proxmark3/armsrc/iso14443a.c

1696 lines
46 KiB
C
Raw Normal View History

//-----------------------------------------------------------------------------
// Gerhard de Koning Gans - May 2008
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to support ISO 14443 type A.
//-----------------------------------------------------------------------------
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
2010-02-21 08:10:28 +08:00
#include "string.h"
#include "iso14443crc.h"
static uint8_t *trace = (uint8_t *) BigBuf;
static int traceLen = 0;
static int rsamples = 0;
static int tracing = TRUE;
// CARD TO READER
// Sequence D: 11110000 modulation with subcarrier during first half
// Sequence E: 00001111 modulation with subcarrier during second half
// Sequence F: 00000000 no modulation with subcarrier
// READER TO CARD
// Sequence X: 00001100 drop after half a period
// Sequence Y: 00000000 no drop
// Sequence Z: 11000000 drop at start
#define SEC_D 0xf0
#define SEC_E 0x0f
#define SEC_F 0x00
#define SEC_X 0x0c
#define SEC_Y 0x00
#define SEC_Z 0xc0
static const uint8_t OddByteParity[256] = {
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
};
// BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT
#define RECV_CMD_OFFSET 3032
#define RECV_RES_OFFSET 3096
#define DMA_BUFFER_OFFSET 3160
#define DMA_BUFFER_SIZE 4096
#define TRACE_LENGTH 3000
//-----------------------------------------------------------------------------
// Generate the parity value for a byte sequence
//
//-----------------------------------------------------------------------------
uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
{
int i;
uint32_t dwPar = 0;
// Generate the encrypted data
for (i = 0; i < iLen; i++) {
// Save the encrypted parity bit
dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
}
return dwPar;
}
static void AppendCrc14443a(uint8_t* data, int len)
{
ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
}
int LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader)
{
// Return when trace is full
if (traceLen >= TRACE_LENGTH) return FALSE;
// Trace the random, i'm curious
rsamples += iSamples;
trace[traceLen++] = ((rsamples >> 0) & 0xff);
trace[traceLen++] = ((rsamples >> 8) & 0xff);
trace[traceLen++] = ((rsamples >> 16) & 0xff);
trace[traceLen++] = ((rsamples >> 24) & 0xff);
if (!bReader) {
trace[traceLen - 1] |= 0x80;
}
trace[traceLen++] = ((dwParity >> 0) & 0xff);
trace[traceLen++] = ((dwParity >> 8) & 0xff);
trace[traceLen++] = ((dwParity >> 16) & 0xff);
trace[traceLen++] = ((dwParity >> 24) & 0xff);
trace[traceLen++] = iLen;
memcpy(trace + traceLen, btBytes, iLen);
traceLen += iLen;
return TRUE;
}
//-----------------------------------------------------------------------------
// The software UART that receives commands from the reader, and its state
// variables.
//-----------------------------------------------------------------------------
static struct {
enum {
STATE_UNSYNCD,
STATE_START_OF_COMMUNICATION,
STATE_MILLER_X,
STATE_MILLER_Y,
STATE_MILLER_Z,
STATE_ERROR_WAIT
} state;
uint16_t shiftReg;
int bitCnt;
int byteCnt;
int byteCntMax;
int posCnt;
int syncBit;
int parityBits;
int samples;
int highCnt;
int bitBuffer;
enum {
DROP_NONE,
DROP_FIRST_HALF,
DROP_SECOND_HALF
} drop;
uint8_t *output;
} Uart;
static int MillerDecoding(int bit)
{
int error = 0;
int bitright;
if(!Uart.bitBuffer) {
Uart.bitBuffer = bit ^ 0xFF0;
return FALSE;
}
else {
Uart.bitBuffer <<= 4;
Uart.bitBuffer ^= bit;
}
int EOC = FALSE;
if(Uart.state != STATE_UNSYNCD) {
Uart.posCnt++;
if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
bit = 0x00;
}
else {
bit = 0x01;
}
if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
bitright = 0x00;
}
else {
bitright = 0x01;
}
if(bit != bitright) { bit = bitright; }
if(Uart.posCnt == 1) {
// measurement first half bitperiod
if(!bit) {
Uart.drop = DROP_FIRST_HALF;
}
}
else {
// measurement second half bitperiod
if(!bit & (Uart.drop == DROP_NONE)) {
Uart.drop = DROP_SECOND_HALF;
}
else if(!bit) {
// measured a drop in first and second half
// which should not be possible
Uart.state = STATE_ERROR_WAIT;
error = 0x01;
}
Uart.posCnt = 0;
switch(Uart.state) {
case STATE_START_OF_COMMUNICATION:
Uart.shiftReg = 0;
if(Uart.drop == DROP_SECOND_HALF) {
// error, should not happen in SOC
Uart.state = STATE_ERROR_WAIT;
error = 0x02;
}
else {
// correct SOC
Uart.state = STATE_MILLER_Z;
