proxmark3/armsrc/fpgaloader.c

536 lines
21 KiB
C
Raw Normal View History

//-----------------------------------------------------------------------------
// Jonathan Westhues, April 2006
// iZsh <izsh at fail0verflow.com>, 2014
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to load the FPGA image, and then to configure the FPGA's major
// mode once it is configured.
//-----------------------------------------------------------------------------
2015-06-25 18:22:34 +08:00
#include "fpgaloader.h"
#include "proxmark3_arm.h"
#include "appmain.h"
#include "BigBuf.h"
#include "ticks.h"
#include "dbprint.h"
#include "util.h"
#include "fpga.h"
#include "string.h"
2015-06-25 18:22:34 +08:00
2020-06-05 22:24:05 +08:00
#include "lz4.h" // uncompress
typedef struct lz4_stream_s {
2020-06-08 09:15:10 +08:00
LZ4_streamDecode_t *lz4StreamDecode;
char *next_in;
2020-06-05 22:24:05 +08:00
int avail_in;
} lz4_stream;
2020-06-08 09:15:10 +08:00
typedef lz4_stream *lz4_streamp;
2020-06-05 22:24:05 +08:00
2015-06-25 18:22:34 +08:00
// remember which version of the bitstream we have already downloaded to the FPGA
static int downloaded_bitstream = 0;
2015-06-25 18:22:34 +08:00
// this is where the bitstreams are located in memory:
extern uint8_t _binary_obj_fpga_all_bit_z_start, _binary_obj_fpga_all_bit_z_end;
static uint8_t *fpga_image_ptr = NULL;
static uint32_t uncompressed_bytes_cnt;
//-----------------------------------------------------------------------------
// Set up the Serial Peripheral Interface as master
// Used to write the FPGA config word
// May also be used to write to other SPI attached devices like an LCD
//-----------------------------------------------------------------------------
static void DisableSpi(void) {
2019-03-10 03:34:41 +08:00
//* Reset all the Chip Select register
AT91C_BASE_SPI->SPI_CSR[0] = 0;
AT91C_BASE_SPI->SPI_CSR[1] = 0;
AT91C_BASE_SPI->SPI_CSR[2] = 0;
AT91C_BASE_SPI->SPI_CSR[3] = 0;
// Reset the SPI mode
AT91C_BASE_SPI->SPI_MR = 0;
// Disable all interrupts
AT91C_BASE_SPI->SPI_IDR = 0xFFFFFFFF;
2019-03-10 03:34:41 +08:00
// SPI disable
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SPIDIS;
}
void SetupSpi(int mode) {
2019-03-10 03:34:41 +08:00
// PA1 -> SPI_NCS3 chip select (MEM)
// PA10 -> SPI_NCS2 chip select (LCD)
// PA11 -> SPI_NCS0 chip select (FPGA)
// PA12 -> SPI_MISO Master-In Slave-Out
// PA13 -> SPI_MOSI Master-Out Slave-In
// PA14 -> SPI_SPCK Serial Clock
// Disable PIO control of the following pins, allows use by the SPI peripheral
AT91C_BASE_PIOA->PIO_PDR = GPIO_NCS0 | GPIO_MISO | GPIO_MOSI | GPIO_SPCK;
// Peripheral A
AT91C_BASE_PIOA->PIO_ASR = GPIO_NCS0 | GPIO_MISO | GPIO_MOSI | GPIO_SPCK;
// Peripheral B
//AT91C_BASE_PIOA->PIO_BSR |= GPIO_NCS2;
//enable the SPI Peripheral clock
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_SPI);
// Enable SPI
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SPIEN;
switch (mode) {
