^=((u32)(n))<<((i)&31))
#define rotl64(x, n) ((((u64)(x))<<((n)&63))+(((u64)(x))>>((0-(n))&63)))
// Single bit Hitag2 functions:
#define i4(x,a,b,c,d) ((u32)((((x)>>(a))&1)+(((x)>>(b))&1)*2+(((x)>>(c))&1)*4+(((x)>>(d))&1)*8))
static const u32 ht2_f4a = 0x2C79; // 0010 1100 0111 1001
static const u32 ht2_f4b = 0x6671; // 0110 0110 0111 0001
static const u32 ht2_f5c = 0x7907287B; // 0111 1001 0000 0111 0010 1000 0111 1011
static u32 _f20 (const u64 x)
{
2016-01-10 00:19:09 +08:00
u32 i5;
2009-08-31 08:47:12 +08:00
i5 = ((ht2_f4a >> i4 (x, 1, 2, 4, 5)) & 1)* 1
+ ((ht2_f4b >> i4 (x, 7,11,13,14)) & 1)* 2
+ ((ht2_f4b >> i4 (x,16,20,22,25)) & 1)* 4
+ ((ht2_f4b >> i4 (x,27,28,30,32)) & 1)* 8
+ ((ht2_f4a >> i4 (x,33,42,43,45)) & 1)*16;
2009-08-31 08:47:12 +08:00
return (ht2_f5c >> i5) & 1;
}
static u64 _hitag2_init (const u64 key, const u32 serial, const u32 IV)
{
2016-01-10 00:19:09 +08:00
u32 i;
u64 x = ((key & 0xFFFF) << 32) + serial;
2009-08-31 08:47:12 +08:00
for (i = 0; i < 32; i++)
{
x >>= 1;
x += (u64) (_f20 (x) ^ (((IV >> i) ^ (key >> (i+16))) & 1)) << 47;
}
return x;
}
static u64 _hitag2_round (u64 *state)
{
2016-01-10 00:19:09 +08:00
u64 x = *state;
2009-08-31 08:47:12 +08:00
x = (x >> 1) +
((((x >> 0) ^ (x >> 2) ^ (x >> 3) ^ (x >> 6)
^ (x >> 7) ^ (x >> 8) ^ (x >> 16) ^ (x >> 22)
^ (x >> 23) ^ (x >> 26) ^ (x >> 30) ^ (x >> 41)
^ (x >> 42) ^ (x >> 43) ^ (x >> 46) ^ (x >> 47)) & 1) << 47);
2009-08-31 08:47:12 +08:00
*state = x;
return _f20 (x);
}
// "MIKRON" = O N M I K R
// Key = 4F 4E 4D 49 4B 52 - Secret 48-bit key
// Serial = 49 43 57 69 - Serial number of the tag, transmitted in clear
// Random = 65 6E 45 72 - Random IV, transmitted in clear
//~28~DC~80~31 = D7 23 7F CE - Authenticator value = inverted first 4 bytes of the keystream
// The code below must print out "D7 23 7F CE 8C D0 37 A9 57 49 C1 E6 48 00 8A B6".
// The inverse of the first 4 bytes is sent to the tag to authenticate.
// The rest is encrypted by XORing it with the subsequent keystream.
2009-08-31 08:47:12 +08:00
static u32 _hitag2_byte (u64 * x)
{
2016-01-10 00:19:09 +08:00
u32 i, c;
2009-08-31 08:47:12 +08:00
for (i = 0, c = 0; i < 8; i++) c += (u32) _hitag2_round (x) << (i^7);
return c;
}
static int hitag2_reset(void) {
tag.state = TAG_STATE_RESET;
tag.crypto_active = 0;
return 0;
}
2009-08-31 08:47:12 +08:00
static int hitag2_init(void) {
hitag2_reset();
return 0;
}
2009-08-31 08:47:12 +08:00
static void hitag2_cipher_reset(struct hitag2_tag *tag, const byte_t *iv)
2009-08-31 08:47:12 +08:00
{
uint64_t key = ((uint64_t)tag->sectors[2][2]) |
((uint64_t)tag->sectors[2][3] << 8) |
((uint64_t)tag->sectors[1][0] << 16) |
((uint64_t)tag->sectors[1][1] << 24) |
((uint64_t)tag->sectors[1][2] << 32) |
((uint64_t)tag->sectors[1][3] << 40);
uint32_t uid = ((uint32_t)tag->sectors[0][0]) |
((uint32_t)tag->sectors[0][1] << 8) |
((uint32_t)tag->sectors[0][2] << 16) |
((uint32_t)tag->sectors[0][3] << 24);
2009-08-31 08:47:12 +08:00
uint32_t iv_ = (((uint32_t)(iv[0]))) |
(((uint32_t)(iv[1])) << 8) |
(((uint32_t)(iv[2])) << 16) |
(((uint32_t)(iv[3])) << 24);
tag->cs = _hitag2_init(rev64(key), rev32(uid), rev32(iv_));
2009-08-31 08:47:12 +08:00
}
static int hitag2_cipher_authenticate(uint64_t* cs, const byte_t *authenticator_is)
2009-08-31 08:47:12 +08:00
{