}
break;
case STATE_MILLER_Z:
Uart.bitCnt++;
Uart.shiftReg >>= 1;
if(Uart.drop == DROP_NONE) {
// logic '0' followed by sequence Y
// end of communication
Uart.state = STATE_UNSYNCD;
EOC = TRUE;
}
// if(Uart.drop == DROP_FIRST_HALF) {
// Uart.state = STATE_MILLER_Z; stay the same
// we see a logic '0' }
if(Uart.drop == DROP_SECOND_HALF) {
// we see a logic '1'
Uart.shiftReg |= 0x100;
Uart.state = STATE_MILLER_X;
}
break;
case STATE_MILLER_X:
Uart.shiftReg >>= 1;
if(Uart.drop == DROP_NONE) {
// sequence Y, we see a '0'
Uart.state = STATE_MILLER_Y;
Uart.bitCnt++;
}
if(Uart.drop == DROP_FIRST_HALF) {
// Would be STATE_MILLER_Z
// but Z does not follow X, so error
Uart.state = STATE_ERROR_WAIT;
error = 0x03;
}
if(Uart.drop == DROP_SECOND_HALF) {
// We see a '1' and stay in state X
Uart.shiftReg |= 0x100;
Uart.bitCnt++;
}
break;
case STATE_MILLER_Y:
Uart.bitCnt++;
Uart.shiftReg >>= 1;
if(Uart.drop == DROP_NONE) {
// logic '0' followed by sequence Y
// end of communication
Uart.state = STATE_UNSYNCD;
EOC = TRUE;
}
if(Uart.drop == DROP_FIRST_HALF) {
// we see a '0'
Uart.state = STATE_MILLER_Z;
}
if(Uart.drop == DROP_SECOND_HALF) {
// We see a '1' and go to state X
Uart.shiftReg |= 0x100;
Uart.state = STATE_MILLER_X;
}
break;
case STATE_ERROR_WAIT:
// That went wrong. Now wait for at least two bit periods
// and try to sync again
if(Uart.drop == DROP_NONE) {
Uart.highCnt = 6;
Uart.state = STATE_UNSYNCD;
}
break;
default:
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
break;
}
Uart.drop = DROP_NONE;
// should have received at least one whole byte...
if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {
return TRUE;
}
if(Uart.bitCnt == 9) {
Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
Uart.byteCnt++;
Uart.parityBits <<= 1;
Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);
if(EOC) {
// when End of Communication received and
// all data bits processed..
return TRUE;
}
Uart.bitCnt = 0;
}
/*if(error) {
Uart.output[Uart.byteCnt] = 0xAA;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = error & 0xFF;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = 0xAA;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = 0xAA;
Uart.byteCnt++;
return TRUE;
}*/
}
}
else {
bit = Uart.bitBuffer & 0xf0;
bit >>= 4;
bit ^= 0x0F;
if(bit) {
// should have been high or at least (4 * 128) / fc
// according to ISO this should be at least (9 * 128 + 20) / fc
if(Uart.highCnt == 8) {
// we went low, so this could be start of communication
// it turns out to be safer to choose a less significant
// syncbit... so we check whether the neighbour also represents the drop
Uart.posCnt = 1; // apparently we are busy with our first half bit period
Uart.syncBit = bit & 8;
Uart.samples = 3;
if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
if(Uart.syncBit & (Uart.bitBuffer & 8)) {
Uart.syncBit = 8;
// the first half bit period is expected in next sample
Uart.posCnt = 0;
Uart.samples = 3;
}
}
else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
Uart.syncBit <<= 4;
Uart.state = STATE_START_OF_COMMUNICATION;
Uart.drop = DROP_FIRST_HALF;
Uart.bitCnt = 0;
Uart.byteCnt = 0;
Uart.parityBits = 0;
error = 0;
}
else {
Uart.highCnt = 0;
}
}
else {
if(Uart.highCnt < 8) {
Uart.highCnt++;
}
}
}
return FALSE;
}
//=============================================================================
// ISO 14443 Type A - Manchester
//=============================================================================
static struct {
enum {
DEMOD_UNSYNCD,
DEMOD_START_OF_COMMUNICATION,
DEMOD_MANCHESTER_D,
DEMOD_MANCHESTER_E,
DEMOD_MANCHESTER_F,
DEMOD_ERROR_WAIT
} state;
int bitCount;
int posCount;
int syncBit;
int parityBits;
uint16_t shiftReg;
int buffer;
int buff;
int samples;
int len;
enum {
SUB_NONE,
SUB_FIRST_HALF,
SUB_SECOND_HALF
} sub;
uint8_t *output;
} Demod;
static int ManchesterDecoding(int v)
{
int bit;
int modulation;
int error = 0;
if(!Demod.buff) {
Demod.buff = 1;
Demod.buffer = v;
return FALSE;
}
else {
bit = Demod.buffer;
Demod.buffer = v;
}
if(Demod.state==DEMOD_UNSYNCD) {
Demod.output[Demod.len] = 0xfa;
Demod.syncBit = 0;
//Demod.samples = 0;
Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
if(bit & 0x08) { Demod.syncBit = 0x08; }
if(!Demod.syncBit) {
if(bit & 0x04) { Demod.syncBit = 0x04; }
}
else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; }
if(!Demod.syncBit) {