case SPI_FPGA_MODE:
AT91C_BASE_SPI->SPI_MR =
2019-03-10 07:00:59 +08:00
(0 << 24) | // Delay between chip selects (take default: 6 MCK periods)
2019-03-10 03:34:41 +08:00
(0xE << 16) | // Peripheral Chip Select (selects FPGA SPI_NCS0 or PA11)
2019-03-10 07:00:59 +08:00
(0 << 7) | // Local Loopback Disabled
2019-03-10 03:34:41 +08:00
AT91C_SPI_MODFDIS | // Mode Fault Detection disabled
2019-03-10 07:00:59 +08:00
(0 << 2) | // Chip selects connected directly to peripheral
2019-03-10 03:34:41 +08:00
AT91C_SPI_PS_FIXED | // Fixed Peripheral Select
AT91C_SPI_MSTR; // Master Mode
AT91C_BASE_SPI->SPI_CSR[0] =
2019-03-10 07:00:59 +08:00
(1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)
(1 << 16) | // Delay Before SPCK (1 MCK period)
2019-08-06 19:51:10 +08:00
(6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24MHz/6 = 4M baud
2019-03-10 03:34:41 +08:00
AT91C_SPI_BITS_16 | // Bits per Transfer (16 bits)
2019-03-10 07:00:59 +08:00
(0 << 3) | // Chip Select inactive after transfer
2019-03-10 03:34:41 +08:00
AT91C_SPI_NCPHA | // Clock Phase data captured on leading edge, changes on following edge
2019-03-10 07:00:59 +08:00
(0 << 0); // Clock Polarity inactive state is logic 0
2019-03-10 03:34:41 +08:00
break;
2019-03-10 07:00:59 +08:00
/*
case SPI_LCD_MODE:
AT91C_BASE_SPI->SPI_MR =
( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)
(0xB << 16) | // Peripheral Chip Select (selects LCD SPI_NCS2 or PA10)
( 0 << 7) | // Local Loopback Disabled
( 1 << 4) | // Mode Fault Detection disabled
( 0 << 2) | // Chip selects connected directly to peripheral
( 0 << 1) | // Fixed Peripheral Select
( 1 << 0); // Master Mode
AT91C_BASE_SPI->SPI_CSR[2] =
( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)
( 1 << 16) | // Delay Before SPCK (1 MCK period)
2019-08-06 19:51:10 +08:00
( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24MHz/6 = 4M baud
2019-03-10 07:00:59 +08:00
AT91C_SPI_BITS_9 | // Bits per Transfer (9 bits)
( 0 << 3) | // Chip Select inactive after transfer
( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge
( 0 << 0); // Clock Polarity inactive state is logic 0
break;
*/
2019-03-10 03:34:41 +08:00
default:
DisableSpi();
break;
}
}
//-----------------------------------------------------------------------------
// Set up the synchronous serial port with the set of options that fits
// the FPGA mode. Both RX and TX are always enabled.
//-----------------------------------------------------------------------------
2020-07-02 18:32:55 +08:00
void FpgaSetupSsc(uint16_t fpga_mode) {
2019-03-10 03:34:41 +08:00
// First configure the GPIOs, and get ourselves a clock.
AT91C_BASE_PIOA->PIO_ASR =
GPIO_SSC_FRAME |
GPIO_SSC_DIN |
GPIO_SSC_DOUT |
GPIO_SSC_CLK;
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
2019-03-10 07:00:59 +08:00
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_SSC);
2019-03-10 03:34:41 +08:00
// Now set up the SSC proper, starting from a known state.