byte_t authenticator_should[4];
authenticator_should[0] = ~_hitag2_byte(cs);
authenticator_should[1] = ~_hitag2_byte(cs);
authenticator_should[2] = ~_hitag2_byte(cs);
authenticator_should[3] = ~_hitag2_byte(cs);
return (memcmp(authenticator_should, authenticator_is, 4) == 0);
2009-08-31 08:47:12 +08:00
}
static int hitag2_cipher_transcrypt(uint64_t* cs, byte_t *data, unsigned int bytes, unsigned int bits)
2009-08-31 08:47:12 +08:00
{
int i;
for(i=0; i<bytes; i++) data[i] ^= _hitag2_byte(cs);
for(i=0; i<bits; i++) data[bytes] ^= _hitag2_round(cs) << (7-i);
2009-08-31 08:47:12 +08:00
return 0;
}
// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
// T0 = TIMER_CLOCK1 / 125000 = 192
#define T0 192
#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
#define HITAG_FRAME_LEN 20
#define HITAG_T_STOP 36 /* T_EOF should be > 36 */
#define HITAG_T_LOW 8 /* T_LOW should be 4..10 */
#define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */
#define HITAG_T_1_MIN 25 /* T[1] should be 26..30 */
//#define HITAG_T_EOF 40 /* T_EOF should be > 36 */
#define HITAG_T_EOF 80 /* T_EOF should be > 36 */
#define HITAG_T_WAIT_1 200 /* T_wresp should be 199..206 */
#define HITAG_T_WAIT_2 90 /* T_wresp should be 199..206 */
#define HITAG_T_WAIT_MAX 300 /* bit more than HITAG_T_WAIT_1 + HITAG_T_WAIT_2 */
#define HITAG_T_TAG_ONE_HALF_PERIOD 10
#define HITAG_T_TAG_TWO_HALF_PERIOD 25
#define HITAG_T_TAG_THREE_HALF_PERIOD 41
#define HITAG_T_TAG_FOUR_HALF_PERIOD 57
#define HITAG_T_TAG_HALF_PERIOD 16
#define HITAG_T_TAG_FULL_PERIOD 32
#define HITAG_T_TAG_CAPTURE_ONE_HALF 13
#define HITAG_T_TAG_CAPTURE_TWO_HALF 25
#define HITAG_T_TAG_CAPTURE_THREE_HALF 41
#define HITAG_T_TAG_CAPTURE_FOUR_HALF 57
static void hitag_send_bit(int bit) {
LED_A_ON();
// Reset clock for the next bit
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
// Fixed modulation, earlier proxmark version used inverted signal
if(bit == 0) {
// Manchester: Unloaded, then loaded |__--|
LOW(GPIO_SSC_DOUT);
while(AT91C_BASE_TC0->TC_CV < T0*HITAG_T_TAG_HALF_PERIOD);
HIGH(GPIO_SSC_DOUT);
while(AT91C_BASE_TC0->TC_CV < T0*HITAG_T_TAG_FULL_PERIOD);
} else {
// Manchester: Loaded, then unloaded |--__|
HIGH(GPIO_SSC_DOUT);
while(AT91C_BASE_TC0->TC_CV < T0*HITAG_T_TAG_HALF_PERIOD);
LOW(GPIO_SSC_DOUT);
while(AT91C_BASE_TC0->TC_CV < T0*HITAG_T_TAG_FULL_PERIOD);
}
LED_A_OFF();
}
static void hitag_send_frame(const byte_t* frame, size_t frame_len)
{
// Send start of frame
for(size_t i=0; i<5; i++) {
hitag_send_bit(1);
}
// Send the content of the frame
for(size_t i=0; i<frame_len; i++) {
hitag_send_bit((frame[i/8] >> (7-(i%8)))&1);
}
// Drop the modulation
LOW(GPIO_SSC_DOUT);
}
static void hitag2_handle_reader_command(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen)
{
byte_t rx_air[HITAG_FRAME_LEN];
// Copy the (original) received frame how it is send over the air
memcpy(rx_air,rx,nbytes(rxlen));
if(tag.crypto_active) {
hitag2_cipher_transcrypt(&(tag.cs),rx,rxlen/8,rxlen%8);
}
// Reset the transmission frame length
*txlen = 0;
// Try to find out which command was send by selecting on length (in bits)
switch (rxlen) {
// Received 11000 from the reader, request for UID, send UID
case 05: {
// Always send over the air in the clear plaintext mode
if(rx_air[0] != 0xC0) {
// Unknown frame ?