if(bit & 0x02) { Demod.syncBit = 0x02; }
}
else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; }
if(!Demod.syncBit) {
if(bit & 0x01) { Demod.syncBit = 0x01; }
if(Demod.syncBit & (Demod.buffer & 0x08)) {
Demod.syncBit = 0x08;
// The first half bitperiod is expected in next sample
Demod.posCount = 0;
Demod.output[Demod.len] = 0xfb;
}
}
else if(bit & 0x01) { Demod.syncBit = 0x01; }
if(Demod.syncBit) {
Demod.len = 0;
Demod.state = DEMOD_START_OF_COMMUNICATION;
Demod.sub = SUB_FIRST_HALF;
Demod.bitCount = 0;
Demod.shiftReg = 0;
Demod.parityBits = 0;
Demod.samples = 0;
if(Demod.posCount) {
switch(Demod.syncBit) {
case 0x08: Demod.samples = 3; break;
case 0x04: Demod.samples = 2; break;
case 0x02: Demod.samples = 1; break;
case 0x01: Demod.samples = 0; break;
}
}
error = 0;
}
}
else {
//modulation = bit & Demod.syncBit;
modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
Demod.samples += 4;
if(Demod.posCount==0) {
Demod.posCount = 1;
if(modulation) {
Demod.sub = SUB_FIRST_HALF;
}
else {
Demod.sub = SUB_NONE;
}
}
else {
Demod.posCount = 0;
if(modulation && (Demod.sub == SUB_FIRST_HALF)) {
if(Demod.state!=DEMOD_ERROR_WAIT) {
Demod.state = DEMOD_ERROR_WAIT;
Demod.output[Demod.len] = 0xaa;
error = 0x01;
}
}
else if(modulation) {
Demod.sub = SUB_SECOND_HALF;
}
switch(Demod.state) {
case DEMOD_START_OF_COMMUNICATION:
if(Demod.sub == SUB_FIRST_HALF) {
Demod.state = DEMOD_MANCHESTER_D;
}
else {
Demod.output[Demod.len] = 0xab;
Demod.state = DEMOD_ERROR_WAIT;
error = 0x02;
}
break;
case DEMOD_MANCHESTER_D:
case DEMOD_MANCHESTER_E:
if(Demod.sub == SUB_FIRST_HALF) {
Demod.bitCount++;
Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
Demod.state = DEMOD_MANCHESTER_D;
}
else if(Demod.sub == SUB_SECOND_HALF) {
Demod.bitCount++;
Demod.shiftReg >>= 1;
Demod.state = DEMOD_MANCHESTER_E;
}
else {
Demod.state = DEMOD_MANCHESTER_F;
}
break;
case DEMOD_MANCHESTER_F:
// Tag response does not need to be a complete byte!
if(Demod.len > 0 || Demod.bitCount > 0) {
if(Demod.bitCount > 0) {
Demod.shiftReg >>= (9 - Demod.bitCount);
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
Demod.len++;
// No parity bit, so just shift a 0
Demod.parityBits <<= 1;
}
Demod.state = DEMOD_UNSYNCD;
return TRUE;
}
else {
Demod.output[Demod.len] = 0xad;
Demod.state = DEMOD_ERROR_WAIT;
error = 0x03;
}
break;
case DEMOD_ERROR_WAIT:
Demod.state = DEMOD_UNSYNCD;
break;
default:
Demod.output[Demod.len] = 0xdd;
Demod.state = DEMOD_UNSYNCD;
break;
}
if(Demod.bitCount>=9) {
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
Demod.len++;
Demod.parityBits <<= 1;
Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
Demod.bitCount = 0;
Demod.shiftReg = 0;
}
/*if(error) {
Demod.output[Demod.len] = 0xBB;
Demod.len++;
Demod.output[Demod.len] = error & 0xFF;
Demod.len++;
Demod.output[Demod.len] = 0xBB;
Demod.len++;
Demod.output[Demod.len] = bit & 0xFF;
Demod.len++;
Demod.output[Demod.len] = Demod.buffer & 0xFF;
Demod.len++;
Demod.output[Demod.len] = Demod.syncBit & 0xFF;
Demod.len++;
Demod.output[Demod.len] = 0xBB;
Demod.len++;
return TRUE;
}*/
}
} // end (state != UNSYNCED)
return FALSE;
}
//=============================================================================
// Finally, a `sniffer' for ISO 14443 Type A
// Both sides of communication!
//=============================================================================
//-----------------------------------------------------------------------------
// Record the sequence of commands sent by the reader to the tag, with
// triggering so that we start recording at the point that the tag is moved
// near the reader.
//-----------------------------------------------------------------------------
void SnoopIso14443a(void)
{
// #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values
// #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values
// #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values
// #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values
// #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values
// We won't start recording the frames that we acquire until we trigger;
// a good trigger condition to get started is probably when we see a
// response from the tag.
int triggered = FALSE; // FALSE to wait first for card
// The command (reader -> tag) that we're receiving.
// The length of a received command will in most cases be no more than 18 bytes.