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
2020-01-13 00:28:12 +08:00
// RX clock comes from TX clock, RX starts on Transmit Start,
// data and frame signal is sampled on falling edge of RK
2019-03-10 03:34:41 +08:00
AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(1) | SSC_CLOCK_MODE_START(1);
2020-08-13 18:25:04 +08:00
// 8, 16 or 32 bits per transfer, no loopback, MSB first, 1 transfer per sync
2019-03-10 03:34:41 +08:00
// pulse, no output sync
2020-08-13 18:25:04 +08:00
if ((fpga_mode & FPGA_MAJOR_MODE_MASK) == FPGA_MAJOR_MODE_HF_READER && FpgaGetCurrent() == FPGA_BITSTREAM_HF) {
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(16) | AT91C_SSC_MSBF | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0);
} else {
2020-07-02 18:32:55 +08:00
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(8) | AT91C_SSC_MSBF | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0);
2020-08-13 18:25:04 +08:00
}
2020-07-02 18:32:55 +08:00
2020-08-13 18:25:04 +08:00
// TX clock comes from TK pin, no clock output, outputs change on rising edge of TK,
// TF (frame sync) is sampled on falling edge of TK, start TX on rising edge of TF
2019-03-10 03:34:41 +08:00
AT91C_BASE_SSC->SSC_TCMR = SSC_CLOCK_MODE_SELECT(2) | SSC_CLOCK_MODE_START(5);
2019-03-10 03:34:41 +08:00
// tx framing is the same as the rx framing
AT91C_BASE_SSC->SSC_TFMR = AT91C_BASE_SSC->SSC_RFMR;
2019-03-10 03:34:41 +08:00
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
}
2019-03-09 18:51:18 +08:00
//-----------------------------------------------------------------------------
// Set up DMA to receive samples from the FPGA. We will use the PDC, with
// a single buffer as a circular buffer (so that we just chain back to
// ourselves, not to another buffer).
//-----------------------------------------------------------------------------
2020-07-02 18:32:55 +08:00
bool FpgaSetupSscDma(uint8_t *buf, uint16_t len) {
2019-03-10 03:34:41 +08:00
if (buf == NULL) return false;
FpgaDisableSscDma();
AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) buf; // transfer to this memory address
AT91C_BASE_PDC_SSC->PDC_RCR = len; // transfer this many bytes
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) buf; // next transfer to same memory address
AT91C_BASE_PDC_SSC->PDC_RNCR = len; // ... with same number of bytes
FpgaEnableSscDma();
return true;
}
2015-06-25 18:22:34 +08:00
//----------------------------------------------------------------------------
// Uncompress (inflate) the FPGA data. Returns one decompressed byte with
// each call.
2015-06-25 18:22:34 +08:00
//----------------------------------------------------------------------------
2020-06-05 22:24:05 +08:00
static int get_from_fpga_combined_stream(lz4_streamp compressed_fpga_stream, uint8_t *output_buffer) {
if (fpga_image_ptr == output_buffer + FPGA_RING_BUFFER_BYTES) { // need more data
2019-03-10 03:34:41 +08:00
fpga_image_ptr = output_buffer;
2020-06-07 18:46:05 +08:00
int cmp_bytes;
memcpy(&cmp_bytes, compressed_fpga_stream->next_in, sizeof(int));
2020-06-05 22:24:05 +08:00
compressed_fpga_stream->next_in += 4;
compressed_fpga_stream->avail_in -= cmp_bytes + 4;
2020-06-08 09:15:10 +08:00
int res = LZ4_decompress_safe_continue(compressed_fpga_stream->lz4StreamDecode,
2020-06-05 22:24:05 +08:00
compressed_fpga_stream->next_in,
2020-06-08 09:15:10 +08:00
(char *)output_buffer,
2020-06-05 22:24:05 +08:00
cmp_bytes,
FPGA_RING_BUFFER_BYTES);
if (res <= 0) {
Dbprintf("inflate returned: %d", res);
2019-03-10 03:34:41 +08:00
return res;
2020-06-05 22:24:05 +08:00
}
compressed_fpga_stream->next_in += cmp_bytes;
2019-03-10 03:34:41 +08:00
}
uncompressed_bytes_cnt++;
return *fpga_image_ptr++;
2015-06-25 18:22:34 +08:00
}
//----------------------------------------------------------------------------
// Undo the interleaving of several FPGA config files. FPGA config files
// are combined into one big file:
// 288 bytes from FPGA file 1, followed by 288 bytes from FGPA file 2, etc.