return;
}
*txlen = 32;
memcpy(tx,tag.sectors[0],4);
tag.crypto_active = 0;
}
break;
// Read/Write command: ..xx x..y yy with yyy == ~xxx, xxx is sector number
case 10: {
unsigned int sector = (~( ((rx[0]<<2)&0x04) | ((rx[1]>>6)&0x03) ) & 0x07);
// Verify complement of sector index
if(sector != ((rx[0]>>3)&0x07)) {
//DbpString("Transmission error (read/write)");
return;
}
switch (rx[0] & 0xC6) {
// Read command: 11xx x00y
case 0xC0:
memcpy(tx,tag.sectors[sector],4);
*txlen = 32;
break;
// Inverted Read command: 01xx x10y
case 0x44:
for (size_t i=0; i<4; i++) {
tx[i] = tag.sectors[sector][i] ^ 0xff;
}
*txlen = 32;
break;
// Write command: 10xx x01y
case 0x82:
// Prepare write, acknowledge by repeating command
memcpy(tx,rx,nbytes(rxlen));
*txlen = rxlen;
tag.active_sector = sector;
tag.state=TAG_STATE_WRITING;
break;
// Unknown command
default:
Dbprintf("Uknown command: %02x %02x",rx[0],rx[1]);
return;
break;
}
}
break;
// Writing data or Reader password
case 32: {
if(tag.state == TAG_STATE_WRITING) {
// These are the sector contents to be written. We don't have to do anything else.
memcpy(tag.sectors[tag.active_sector],rx,nbytes(rxlen));
tag.state=TAG_STATE_RESET;
return;
} else {
// Received RWD password, respond with configuration and our password
if(memcmp(rx,tag.sectors[1],4) != 0) {
DbpString("Reader password is wrong");
return;
}
*txlen = 32;
memcpy(tx,tag.sectors[3],4);
}
}
break;
// Received RWD authentication challenge and respnse
case 64: {
// Store the authentication attempt
if (auth_table_len < (AUTH_TABLE_LENGTH-8)) {
memcpy(auth_table+auth_table_len,rx,8);
auth_table_len += 8;
}
// Reset the cipher state
hitag2_cipher_reset(&tag,rx);
// Check if the authentication was correct
if(!hitag2_cipher_authenticate(&(tag.cs),rx+4)) {
// The reader failed to authenticate, do nothing
Dbprintf("auth: %02x%02x%02x%02x%02x%02x%02x%02x Failed!",rx[0],rx[1],rx[2],rx[3],rx[4],rx[5],rx[6],rx[7]);
return;
}
// Succesful, but commented out reporting back to the Host, this may delay to much.
// Dbprintf("auth: %02x%02x%02x%02x%02x%02x%02x%02x OK!",rx[0],rx[1],rx[2],rx[3],rx[4],rx[5],rx[6],rx[7]);
// Activate encryption algorithm for all further communication
tag.crypto_active = 1;
// Use the tag password as response
memcpy(tx,tag.sectors[3],4);
*txlen = 32;
}
break;
}
2013-03-11 23:07:23 +08:00
// LogTraceHitag(rx,rxlen,0,0,false);
// LogTraceHitag(tx,*txlen,0,0,true);
if(tag.crypto_active) {
hitag2_cipher_transcrypt(&(tag.cs), tx, *txlen/8, *txlen%8);
}
}
static void hitag_reader_send_bit(int bit) {
LED_A_ON();
// Reset clock for the next bit
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
// Binary puls length modulation (BPLM) is used to encode the data stream
// This means that a transmission of a one takes longer than that of a zero
2016-02-12 14:37:10 +08:00
// Enable modulation, which means, drop the field
HIGH(GPIO_SSC_DOUT);
// Wait for 4-10 times the carrier period
while(AT91C_BASE_TC0->TC_CV < T0*6);
// SpinDelayUs(8*8);
// Disable modulation, just activates the field again
LOW(GPIO_SSC_DOUT);
if(bit == 0) {
// Zero bit: |_-|
while(AT91C_BASE_TC0->TC_CV < T0*22);
} else {
// One bit: |_--|
while(AT91C_BASE_TC0->TC_CV < T0*28);
}
LED_A_OFF();
}
static void hitag_reader_send_frame(const byte_t* frame, size_t frame_len)
{
// Send the content of the frame
for(size_t i=0; i<frame_len; i++) {
hitag_reader_send_bit((frame[i/8] >> (7-(i%8)))&1);
}
// Send EOF
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
2016-02-12 14:37:10 +08:00
// Enable modulation, which means, drop the field
HIGH(GPIO_SSC_DOUT);
// Wait for 4-10 times the carrier period
while(AT91C_BASE_TC0->TC_CV < T0*6);
// Disable modulation, just activates the field again
LOW(GPIO_SSC_DOUT);
}
size_t blocknr;
static bool hitag2_password(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) {
// Reset the transmission frame length
*txlen = 0;
// Try to find out which command was send by selecting on length (in bits)
switch (rxlen) {
// No answer, try to resurrect
case 0: {
// Stop if there is no answer (after sending password)
if (bPwd) {
DbpString("Password failed!");
return false;
}
*txlen = 5;