// So 32 should be enough!
uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
// The response (tag -> reader) that we're receiving.
uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
// As we receive stuff, we copy it from receivedCmd or receivedResponse
// into trace, along with its length and other annotations.
//uint8_t *trace = (uint8_t *)BigBuf;
//int traceLen = 0;
// The DMA buffer, used to stream samples from the FPGA
int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
int lastRxCounter;
int8_t *upTo;
int smpl;
int maxBehindBy = 0;
// Count of samples received so far, so that we can include timing
// information in the trace buffer.
int samples = 0;
int rsamples = 0;
memset(trace, 0x44, RECV_CMD_OFFSET);
// Set up the demodulator for tag -> reader responses.
Demod.output = receivedResponse;
Demod.len = 0;
Demod.state = DEMOD_UNSYNCD;
// Setup for the DMA.
FpgaSetupSsc();
upTo = dmaBuf;
lastRxCounter = DMA_BUFFER_SIZE;
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
// And the reader -> tag commands
memset(&Uart, 0, sizeof(Uart));
Uart.output = receivedCmd;
Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
Uart.state = STATE_UNSYNCD;
// And put the FPGA in the appropriate mode
// Signal field is off with the appropriate LED
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// And now we loop, receiving samples.
for(;;) {
LED_A_ON();
WDT_HIT();
int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
(DMA_BUFFER_SIZE-1);
if(behindBy > maxBehindBy) {
maxBehindBy = behindBy;
if(behindBy > 400) {
Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
goto done;
}
}
if(behindBy < 1) continue;
LED_A_OFF();
smpl = upTo[0];
upTo++;
lastRxCounter -= 1;
if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
upTo -= DMA_BUFFER_SIZE;
lastRxCounter += DMA_BUFFER_SIZE;
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
}
samples += 4;
if(MillerDecoding((smpl & 0xF0) >> 4)) {
rsamples = samples - Uart.samples;
LED_C_ON();
if(triggered) {
trace[traceLen++] = ((rsamples >> 0) & 0xff);
trace[traceLen++] = ((rsamples >> 8) & 0xff);
trace[traceLen++] = ((rsamples >> 16) & 0xff);
trace[traceLen++] = ((rsamples >> 24) & 0xff);
trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff);
trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff);
trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff);
trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff);
trace[traceLen++] = Uart.byteCnt;
memcpy(trace+traceLen, receivedCmd, Uart.byteCnt);
traceLen += Uart.byteCnt;
if(traceLen > TRACE_LENGTH) break;
}
/* And ready to receive another command. */
Uart.state = STATE_UNSYNCD;
/* And also reset the demod code, which might have been */
/* false-triggered by the commands from the reader. */
Demod.state = DEMOD_UNSYNCD;
LED_B_OFF();
}
if(ManchesterDecoding(smpl & 0x0F)) {
rsamples = samples - Demod.samples;
LED_B_ON();
// timestamp, as a count of samples
trace[traceLen++] = ((rsamples >> 0) & 0xff);
trace[traceLen++] = ((rsamples >> 8) & 0xff);
trace[traceLen++] = ((rsamples >> 16) & 0xff);
trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
// length
trace[traceLen++] = Demod.len;
memcpy(trace+traceLen, receivedResponse, Demod.len);
traceLen += Demod.len;
if(traceLen > TRACE_LENGTH) break;
triggered = TRUE;
// And ready to receive another response.
memset(&Demod, 0, sizeof(Demod));
Demod.output = receivedResponse;
Demod.state = DEMOD_UNSYNCD;
LED_C_OFF();
}
if(BUTTON_PRESS()) {
DbpString("cancelled_a");
goto done;
}
}
DbpString("COMMAND FINISHED");
Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
done:
AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
LED_A_OFF();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
}
//-----------------------------------------------------------------------------
// Prepare tag messages
//-----------------------------------------------------------------------------
static void CodeIso14443aAsTag(const uint8_t *cmd, int len)
{
int i;
int oddparity;
ToSendReset();
// Correction bit, might be removed when not needed
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(1); // 1
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
// Send startbit
ToSend[++ToSendMax] = SEC_D;
for(i = 0; i < len; i++) {
int j;
uint8_t b = cmd[i];
// Data bits
oddparity = 0x01;
for(j = 0; j < 8; j++) {
oddparity ^= (b & 1);
if(b & 1) {
ToSend[++ToSendMax] = SEC_D;
} else {
ToSend[++ToSendMax] = SEC_E;
}
b >>= 1;
}
// Parity bit
if(oddparity) {
ToSend[++ToSendMax] = SEC_D;
} else {
ToSend[++ToSendMax] = SEC_E;
}
}
// Send stopbit
ToSend[++ToSendMax] = SEC_F;
// Flush the buffer in FPGA!!