//----------------------------------------------------------------------------
2020-06-05 22:24:05 +08:00
static int get_from_fpga_stream(int bitstream_version, lz4_streamp compressed_fpga_stream, uint8_t *output_buffer) {
while ((uncompressed_bytes_cnt / FPGA_INTERLEAVE_SIZE) % g_fpga_bitstream_num != (bitstream_version - 1)) {
2019-03-10 03:34:41 +08:00
// skip undesired data belonging to other bitstream_versions
get_from_fpga_combined_stream(compressed_fpga_stream, output_buffer);
}
2015-06-25 18:22:34 +08:00
2019-03-10 03:34:41 +08:00
return get_from_fpga_combined_stream(compressed_fpga_stream, output_buffer);
2015-06-25 18:22:34 +08:00
}
//----------------------------------------------------------------------------
// Initialize decompression of the respective (HF or LF) FPGA stream
2015-06-25 18:22:34 +08:00
//----------------------------------------------------------------------------
2020-06-05 22:24:05 +08:00
static bool reset_fpga_stream(int bitstream_version, lz4_streamp compressed_fpga_stream, uint8_t *output_buffer) {
2019-03-10 03:34:41 +08:00
uint8_t header[FPGA_BITSTREAM_FIXED_HEADER_SIZE];
2019-03-10 03:34:41 +08:00
uncompressed_bytes_cnt = 0;
2019-03-10 03:34:41 +08:00
// initialize z_stream structure for inflate:
2020-06-08 09:15:10 +08:00
compressed_fpga_stream->next_in = (char *)&_binary_obj_fpga_all_bit_z_start;
2019-03-10 03:34:41 +08:00
compressed_fpga_stream->avail_in = &_binary_obj_fpga_all_bit_z_end - &_binary_obj_fpga_all_bit_z_start;
2020-06-08 09:15:10 +08:00
2020-06-05 22:24:05 +08:00
int res = LZ4_setStreamDecode(compressed_fpga_stream->lz4StreamDecode, NULL, 0);
if (res == 0)
return false;
2019-04-10 15:32:07 +08:00
2020-06-05 22:24:05 +08:00
fpga_image_ptr = output_buffer + FPGA_RING_BUFFER_BYTES;
2015-06-25 18:22:34 +08:00
2019-03-10 03:34:41 +08:00
for (uint16_t i = 0; i < FPGA_BITSTREAM_FIXED_HEADER_SIZE; i++)
header[i] = get_from_fpga_stream(bitstream_version, compressed_fpga_stream, output_buffer);
2019-03-10 03:34:41 +08:00
// Check for a valid .bit file (starts with bitparse_fixed_header)
if (memcmp(bitparse_fixed_header, header, FPGA_BITSTREAM_FIXED_HEADER_SIZE) == 0)
return true;
2019-03-10 03:34:41 +08:00
return false;
2015-06-25 18:22:34 +08:00
}
static void DownloadFPGA_byte(uint8_t w) {
#define SEND_BIT(x) { if(w & (1<<x) ) HIGH(GPIO_FPGA_DIN); else LOW(GPIO_FPGA_DIN); HIGH(GPIO_FPGA_CCLK); LOW(GPIO_FPGA_CCLK); }
2019-03-10 03:34:41 +08:00
SEND_BIT(7);
SEND_BIT(6);
SEND_BIT(5);
SEND_BIT(4);
SEND_BIT(3);
SEND_BIT(2);
SEND_BIT(1);
SEND_BIT(0);
}
2015-06-25 18:22:34 +08:00
// Download the fpga image starting at current stream position with length FpgaImageLen bytes
2020-06-05 22:24:05 +08:00
static void DownloadFPGA(int bitstream_version, int FpgaImageLen, lz4_streamp compressed_fpga_stream, uint8_t *output_buffer) {
2019-03-10 03:34:41 +08:00
int i = 0;
2019-03-10 03:34:41 +08:00
AT91C_BASE_PIOA->PIO_OER = GPIO_FPGA_ON;
AT91C_BASE_PIOA->PIO_PER = GPIO_FPGA_ON;
HIGH(GPIO_FPGA_ON); // ensure everything is powered on
2019-03-10 03:34:41 +08:00
SpinDelay(50);
2019-03-10 03:34:41 +08:00
LED_D_ON();
2019-03-10 03:34:41 +08:00
// These pins are inputs
AT91C_BASE_PIOA->PIO_ODR =
2019-03-10 03:34:41 +08:00
GPIO_FPGA_NINIT |
GPIO_FPGA_DONE;
// PIO controls the following pins
AT91C_BASE_PIOA->PIO_PER =