memcpy(tx,"\xc0",nbytes(*txlen));
} break;
// Received UID, tag password
case 32: {
if (!bPwd) {
*txlen = 32;
memcpy(tx,password,4);
bPwd = true;
memcpy(tag.sectors[blocknr],rx,4);
blocknr++;
} else {
if(blocknr == 1){
//store password in block1, the TAG answers with Block3, but we need the password in memory
memcpy(tag.sectors[blocknr],tx,4);
} else {
memcpy(tag.sectors[blocknr],rx,4);
}
blocknr++;
if (blocknr > 7) {
DbpString("Read succesful!");
bSuccessful = true;
return false;
}
*txlen = 10;
tx[0] = 0xc0 | (blocknr << 3) | ((blocknr^7) >> 2);
tx[1] = ((blocknr^7) << 6);
}
} break;
// Unexpected response
default: {
Dbprintf("Uknown frame length: %d",rxlen);
return false;
} break;
}
return true;
}
static bool hitag2_crypto(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) {
// Reset the transmission frame length
*txlen = 0;
if(bCrypto) {
hitag2_cipher_transcrypt(&cipher_state,rx,rxlen/8,rxlen%8);
}
// Try to find out which command was send by selecting on length (in bits)
switch (rxlen) {
// No answer, try to resurrect
case 0: {
// Stop if there is no answer while we are in crypto mode (after sending NrAr)
if (bCrypto) {
// Failed during authentication
if (bAuthenticating) {
DbpString("Authentication failed!");
return false;
} else {
// Failed reading a block, could be (read/write) locked, skip block and re-authenticate
if (blocknr == 1) {
2012-12-17 21:21:53 +08:00
// Write the low part of the key in memory
memcpy(tag.sectors[1],key+2,4);
} else if (blocknr == 2) {
2012-12-17 21:21:53 +08:00
// Write the high part of the key in memory
tag.sectors[2][0] = 0x00;
tag.sectors[2][1] = 0x00;
tag.sectors[2][2] = key[0];
tag.sectors[2][3] = key[1];
2012-12-17 21:21:53 +08:00
} else {
// Just put zero's in the memory (of the unreadable block)
memset(tag.sectors[blocknr],0x00,4);
}
blocknr++;
bCrypto = false;
}
} else {
*txlen = 5;
memcpy(tx,"\xc0",nbytes(*txlen));
}
} break;
// Received UID, crypto tag answer
case 32: {
if (!bCrypto) {
uint64_t ui64key = key[0] | ((uint64_t)key[1]) << 8 | ((uint64_t)key[2]) << 16 | ((uint64_t)key[3]) << 24 | ((uint64_t)key[4]) << 32 | ((uint64_t)key[5]) << 40;
uint32_t ui32uid = rx[0] | ((uint32_t)rx[1]) << 8 | ((uint32_t)rx[2]) << 16 | ((uint32_t)rx[3]) << 24;
cipher_state = _hitag2_init(rev64(ui64key), rev32(ui32uid), 0);
memset(tx,0x00,4);
memset(tx+4,0xff,4);
hitag2_cipher_transcrypt(&cipher_state,tx+4,4,0);
*txlen = 64;
bCrypto = true;
bAuthenticating = true;
} else {
// Check if we received answer tag (at)
if (bAuthenticating) {
bAuthenticating = false;
} else {
// Store the received block
memcpy(tag.sectors[blocknr],rx,4);
blocknr++;
}
if (blocknr > 7) {
DbpString("Read succesful!");
bSuccessful = true;
return false;
}
*txlen = 10;
tx[0] = 0xc0 | (blocknr << 3) | ((blocknr^7) >> 2);
tx[1] = ((blocknr^7) << 6);
}
} break;
// Unexpected response
default: {
Dbprintf("Uknown frame length: %d",rxlen);
return false;
} break;
}
if(bCrypto) {
// We have to return now to avoid double encryption
if (!bAuthenticating) {
hitag2_cipher_transcrypt(&cipher_state, tx, *txlen/8, *txlen%8);
}
}
return true;
}
static bool hitag2_authenticate(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) {
// Reset the transmission frame length
*txlen = 0;
// Try to find out which command was send by selecting on length (in bits)
switch (rxlen) {
// No answer, try to resurrect
case 0: {
// Stop if there is no answer while we are in crypto mode (after sending NrAr)
if (bCrypto) {
DbpString("Authentication failed!");
return false;
}
*txlen = 5;
memcpy(tx,"\xc0",nbytes(*txlen));
} break;
// Received UID, crypto tag answer
case 32: {
if (!bCrypto) {
*txlen = 64;
memcpy(tx,NrAr,8);
bCrypto = true;
} else {
DbpString("Authentication succesful!");
return true;
}
} break;
// Unexpected response
default: {
Dbprintf("Uknown frame length: %d",rxlen);
return false;
} break;
}
return true;
}
static bool hitag2_test_auth_attempts(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) {
// Reset the transmission frame length
*txlen = 0;
// Try to find out which command was send by selecting on length (in bits)
switch (rxlen) {
// No answer, try to resurrect
case 0: {