for(i = 0; i < 5; i++) {
ToSend[++ToSendMax] = SEC_F;
}
// Convert from last byte pos to length
ToSendMax++;
// Add a few more for slop
ToSend[ToSendMax++] = 0x00;
ToSend[ToSendMax++] = 0x00;
//ToSendMax += 2;
}
//-----------------------------------------------------------------------------
// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
//-----------------------------------------------------------------------------
static void CodeStrangeAnswer()
{
int i;
ToSendReset();
// Correction bit, might be removed when not needed
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(1); // 1
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
// Send startbit
ToSend[++ToSendMax] = SEC_D;
// 0
ToSend[++ToSendMax] = SEC_E;
// 0
ToSend[++ToSendMax] = SEC_E;
// 1
ToSend[++ToSendMax] = SEC_D;
// Send stopbit
ToSend[++ToSendMax] = SEC_F;
// Flush the buffer in FPGA!!
for(i = 0; i < 5; i++) {
ToSend[++ToSendMax] = SEC_F;
}
// Convert from last byte pos to length
ToSendMax++;
// Add a few more for slop
ToSend[ToSendMax++] = 0x00;
ToSend[ToSendMax++] = 0x00;
//ToSendMax += 2;
}
//-----------------------------------------------------------------------------
// Wait for commands from reader
// Stop when button is pressed
// Or return TRUE when command is captured
//-----------------------------------------------------------------------------
static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen)
{
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
// only, since we are receiving, not transmitting).
// Signal field is off with the appropriate LED
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
// Now run a `software UART' on the stream of incoming samples.
Uart.output = received;
Uart.byteCntMax = maxLen;
Uart.state = STATE_UNSYNCD;
for(;;) {
WDT_HIT();
if(BUTTON_PRESS()) return FALSE;
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if(MillerDecoding((b & 0xf0) >> 4)) {
*len = Uart.byteCnt;
return TRUE;
}
if(MillerDecoding(b & 0x0f)) {
*len = Uart.byteCnt;
return TRUE;
}
}
}
}
//-----------------------------------------------------------------------------
// Main loop of simulated tag: receive commands from reader, decide what
// response to send, and send it.
//-----------------------------------------------------------------------------
void SimulateIso14443aTag(int tagType, int TagUid)
{
// This function contains the tag emulation
// Prepare protocol messages
// static const uint8_t cmd1[] = { 0x26 };
// static const uint8_t response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg
//
static const uint8_t response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me
// static const uint8_t response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me
// UID response
// static const uint8_t cmd2[] = { 0x93, 0x20 };
//static const uint8_t response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg
// my desfire
static const uint8_t response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips
// When reader selects us during cascade1 it will send cmd3
//uint8_t response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)
uint8_t response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)
ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
// send cascade2 2nd half of UID
static const uint8_t response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck
// NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID
// When reader selects us during cascade2 it will send cmd3a
//uint8_t response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)
uint8_t response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)
ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
static const uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
uint8_t *resp;
int respLen;
// Longest possible response will be 16 bytes + 2 CRC = 18 bytes
// This will need
// 144 data bits (18 * 8)
// 18 parity bits
// 2 Start and stop
// 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
// 1 just for the case
// ----------- +
// 166
//
// 166 bytes, since every bit that needs to be send costs us a byte
//
// Respond with card type
uint8_t *resp1 = (((uint8_t *)BigBuf) + 800);
int resp1Len;
// Anticollision cascade1 - respond with uid
uint8_t *resp2 = (((uint8_t *)BigBuf) + 970);
int resp2Len;
// Anticollision cascade2 - respond with 2nd half of uid if asked
// we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140);
int resp2aLen;
// Acknowledge select - cascade 1
uint8_t *resp3 = (((uint8_t *)BigBuf) + 1310);
int resp3Len;
// Acknowledge select - cascade 2
uint8_t *resp3a = (((uint8_t *)BigBuf) + 1480);
int resp3aLen;
// Response to a read request - not implemented atm
uint8_t *resp4 = (((uint8_t *)BigBuf) + 1550);
int resp4Len;
// Authenticate response - nonce
uint8_t *resp5 = (((uint8_t *)BigBuf) + 1720);
int resp5Len;
uint8_t *receivedCmd = (uint8_t *)BigBuf;
int len;
int i;
int u;
uint8_t b;
// To control where we are in the protocol
int order = 0;
int lastorder;
// Just to allow some checks
int happened = 0;
int happened2 = 0;
int cmdsRecvd = 0;
int fdt_indicator;
memset(receivedCmd, 0x44, 400);
// Prepare the responses of the anticollision phase
// there will be not enough time to do this at the moment the reader sends it REQA
// Answer to request
CodeIso14443aAsTag(response1, sizeof(response1));
memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
// Send our UID (cascade 1)
CodeIso14443aAsTag(response2, sizeof(response2));
memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
// Answer to select (cascade1)
CodeIso14443aAsTag(response3, sizeof(response3));
memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
// Send the cascade 2 2nd part of the uid
CodeIso14443aAsTag(response2a, sizeof(response2a));
memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;
// Answer to select (cascade 2)
CodeIso14443aAsTag(response3a, sizeof(response3a));
memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;
// Strange answer is an example of rare message size (3 bits)
CodeStrangeAnswer();
memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
// Authentication answer (random nonce)
CodeIso14443aAsTag(response5, sizeof(response5));
memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;
// We need to listen to the high-frequency, peak-detected path.