2019-03-10 03:34:41 +08:00
GPIO_FPGA_NINIT |
GPIO_FPGA_DONE;
// Enable pull-ups
AT91C_BASE_PIOA->PIO_PPUER =
GPIO_FPGA_NINIT |
GPIO_FPGA_DONE;
// setup initial logic state
HIGH(GPIO_FPGA_NPROGRAM);
LOW(GPIO_FPGA_CCLK);
LOW(GPIO_FPGA_DIN);
// These pins are outputs
AT91C_BASE_PIOA->PIO_OER =
GPIO_FPGA_NPROGRAM |
GPIO_FPGA_CCLK |
GPIO_FPGA_DIN;
// enter FPGA configuration mode
LOW(GPIO_FPGA_NPROGRAM);
SpinDelay(50);
HIGH(GPIO_FPGA_NPROGRAM);
i = 100000;
// wait for FPGA ready to accept data signal
2019-03-10 07:00:59 +08:00
while ((i) && (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_FPGA_NINIT))) {
2019-03-10 03:34:41 +08:00
i--;
}
// crude error indicator, leave both red LEDs on and return
2019-03-10 07:00:59 +08:00
if (i == 0) {
2019-03-10 03:34:41 +08:00
LED_C_ON();
LED_D_ON();
return;
}
for (i = 0; i < FpgaImageLen; i++) {
int b = get_from_fpga_stream(bitstream_version, compressed_fpga_stream, output_buffer);
if (b < 0) {
Dbprintf("Error %d during FpgaDownload", b);
break;
}
DownloadFPGA_byte(b);
}
// continue to clock FPGA until ready signal goes high
i = 100000;
2019-03-10 07:00:59 +08:00
while ((i--) && (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_FPGA_DONE))) {
2019-03-10 03:34:41 +08:00
HIGH(GPIO_FPGA_CCLK);
LOW(GPIO_FPGA_CCLK);
}
// crude error indicator, leave both red LEDs on and return
2019-03-10 07:00:59 +08:00
if (i == 0) {
2019-03-10 03:34:41 +08:00
LED_C_ON();
LED_D_ON();
return;
}
LED_D_OFF();
}
/* Simple Xilinx .bit parser. The file starts with the fixed opaque byte sequence
* 00 09 0f f0 0f f0 0f f0 0f f0 00 00 01
* After that the format is 1 byte section type (ASCII character), 2 byte length
* (big endian), <length> bytes content. Except for section 'e' which has 4 bytes
* length.
*/
2020-06-05 22:24:05 +08:00
static int bitparse_find_section(int bitstream_version, char section_name, uint32_t *section_length, lz4_streamp compressed_fpga_stream, uint8_t *output_buffer) {
2020-07-08 17:05:54 +08:00
2019-03-10 07:00:59 +08:00
#define MAX_FPGA_BIT_STREAM_HEADER_SEARCH 100 // maximum number of bytes to search for the requested section
2020-07-08 17:05:54 +08:00
int result = 0;
2019-03-10 03:34:41 +08:00
uint16_t numbytes = 0;
2019-03-10 07:00:59 +08:00
while (numbytes < MAX_FPGA_BIT_STREAM_HEADER_SEARCH) {
2019-03-10 03:34:41 +08:00
char current_name = get_from_fpga_stream(bitstream_version, compressed_fpga_stream, output_buffer);
numbytes++;
uint32_t current_length = 0;
if (current_name < 'a' || current_name > 'e') {
/* Strange section name, abort */
break;
}
current_length = 0;
switch (current_name) {
2019-03-10 07:00:59 +08:00
case 'e':
/* Four byte length field */
current_length += get_from_fpga_stream(bitstream_version, compressed_fpga_stream, output_buffer) << 24;
current_length += get_from_fpga_stream(bitstream_version, compressed_fpga_stream, output_buffer) << 16;
numbytes += 2;
default: /* Fall through, two byte length field */
current_length += get_from_fpga_stream(bitstream_version, compressed_fpga_stream, output_buffer) << 8;
current_length += get_from_fpga_stream(bitstream_version, compressed_fpga_stream, output_buffer) << 0;
numbytes += 2;
2019-03-10 03:34:41 +08:00
}
if (current_name != 'e' && current_length > 255) {
/* Maybe a parse error */
break;
}
if (current_name == section_name) {