// Stop if there is no answer while we are in crypto mode (after sending NrAr)
if (bCrypto) {
Dbprintf("auth: %02x%02x%02x%02x%02x%02x%02x%02x Failed, removed entry!",NrAr[0],NrAr[1],NrAr[2],NrAr[3],NrAr[4],NrAr[5],NrAr[6],NrAr[7]);
// Removing failed entry from authentiations table
memcpy(auth_table+auth_table_pos,auth_table+auth_table_pos+8,8);
auth_table_len -= 8;
// Return if we reached the end of the authentications table
bCrypto = false;
if (auth_table_pos == auth_table_len) {
return false;
}
// Copy the next authentication attempt in row (at the same position, b/c we removed last failed entry)
memcpy(NrAr,auth_table+auth_table_pos,8);
}
*txlen = 5;
memcpy(tx,"\xc0",nbytes(*txlen));
} break;
// Received UID, crypto tag answer, or read block response
case 32: {
if (!bCrypto) {
*txlen = 64;
memcpy(tx,NrAr,8);
bCrypto = true;
} else {
Dbprintf("auth: %02x%02x%02x%02x%02x%02x%02x%02x OK",NrAr[0],NrAr[1],NrAr[2],NrAr[3],NrAr[4],NrAr[5],NrAr[6],NrAr[7]);
bCrypto = false;
if ((auth_table_pos+8) == auth_table_len) {
return false;
}
auth_table_pos += 8;
memcpy(NrAr,auth_table+auth_table_pos,8);
}
} break;
default: {
Dbprintf("Uknown frame length: %d",rxlen);
return false;
} break;
}
return true;
}
void SnoopHitag(uint32_t type) {
int frame_count;
int response;
int overflow;
bool rising_edge;
bool reader_frame;
int lastbit;
bool bSkip;
int tag_sof;
byte_t rx[HITAG_FRAME_LEN];
size_t rxlen=0;
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
// free eventually allocated BigBuf memory
BigBuf_free(); BigBuf_Clear_ext(false);
// Clean up trace and prepare it for storing frames
clear_trace();
set_tracing(TRUE);
auth_table_len = 0;
auth_table_pos = 0;
auth_table = (byte_t *)BigBuf_malloc(AUTH_TABLE_LENGTH);
memset(auth_table, 0x00, AUTH_TABLE_LENGTH);
DbpString("Starting Hitag2 snoop");
LED_D_ON();
// Set up eavesdropping mode, frequency divisor which will drive the FPGA
// and analog mux selection.
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
RELAY_OFF();
// Configure output pin that is connected to the FPGA (for modulating)
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
// Disable modulation, we are going to eavesdrop, not modulate ;)
LOW(GPIO_SSC_DOUT);
// Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
// Disable timer during configuration
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// external trigger rising edge, load RA on rising edge of TIOA.
uint32_t t1_channel_mode = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_BOTH | AT91C_TC_ABETRG | AT91C_TC_LDRA_BOTH;
AT91C_BASE_TC1->TC_CMR = t1_channel_mode;
// Enable and reset counter
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
// Reset the received frame, frame count and timing info
memset(rx,0x00,sizeof(rx));
frame_count = 0;
response = 0;
overflow = 0;
reader_frame = false;
lastbit = 1;
bSkip = true;
tag_sof = 4;
while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
// Watchdog hit
WDT_HIT();
// Receive frame, watch for at most T0*EOF periods
while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_EOF) {
// Check if rising edge in modulation is detected
if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
// Retrieve the new timing values
int ra = (AT91C_BASE_TC1->TC_RA/T0);
// Find out if we are dealing with a rising or falling edge
rising_edge = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME) > 0;
// Shorter periods will only happen with reader frames
if (!reader_frame && rising_edge && ra < HITAG_T_TAG_CAPTURE_ONE_HALF) {
// Switch from tag to reader capture
LED_C_OFF();
reader_frame = true;
memset(rx,0x00,sizeof(rx));
rxlen = 0;
}
// Only handle if reader frame and rising edge, or tag frame and falling edge
if (reader_frame != rising_edge) {
overflow += ra;
continue;
}
// Add the buffered timing values of earlier captured edges which were skipped
ra += overflow;
overflow = 0;
if (reader_frame) {
LED_B_ON();
// Capture reader frame
if(ra >= HITAG_T_STOP) {
if (rxlen != 0) {
//DbpString("wierd0?");
}
// Capture the T0 periods that have passed since last communication or field drop (reset)
response = (ra - HITAG_T_LOW);
} else if(ra >= HITAG_T_1_MIN ) {