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaSetupSsc();
cmdsRecvd = 0;
LED_A_ON();
for(;;) {
if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) {
DbpString("button press");
break;
}
// doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
// Okay, look at the command now.
lastorder = order;
i = 1; // first byte transmitted
if(receivedCmd[0] == 0x26) {
// Received a REQUEST
resp = resp1; respLen = resp1Len; order = 1;
//DbpString("Hello request from reader:");
} else if(receivedCmd[0] == 0x52) {
// Received a WAKEUP
resp = resp1; respLen = resp1Len; order = 6;
// //DbpString("Wakeup request from reader:");
} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision
// Received request for UID (cascade 1)
resp = resp2; respLen = resp2Len; order = 2;
// DbpString("UID (cascade 1) request from reader:");
// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
} else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision
// Received request for UID (cascade 2)
resp = resp2a; respLen = resp2aLen; order = 20;
// DbpString("UID (cascade 2) request from reader:");
// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select
// Received a SELECT
resp = resp3; respLen = resp3Len; order = 3;
// DbpString("Select (cascade 1) request from reader:");
// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select
// Received a SELECT
resp = resp3a; respLen = resp3aLen; order = 30;
// DbpString("Select (cascade 2) request from reader:");
// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
} else if(receivedCmd[0] == 0x30) {
// Received a READ
resp = resp4; respLen = resp4Len; order = 4; // Do nothing
Dbprintf("Read request from reader: %x %x %x",
receivedCmd[0], receivedCmd[1], receivedCmd[2]);
} else if(receivedCmd[0] == 0x50) {
// Received a HALT
resp = resp1; respLen = 0; order = 5; // Do nothing
DbpString("Reader requested we HALT!:");
} else if(receivedCmd[0] == 0x60) {
// Received an authentication request
resp = resp5; respLen = resp5Len; order = 7;
Dbprintf("Authenticate request from reader: %x %x %x",
receivedCmd[0], receivedCmd[1], receivedCmd[2]);
} else if(receivedCmd[0] == 0xE0) {
// Received a RATS request
resp = resp1; respLen = 0;order = 70;
Dbprintf("RATS request from reader: %x %x %x",
receivedCmd[0], receivedCmd[1], receivedCmd[2]);
} else {
// Never seen this command before
Dbprintf("Unknown command received from reader: %x %x %x %x %x %x %x %x %x",
receivedCmd[0], receivedCmd[1], receivedCmd[2],
receivedCmd[3], receivedCmd[3], receivedCmd[4],
receivedCmd[5], receivedCmd[6], receivedCmd[7]);
// Do not respond
resp = resp1; respLen = 0; order = 0;
}
// Count number of wakeups received after a halt
if(order == 6 && lastorder == 5) { happened++; }
// Count number of other messages after a halt
if(order != 6 && lastorder == 5) { happened2++; }
// Look at last parity bit to determine timing of answer
if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {
// 1236, so correction bit needed
i = 0;
}
memset(receivedCmd, 0x44, 32);
if(cmdsRecvd > 999) {
DbpString("1000 commands later...");
break;
}
else {
cmdsRecvd++;
}
if(respLen <= 0) continue;
// Modulate Manchester
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
AT91C_BASE_SSC->SSC_THR = 0x00;
FpgaSetupSsc();
// ### Transmit the response ###
u = 0;
b = 0x00;
fdt_indicator = FALSE;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
(void)b;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
if(i > respLen) {
b = 0x00;
u++;
} else {
b = resp[i];
i++;
}
AT91C_BASE_SSC->SSC_THR = b;
if(u > 4) {
break;
}
}
if(BUTTON_PRESS()) {
break;
}
}
}
Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
LED_A_OFF();
}
//-----------------------------------------------------------------------------
// Transmit the command (to the tag) that was placed in ToSend[].
//-----------------------------------------------------------------------------
static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait)
{
int c;
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
if (wait)
if(*wait < 10)
*wait = 10;
for(c = 0; c < *wait;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
c++;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
(void)r;
}
WDT_HIT();
}
c = 0;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = cmd[c];
c++;
if(c >= len) {
break;
}
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
(void)r;
}
WDT_HIT();
}
if (samples) *samples = (c + *wait) << 3;
}
//-----------------------------------------------------------------------------
// Code a 7-bit command without parity bit
// This is especially for 0x26 and 0x52 (REQA and WUPA)
//-----------------------------------------------------------------------------
void ShortFrameFromReader(const uint8_t bt)
{
int j;
int last;
uint8_t b;
ToSendReset();
// Start of Communication (Seq. Z)
ToSend[++ToSendMax] = SEC_Z;
last = 0;
b = bt;
for(j = 0; j < 7; j++) {
if(b & 1) {
// Sequence X
ToSend[++ToSendMax] = SEC_X;
last = 1;
} else {
if(last == 0) {
// Sequence Z
ToSend[++ToSendMax] = SEC_Z;
}
else {
// Sequence Y
ToSend[++ToSendMax] = SEC_Y;
last = 0;
}
}
b >>= 1;
}
// End of Communication
if(last == 0) {
// Sequence Z
ToSend[++ToSendMax] = SEC_Z;
}
else {
// Sequence Y
ToSend[++ToSendMax] = SEC_Y;
last = 0;
}
// Sequence Y
ToSend[++ToSendMax] = SEC_Y;
// Just to be sure!