/* Found it */
*section_length = current_length;
result = 1;
break;
}
for (uint16_t i = 0; i < current_length && numbytes < MAX_FPGA_BIT_STREAM_HEADER_SEARCH; i++) {
get_from_fpga_stream(bitstream_version, compressed_fpga_stream, output_buffer);
numbytes++;
}
}
return result;
}
2015-06-25 18:22:34 +08:00
//----------------------------------------------------------------------------
// Check which FPGA image is currently loaded (if any). If necessary
2015-06-25 18:22:34 +08:00
// decompress and load the correct (HF or LF) image to the FPGA
//----------------------------------------------------------------------------
void FpgaDownloadAndGo(int bitstream_version) {
2019-03-10 03:34:41 +08:00
// check whether or not the bitstream is already loaded
if (downloaded_bitstream == bitstream_version) {
FpgaEnableTracing();
2019-03-10 03:34:41 +08:00
return;
}
// Send waiting time extension request as this will take a while
send_wtx(1500);
2019-06-06 16:05:09 +08:00
bool verbose = (DBGLEVEL > 3);
2019-03-10 03:34:41 +08:00
// make sure that we have enough memory to decompress
2019-03-10 07:00:59 +08:00
BigBuf_free();
BigBuf_Clear_ext(verbose);
2020-06-05 22:24:05 +08:00
lz4_stream compressed_fpga_stream;
LZ4_streamDecode_t lz4StreamDecode_body = {{ 0 }};
compressed_fpga_stream.lz4StreamDecode = &lz4StreamDecode_body;
2020-06-08 09:15:10 +08:00
uint8_t *output_buffer = BigBuf_malloc(FPGA_RING_BUFFER_BYTES);
2020-06-05 22:24:05 +08:00
2019-03-10 03:34:41 +08:00
if (!reset_fpga_stream(bitstream_version, &compressed_fpga_stream, output_buffer))
return;
2019-03-10 03:34:41 +08:00
uint32_t bitstream_length;
if (bitparse_find_section(bitstream_version, 'e', &bitstream_length, &compressed_fpga_stream, output_buffer)) {
DownloadFPGA(bitstream_version, bitstream_length, &compressed_fpga_stream, output_buffer);
downloaded_bitstream = bitstream_version;
}
2019-03-10 03:34:41 +08:00
// turn off antenna
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2019-03-10 03:34:41 +08:00
// free eventually allocated BigBuf memory
2019-03-10 07:00:59 +08:00
BigBuf_free();
BigBuf_Clear_ext(false);
}
//-----------------------------------------------------------------------------
// Send a 16 bit command/data pair to the FPGA.
// The bit format is: C3 C2 C1 C0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
// where C is the 4 bit command and D is the 12 bit data
2020-01-13 00:28:12 +08:00
//
2020-07-02 18:32:55 +08:00
// @params cmd and v gets OR:ED over each other. Take careful note of overlapping bits.
//-----------------------------------------------------------------------------
void FpgaSendCommand(uint16_t cmd, uint16_t v) {
2019-03-10 03:34:41 +08:00
SetupSpi(SPI_FPGA_MODE);
while ((AT91C_BASE_SPI->SPI_SR & AT91C_SPI_TXEMPTY) == 0); // wait for the transfer to complete
AT91C_BASE_SPI->SPI_TDR = AT91C_SPI_LASTXFER | cmd | v; // send the data
while (!(AT91C_BASE_SPI->SPI_SR & AT91C_SPI_RDRF)) {}; // wait till transfer is complete
}
//-----------------------------------------------------------------------------
// Write the FPGA setup word (that determines what mode the logic is in, read
// vs. clone vs. etc.). This is now a special case of FpgaSendCommand() to
// avoid changing this function's occurence everywhere in the source code.