// '1' bit
rx[rxlen / 8] |= 1 << (7-(rxlen%8));
rxlen++;
} else if(ra >= HITAG_T_0_MIN) {
// '0' bit
rx[rxlen / 8] |= 0 << (7-(rxlen%8));
rxlen++;
} else {
// Ignore wierd value, is to small to mean anything
}
} else {
LED_C_ON();
// Capture tag frame (manchester decoding using only falling edges)
if(ra >= HITAG_T_EOF) {
if (rxlen != 0) {
//DbpString("wierd1?");
}
// Capture the T0 periods that have passed since last communication or field drop (reset)
// We always recieve a 'one' first, which has the falling edge after a half period |-_|
response = ra-HITAG_T_TAG_HALF_PERIOD;
} else if(ra >= HITAG_T_TAG_CAPTURE_FOUR_HALF) {
// Manchester coding example |-_|_-|-_| (101)
rx[rxlen / 8] |= 0 << (7-(rxlen%8));
rxlen++;
rx[rxlen / 8] |= 1 << (7-(rxlen%8));
rxlen++;
} else if(ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) {
// Manchester coding example |_-|...|_-|-_| (0...01)
rx[rxlen / 8] |= 0 << (7-(rxlen%8));
rxlen++;
// We have to skip this half period at start and add the 'one' the second time
if (!bSkip) {
rx[rxlen / 8] |= 1 << (7-(rxlen%8));
rxlen++;
}
lastbit = !lastbit;
bSkip = !bSkip;
} else if(ra >= HITAG_T_TAG_CAPTURE_TWO_HALF) {
// Manchester coding example |_-|_-| (00) or |-_|-_| (11)
if (tag_sof) {
// Ignore bits that are transmitted during SOF
tag_sof--;
} else {
// bit is same as last bit
rx[rxlen / 8] |= lastbit << (7-(rxlen%8));
rxlen++;
}
} else {
// Ignore wierd value, is to small to mean anything
}
}
}
}
// Check if frame was captured
if(rxlen > 0) {
frame_count++;
2013-03-11 23:07:23 +08:00
if (!LogTraceHitag(rx,rxlen,response,0,reader_frame)) {
DbpString("Trace full");
break;
}
// Check if we recognize a valid authentication attempt
if (nbytes(rxlen) == 8) {
// Store the authentication attempt
if (auth_table_len < (AUTH_TABLE_LENGTH-8)) {
memcpy(auth_table+auth_table_len,rx,8);
auth_table_len += 8;
}
}
// Reset the received frame and response timing info
memset(rx,0x00,sizeof(rx));
response = 0;
reader_frame = false;
lastbit = 1;
bSkip = true;
tag_sof = 4;
overflow = 0;
LED_B_OFF();
LED_C_OFF();
} else {
// Save the timer overflow, will be 0 when frame was received
overflow += (AT91C_BASE_TC1->TC_CV/T0);
}
// Reset the frame length
rxlen = 0;
// Reset the timer to restart while-loop that receives frames
AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
}
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_A_OFF();
set_tracing(TRUE);
// Dbprintf("frame received: %d",frame_count);
// Dbprintf("Authentication Attempts: %d",(auth_table_len/8));
// DbpString("All done");
}
void SimulateHitagTag(bool tag_mem_supplied, byte_t* data) {
int frame_count;
int response;
int overflow;
byte_t rx[HITAG_FRAME_LEN];
size_t rxlen=0;
byte_t tx[HITAG_FRAME_LEN];
size_t txlen=0;
bool bQuitTraceFull = false;
bQuiet = false;
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
// free eventually allocated BigBuf memory
BigBuf_free(); BigBuf_Clear_ext(false);
// Clean up trace and prepare it for storing frames
clear_trace();
set_tracing(TRUE);
auth_table_len = 0;
auth_table_pos = 0;
byte_t* auth_table;
auth_table = (byte_t *)BigBuf_malloc(AUTH_TABLE_LENGTH);
memset(auth_table, 0x00, AUTH_TABLE_LENGTH);
DbpString("Starting Hitag2 simulation");
LED_D_ON();
hitag2_init();
if (tag_mem_supplied) {
DbpString("Loading hitag2 memory...");
memcpy((byte_t*)tag.sectors,data,48);
}
uint32_t block = 0;
for (size_t i=0; i<12; i++) {
for (size_t j=0; j<4; j++) {
block <<= 8;
block |= tag.sectors[i][j];
}
Dbprintf("| %d | %08x |",i,block);
}
// Set up simulator mode, frequency divisor which will drive the FPGA
// and analog mux selection.
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
RELAY_OFF();
// Configure output pin that is connected to the FPGA (for modulating)
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
// Disable modulation at default, which means release resistance
LOW(GPIO_SSC_DOUT);
// Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
// Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
// Disable timer during configuration
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// external trigger rising edge, load RA on rising edge of TIOA.