ToSend[++ToSendMax] = SEC_Y;
ToSend[++ToSendMax] = SEC_Y;
ToSend[++ToSendMax] = SEC_Y;
// Convert from last character reference to length
ToSendMax++;
}
//-----------------------------------------------------------------------------
// Prepare reader command to send to FPGA
//
//-----------------------------------------------------------------------------
void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
{
int i, j;
int last;
uint8_t b;
ToSendReset();
// Start of Communication (Seq. Z)
ToSend[++ToSendMax] = SEC_Z;
last = 0;
// Generate send structure for the data bits
for (i = 0; i < len; i++) {
// Get the current byte to send
b = cmd[i];
for (j = 0; j < 8; j++) {
if (b & 1) {
// Sequence X
ToSend[++ToSendMax] = SEC_X;
last = 1;
} else {
if (last == 0) {
// Sequence Z
ToSend[++ToSendMax] = SEC_Z;
} else {
// Sequence Y
ToSend[++ToSendMax] = SEC_Y;
last = 0;
}
}
b >>= 1;
}
// Get the parity bit
if ((dwParity >> i) & 0x01) {
// Sequence X
ToSend[++ToSendMax] = SEC_X;
last = 1;
} else {
if (last == 0) {
// Sequence Z
ToSend[++ToSendMax] = SEC_Z;
} else {
// Sequence Y
ToSend[++ToSendMax] = SEC_Y;
last = 0;
}
}
}
// End of Communication
if (last == 0) {
// Sequence Z
ToSend[++ToSendMax] = SEC_Z;
} else {
// Sequence Y
ToSend[++ToSendMax] = SEC_Y;
last = 0;
}
// Sequence Y
ToSend[++ToSendMax] = SEC_Y;
// Just to be sure!
ToSend[++ToSendMax] = SEC_Y;
ToSend[++ToSendMax] = SEC_Y;
ToSend[++ToSendMax] = SEC_Y;
// Convert from last character reference to length
ToSendMax++;
}
//-----------------------------------------------------------------------------
// Wait a certain time for tag response
// If a response is captured return TRUE
// If it takes to long return FALSE
//-----------------------------------------------------------------------------
static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
{
// buffer needs to be 512 bytes
int c;
// Set FPGA mode to "reader listen mode", no modulation (listen
// only, since we are receiving, not transmitting).
// Signal field is on with the appropriate LED
LED_D_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
// Now get the answer from the card
Demod.output = receivedResponse;
Demod.len = 0;
Demod.state = DEMOD_UNSYNCD;
uint8_t b;
if (elapsed) *elapsed = 0;
c = 0;
for(;;) {
WDT_HIT();
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
if (elapsed) (*elapsed)++;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
if(c < 2048) { c++; } else { return FALSE; }
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if(ManchesterDecoding((b>>4) & 0xf)) {
*samples = ((c - 1) << 3) + 4;
return TRUE;
}
if(ManchesterDecoding(b & 0x0f)) {
*samples = c << 3;
return TRUE;
}
}
}
}
void ReaderTransmitShort(const uint8_t* bt)
{
int wait = 0;
int samples = 0;
ShortFrameFromReader(*bt);
// Select the card
TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
// Store reader command in buffer
if (tracing) LogTrace(bt,1,0,GetParity(bt,1),TRUE);
}
void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par)
{
int wait = 0;
int samples = 0;
// This is tied to other size changes
// uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
CodeIso14443aAsReaderPar(frame,len,par);
// Select the card
TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
// Store reader command in buffer
if (tracing) LogTrace(frame,len,0,par,TRUE);
}
void ReaderTransmit(uint8_t* frame, int len)
{
// Generate parity and redirect
ReaderTransmitPar(frame,len,GetParity(frame,len));
}
int ReaderReceive(uint8_t* receivedAnswer)
{
int samples = 0;
if (!GetIso14443aAnswerFromTag(receivedAnswer,100,&samples,0)) return FALSE;
if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
if(samples == 0) return FALSE;
return Demod.len;
}
/* performs iso14443a anticolision procedure
* fills the uid pointer */
int iso14443a_select_card(uint8_t * uid_ptr) {
uint8_t wupa[] = { 0x52 };
uint8_t sel_all[] = { 0x93,0x20 };
uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
uint8_t sel_all_c2[] = { 0x95,0x20 };
uint8_t sel_uid_c2[] = { 0x95,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
uint8_t* uid = resp + 7;
int len;
// Broadcast for a card, WUPA (0x52) will force response from all cards in the field
ReaderTransmitShort(wupa);
// Receive the ATQA
if(!ReaderReceive(resp)) return 0;
// if(*(uint16_t *) resp == 0x4403) MIFARE_CLASSIC
// if(*(uint16_t *) resp == 0x0400) MIFARE_DESFIRE
ReaderTransmit(sel_all,sizeof(sel_all)); // SELECT_ALL
if(!ReaderReceive(uid)) return 0;
// Construct SELECT UID command
// First copy the 5 bytes (Mifare Classic) after the 93 70
memcpy(sel_uid+2,uid,5);
// Secondly compute the two CRC bytes at the end
AppendCrc14443a(sel_uid,7);
ReaderTransmit(sel_uid,sizeof(sel_uid));
// Receive the SAK
if (!ReaderReceive(resp)) return 0;
// OK we have selected at least at cascade 1, lets see if first byte of UID was 0x88 in
// which case we need to make a cascade 2 request and select - this is a long UID
// When the UID is not complete, the 3nd bit (from the right) is set in the SAK.