//-----------------------------------------------------------------------------
void FpgaWriteConfWord(uint16_t v) {
2019-03-10 03:34:41 +08:00
FpgaSendCommand(FPGA_CMD_SET_CONFREG, v);
}
//-----------------------------------------------------------------------------
// enable/disable FPGA internal tracing
//-----------------------------------------------------------------------------
void FpgaEnableTracing(void) {
2020-01-13 00:28:12 +08:00
FpgaSendCommand(FPGA_CMD_TRACE_ENABLE, 1);
}
void FpgaDisableTracing(void) {
2020-01-13 00:28:12 +08:00
FpgaSendCommand(FPGA_CMD_TRACE_ENABLE, 0);
}
//-----------------------------------------------------------------------------
// Set up the CMOS switches that mux the ADC: four switches, independently
// closable, but should only close one at a time. Not an FPGA thing, but
// the samples from the ADC always flow through the FPGA.
//-----------------------------------------------------------------------------
void SetAdcMuxFor(uint32_t whichGpio) {
2019-04-16 23:01:00 +08:00
#ifndef WITH_FPC_USART
// When compiled without FPC USART support
2019-04-17 20:54:42 +08:00
AT91C_BASE_PIOA->PIO_OER =
GPIO_MUXSEL_HIPKD |
GPIO_MUXSEL_LOPKD |
GPIO_MUXSEL_LORAW |
GPIO_MUXSEL_HIRAW;
AT91C_BASE_PIOA->PIO_PER =
GPIO_MUXSEL_HIPKD |
GPIO_MUXSEL_LOPKD |
GPIO_MUXSEL_LORAW |
GPIO_MUXSEL_HIRAW;
LOW(GPIO_MUXSEL_HIPKD);
LOW(GPIO_MUXSEL_LOPKD);
LOW(GPIO_MUXSEL_HIRAW);
LOW(GPIO_MUXSEL_LORAW);
2019-04-20 17:17:09 +08:00
HIGH(whichGpio);
2019-04-16 23:01:00 +08:00
#else
2019-04-20 17:17:09 +08:00
if ((whichGpio == GPIO_MUXSEL_LORAW) || (whichGpio == GPIO_MUXSEL_HIRAW))
return;
// FPC USART uses HIRAW/LOWRAW pins, so they are excluded here.
2019-04-14 17:07:35 +08:00
AT91C_BASE_PIOA->PIO_OER = GPIO_MUXSEL_HIPKD | GPIO_MUXSEL_LOPKD;
AT91C_BASE_PIOA->PIO_PER = GPIO_MUXSEL_HIPKD | GPIO_MUXSEL_LOPKD;
LOW(GPIO_MUXSEL_HIPKD);
LOW(GPIO_MUXSEL_LOPKD);
2019-04-20 17:17:09 +08:00
HIGH(whichGpio);
2019-04-16 23:01:00 +08:00
#endif
}
void Fpga_print_status(void) {
2020-06-12 01:20:59 +08:00
DbpString(_CYAN_("Current FPGA image"));
Dbprintf(" mode....................%s", g_fpga_version_information[downloaded_bitstream - 1]);
}
int FpgaGetCurrent(void) {
2019-03-10 03:34:41 +08:00
return downloaded_bitstream;
}
// Turns off the antenna,
// log message
// if HF, Disable SSC DMA
// turn off trace and leds off.
void switch_off(void) {
2019-06-06 16:05:09 +08:00
if (DBGLEVEL > 3) Dbprintf("switch_off");
2019-03-10 03:34:41 +08:00
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2019-03-10 07:00:59 +08:00
if (downloaded_bitstream == FPGA_BITSTREAM_HF)
2019-03-10 03:34:41 +08:00
FpgaDisableSscDma();
set_tracing(false);
LEDsoff();
}