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_RISING | AT91C_TC_ABETRG | AT91C_TC_LDRA_RISING;
// Reset the received frame, frame count and timing info
memset(rx,0x00,sizeof(rx));
frame_count = 0;
response = 0;
overflow = 0;
// Enable and reset counter
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
// Watchdog hit
WDT_HIT();
// Receive frame, watch for at most T0*EOF periods
while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_EOF) {
// Check if rising edge in modulation is detected
if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
// Retrieve the new timing values
int ra = (AT91C_BASE_TC1->TC_RA/T0) + overflow;
overflow = 0;
// Reset timer every frame, we have to capture the last edge for timing
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
LED_B_ON();
// Capture reader frame
if(ra >= HITAG_T_STOP) {
if (rxlen != 0) {
//DbpString("wierd0?");
}
// Capture the T0 periods that have passed since last communication or field drop (reset)
response = (ra - HITAG_T_LOW);
} else if(ra >= HITAG_T_1_MIN ) {
// '1' bit
rx[rxlen / 8] |= 1 << (7-(rxlen%8));
rxlen++;
} else if(ra >= HITAG_T_0_MIN) {
// '0' bit
rx[rxlen / 8] |= 0 << (7-(rxlen%8));
rxlen++;
} else {
// Ignore wierd value, is to small to mean anything
}
}
}
// Check if frame was captured
if(rxlen > 4) {
frame_count++;
if (!bQuiet) {
2013-03-11 23:07:23 +08:00
if (!LogTraceHitag(rx,rxlen,response,0,true)) {
DbpString("Trace full");
if (bQuitTraceFull) {
break;
} else {
bQuiet = true;
}
}
}
// Disable timer 1 with external trigger to avoid triggers during our own modulation
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// Process the incoming frame (rx) and prepare the outgoing frame (tx)
hitag2_handle_reader_command(rx,rxlen,tx,&txlen);
// Wait for HITAG_T_WAIT_1 carrier periods after the last reader bit,
// not that since the clock counts since the rising edge, but T_Wait1 is
// with respect to the falling edge, we need to wait actually (T_Wait1 - T_Low)
// periods. The gap time T_Low varies (4..10). All timer values are in
// terms of T0 units
while(AT91C_BASE_TC0->TC_CV < T0*(HITAG_T_WAIT_1-HITAG_T_LOW));
// Send and store the tag answer (if there is any)
if (txlen) {
// Transmit the tag frame
hitag_send_frame(tx,txlen);
// Store the frame in the trace
if (!bQuiet) {
2013-03-11 23:07:23 +08:00
if (!LogTraceHitag(tx,txlen,0,0,false)) {
DbpString("Trace full");
if (bQuitTraceFull) {
break;
} else {
bQuiet = true;
}
}
}
}
// Reset the received frame and response timing info
memset(rx,0x00,sizeof(rx));
response = 0;
// Enable and reset external trigger in timer for capturing future frames
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
LED_B_OFF();
}
// Reset the frame length
rxlen = 0;
// Save the timer overflow, will be 0 when frame was received
overflow += (AT91C_BASE_TC1->TC_CV/T0);
// Reset the timer to restart while-loop that receives frames
AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
}
LED_B_OFF();
LED_D_OFF();
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Sim Stopped");
set_tracing(TRUE);
}
void ReaderHitag(hitag_function htf, hitag_data* htd) {
int frame_count;
int response;
byte_t rx[HITAG_FRAME_LEN];
size_t rxlen=0;
byte_t txbuf[HITAG_FRAME_LEN];
byte_t* tx = txbuf;
size_t txlen=0;
int lastbit;
bool bSkip;
int reset_sof;
int tag_sof;
int t_wait = HITAG_T_WAIT_MAX;
bool bStop;
bool bQuitTraceFull = false;
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
// Reset the return status
bSuccessful = false;
// Clean up trace and prepare it for storing frames
clear_trace();
set_tracing(TRUE);
DbpString("Starting Hitag reader family");
// Check configuration
switch(htf) {
case RHT2F_PASSWORD: {
Dbprintf("List identifier in password mode");
memcpy(password,htd->pwd.password,4);
2014-10-29 04:44:17 +08:00
blocknr = 0;
bQuitTraceFull = false;
bQuiet = false;
bPwd = false;
} break;
case RHT2F_AUTHENTICATE: {
DbpString("Authenticating using nr,ar pair:");
memcpy(NrAr,htd->auth.NrAr,8);
Dbhexdump(8,NrAr,false);
bQuiet = false;
bCrypto = false;
bAuthenticating = false;
bQuitTraceFull = true;
} break;
case RHT2F_CRYPTO: {
DbpString("Authenticating using key:");
memcpy(key,htd->crypto.key,6); //HACK; 4 or 6?? I read both in the code.
Dbhexdump(6,key,false);
blocknr = 0;
bQuiet = false;
bCrypto = false;
bAuthenticating = false;
bQuitTraceFull = true;
} break;
case RHT2F_TEST_AUTH_ATTEMPTS: {
Dbprintf("Testing %d authentication attempts",(auth_table_len/8));
auth_table_pos = 0;
memcpy(NrAr, auth_table, 8);
bQuitTraceFull = false;
bQuiet = false;
bCrypto = false;
} break;
default: {
Dbprintf("Error, unknown function: %d",htf);
set_tracing(FALSE);
return;
} break;
}
LED_D_ON();
hitag2_init();
// Configure output and enable pin that is connected to the FPGA (for modulating)
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
// Set fpga in edge detect with reader field, we can modulate as reader now
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
// Set Frequency divisor which will drive the FPGA and analog mux selection
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
RELAY_OFF();
// Disable modulation at default, which means enable the field
LOW(GPIO_SSC_DOUT);
// Give it a bit of time for the resonant antenna to settle.
SpinDelay(30);
// Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
// Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the tag frames
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
// Disable timer during configuration
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// external trigger rising edge, load RA on falling edge of TIOA.