if (resp[0] &= 0x04)
{
ReaderTransmit(sel_all_c2,sizeof(sel_all_c2));
if (!ReaderReceive(uid+5)) return 0;
// Construct SELECT UID command
memcpy(sel_uid_c2+2,uid+5,5);
AppendCrc14443a(sel_uid_c2,7);
ReaderTransmit(sel_uid_c2,sizeof(sel_uid_c2));
// Receive the SAK
if (!ReaderReceive(resp)) return 0;
}
if(uid_ptr) memcpy(uid_ptr, uid, 10);
if( (resp[0] & 0x20) == 0)
return 2; // non iso14443a compliant tag
// Request for answer to select
AppendCrc14443a(rats, 2);
ReaderTransmit(rats, sizeof(rats));
if (!(len = ReaderReceive(resp))) return 0;
return 1;
}
void iso14443a_setup() {
// Setup SSC
FpgaSetupSsc();
// Start from off (no field generated)
// Signal field is off with the appropriate LED
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(200);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Now give it time to spin up.
// Signal field is on with the appropriate LED
LED_D_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
SpinDelay(200);
}
//-----------------------------------------------------------------------------
// Read an ISO 14443a tag. Send out commands and store answers.
//
//-----------------------------------------------------------------------------
void ReaderIso14443a(uint32_t parameter)
{
// Mifare AUTH
uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
// uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00 };
uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
traceLen = 0;
iso14443a_setup();
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
while(traceLen < TRACE_LENGTH)
{
// Test if the action was cancelled
if(BUTTON_PRESS()) break;
if(!iso14443a_select_card(NULL)) {
DbpString("iso14443a setup failed");
break;
}
// Transmit MIFARE_CLASSIC_AUTH
ReaderTransmit(mf_auth,sizeof(mf_auth));
// Receive the (16 bit) "random" nonce
if (!ReaderReceive(receivedAnswer)) continue;
}
// Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
Dbprintf("%x %x %x", rsamples, 0xCC, 0xCC);
DbpString("ready..");
}
//-----------------------------------------------------------------------------
// Read an ISO 14443a tag. Send out commands and store answers.
//
//-----------------------------------------------------------------------------
void ReaderMifare(uint32_t parameter)
{
// Mifare AUTH
uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
traceLen = 0;
tracing = false;
iso14443a_setup();
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
byte_t nt_diff = 0;
LED_A_OFF();
byte_t par = 0;
byte_t par_mask = 0xff;
byte_t par_low = 0;
int led_on = TRUE;
tracing = FALSE;
byte_t nt[4];
byte_t nt_attacked[4];
byte_t par_list[8];
byte_t ks_list[8];
num_to_bytes(parameter,4,nt_attacked);
while(TRUE)
{
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(200);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
// Test if the action was cancelled
if(BUTTON_PRESS()) {
break;
}
if(!iso14443a_select_card(NULL)) continue;
// Transmit MIFARE_CLASSIC_AUTH
ReaderTransmit(mf_auth,sizeof(mf_auth));
// Receive the (16 bit) "random" nonce
if (!ReaderReceive(receivedAnswer)) continue;
memcpy(nt,receivedAnswer,4);
// Transmit reader nonce and reader answer
ReaderTransmitPar(mf_nr_ar,sizeof(mf_nr_ar),par);
// Receive 4 bit answer
if (ReaderReceive(receivedAnswer))
{
if (nt_diff == 0)
{
LED_A_ON();
memcpy(nt_attacked,nt,4);
par_mask = 0xf8;
par_low = par & 0x07;
}
if (memcmp(nt,nt_attacked,4) != 0) continue;
led_on = !led_on;
if(led_on) LED_B_ON(); else LED_B_OFF();
par_list[nt_diff] = par;
ks_list[nt_diff] = receivedAnswer[0]^0x05;
// Test if the information is complete
if (nt_diff == 0x07) break;
nt_diff = (nt_diff+1) & 0x07;
mf_nr_ar[3] = nt_diff << 5;
par = par_low;
} else {
if (nt_diff == 0)
{
par++;
} else {
par = (((par>>3)+1) << 3) | par_low;
}
}
}
LogTrace(nt,4,0,GetParity(nt,4),TRUE);
LogTrace(par_list,8,0,GetParity(par_list,8),TRUE);
LogTrace(ks_list,8,0,GetParity(ks_list,8),TRUE);
// Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
tracing = TRUE;
}