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_FALLING | AT91C_TC_ABETRG | AT91C_TC_LDRA_FALLING;
// Enable and reset counters
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
// Reset the received frame, frame count and timing info
frame_count = 0;
response = 0;
lastbit = 1;
bStop = false;
// Tag specific configuration settings (sof, timings, etc.)
if (htf < 10){
// hitagS settings
reset_sof = 1;
t_wait = 200;
DbpString("Configured for hitagS reader");
} else if (htf < 20) {
// hitag1 settings
reset_sof = 1;
t_wait = 200;
DbpString("Configured for hitag1 reader");
} else if (htf < 30) {
// hitag2 settings
reset_sof = 4;
t_wait = HITAG_T_WAIT_2;
DbpString("Configured for hitag2 reader");
} else {
Dbprintf("Error, unknown hitag reader type: %d",htf);
set_tracing(FALSE);
return;
}
while(!bStop && !BUTTON_PRESS()) {
// Watchdog hit
WDT_HIT();
// Check if frame was captured and store it
if(rxlen > 0) {
frame_count++;
if (!bQuiet) {
2013-03-11 23:07:23 +08:00
if (!LogTraceHitag(rx,rxlen,response,0,false)) {
DbpString("Trace full");
if (bQuitTraceFull) {
break;
} else {
bQuiet = true;
}
}
}
}
// By default reset the transmission buffer
tx = txbuf;
switch(htf) {
case RHT2F_PASSWORD: {
bStop = !hitag2_password(rx,rxlen,tx,&txlen);
} break;
case RHT2F_AUTHENTICATE: {
bStop = !hitag2_authenticate(rx,rxlen,tx,&txlen);
} break;
case RHT2F_CRYPTO: {
bStop = !hitag2_crypto(rx,rxlen,tx,&txlen);
} break;
case RHT2F_TEST_AUTH_ATTEMPTS: {
bStop = !hitag2_test_auth_attempts(rx,rxlen,tx,&txlen);
} break;
default: {
Dbprintf("Error, unknown function: %d",htf);
set_tracing(FALSE);
return;
} break;
}
// Send and store the reader command
// Disable timer 1 with external trigger to avoid triggers during our own modulation
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// Wait for HITAG_T_WAIT_2 carrier periods after the last tag bit before transmitting,
// Since the clock counts since the last falling edge, a 'one' means that the
// falling edge occured halfway the period. with respect to this falling edge,
// we need to wait (T_Wait2 + half_tag_period) when the last was a 'one'.
// All timer values are in terms of T0 units
while(AT91C_BASE_TC0->TC_CV < T0*(t_wait+(HITAG_T_TAG_HALF_PERIOD*lastbit)));
// Transmit the reader frame
hitag_reader_send_frame(tx,txlen);
// Enable and reset external trigger in timer for capturing future frames
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
// Add transmitted frame to total count
if(txlen > 0) {
frame_count++;
if (!bQuiet) {
// Store the frame in the trace
2013-03-11 23:07:23 +08:00
if (!LogTraceHitag(tx,txlen,HITAG_T_WAIT_2,0,true)) {
if (bQuitTraceFull) {
break;
} else {
bQuiet = true;
}
}
}
}
// Reset values for receiving frames
memset(rx,0x00,sizeof(rx));
rxlen = 0;
lastbit = 1;
bSkip = true;
tag_sof = reset_sof;
response = 0;
// Receive frame, watch for at most T0*EOF periods
while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_WAIT_MAX) {
// Check if falling edge in tag modulation is detected
if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
// Retrieve the new timing values
int ra = (AT91C_BASE_TC1->TC_RA/T0);
// Reset timer every frame, we have to capture the last edge for timing
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
LED_B_ON();
// Capture tag frame (manchester decoding using only falling edges)
if(ra >= HITAG_T_EOF) {
if (rxlen != 0) {
//DbpString("wierd1?");
}
// Capture the T0 periods that have passed since last communication or field drop (reset)
// We always recieve a 'one' first, which has the falling edge after a half period |-_|
response = ra-HITAG_T_TAG_HALF_PERIOD;
} else if(ra >= HITAG_T_TAG_CAPTURE_FOUR_HALF) {
// Manchester coding example |-_|_-|-_| (101)
rx[rxlen / 8] |= 0 << (7-(rxlen%8));
rxlen++;
rx[rxlen / 8] |= 1 << (7-(rxlen%8));
rxlen++;
} else if(ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) {
// Manchester coding example |_-|...|_-|-_| (0...01)
rx[rxlen / 8] |= 0 << (7-(rxlen%8));
rxlen++;
// We have to skip this half period at start and add the 'one' the second time
if (!bSkip) {
rx[rxlen / 8] |= 1 << (7-(rxlen%8));
rxlen++;
}
lastbit = !lastbit;
bSkip = !bSkip;
} else if(ra >= HITAG_T_TAG_CAPTURE_TWO_HALF) {
// Manchester coding example |_-|_-| (00) or |-_|-_| (11)
if (tag_sof) {
// Ignore bits that are transmitted during SOF
tag_sof--;
} else {
// bit is same as last bit
rx[rxlen / 8] |= lastbit << (7-(rxlen%8));
rxlen++;
}
} else {
// Ignore wierd value, is to small to mean anything
}
}
// We can break this loop if we received the last bit from a frame
if (AT91C_BASE_TC1->TC_CV > T0*HITAG_T_EOF) {
if (rxlen>0) break;
}
}
}
LED_B_OFF();
LED_D_OFF();
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
Dbprintf("DONE: frame received: %d",frame_count);
cmd_send(CMD_ACK,bSuccessful,0,0,(byte_t*)tag.sectors,48);
set_tracing(FALSE);
}