proxmark3/armsrc/iso15693.c

1114 lines
28 KiB
C
Raw Normal View History

//-----------------------------------------------------------------------------
// Routines to support ISO 15693. This includes both the reader software and
// the `fake tag' modes, but at the moment I've implemented only the reader
// stuff, and that barely.
// Jonathan Westhues, split Nov 2006
// Modified by Greg Jones, Jan 2009 to perform modulation onboard in arm rather than on PC
// Also added additional reader commands (SELECT, READ etc.)
//-----------------------------------------------------------------------------
#include "proxmark3.h"
#include "util.h"
#include "apps.h"
2010-02-21 08:10:28 +08:00
#include "string.h"
// FROM winsrc\prox.h //////////////////////////////////
#define arraylen(x) (sizeof(x)/sizeof((x)[0]))
//-----------------------------------------------------------------------------
// Map a sequence of octets (~layer 2 command) into the set of bits to feed
// to the FPGA, to transmit that command to the tag.
//-----------------------------------------------------------------------------
// The sampling rate is 106.353 ksps/s, for T = 18.8 us
// SOF defined as
// 1) Unmodulated time of 56.64us
// 2) 24 pulses of 423.75khz
// 3) logic '1' (unmodulated for 18.88us followed by 8 pulses of 423.75khz)
static const int FrameSOF[] = {
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
-1, -1, -1, -1,
-1, -1, -1, -1,
1, 1, 1, 1,
1, 1, 1, 1
};
static const int Logic0[] = {
1, 1, 1, 1,
1, 1, 1, 1,
-1, -1, -1, -1,
-1, -1, -1, -1
};
static const int Logic1[] = {
-1, -1, -1, -1,
-1, -1, -1, -1,
1, 1, 1, 1,
1, 1, 1, 1
};
// EOF defined as
// 1) logic '0' (8 pulses of 423.75khz followed by unmodulated for 18.88us)
// 2) 24 pulses of 423.75khz
// 3) Unmodulated time of 56.64us
static const int FrameEOF[] = {
1, 1, 1, 1,
1, 1, 1, 1,
-1, -1, -1, -1,
-1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
};
static void CodeIso15693AsReader(uint8_t *cmd, int n)
{
int i, j;
ToSendReset();
// Give it a bit of slack at the beginning
for(i = 0; i < 24; i++) {
ToSendStuffBit(1);
}
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
for(i = 0; i < n; i++) {
for(j = 0; j < 8; j += 2) {
int these = (cmd[i] >> j) & 3;
switch(these) {
case 0:
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
break;
case 1:
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
break;
case 2:
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
break;
case 3:
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
break;
}
}
}
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
// And slack at the end, too.
for(i = 0; i < 24; i++) {
ToSendStuffBit(1);
}
}
//-----------------------------------------------------------------------------
// The CRC used by ISO 15693.
//-----------------------------------------------------------------------------
static uint16_t Crc(uint8_t *v, int n)
{
uint32_t reg;
int i, j;
reg = 0xffff;
for(i = 0; i < n; i++) {
reg = reg ^ ((uint32_t)v[i]);
for (j = 0; j < 8; j++) {
if (reg & 0x0001) {
reg = (reg >> 1) ^ 0x8408;
} else {
reg = (reg >> 1);
}
}
}
return ~reg;
}
char *strcat(char *dest, const char *src)
{
size_t dest_len = strlen(dest);
size_t i;
for (i = 0 ; src[i] != '\0' ; i++)
dest[dest_len + i] = src[i];
dest[dest_len + i] = '\0';
return dest;
}
////////////////////////////////////////// code to do 'itoa'
/* reverse: reverse string s in place */
void reverse(char s[])
{
int c, i, j;
for (i = 0, j = strlen(s)-1; i<j; i++, j--) {
c = s[i];
s[i] = s[j];
s[j] = c;
}
}
/* itoa: convert n to characters in s */
void itoa(int n, char s[])
{
int i, sign;
if ((sign = n) < 0) /* record sign */
n = -n; /* make n positive */
i = 0;
do { /* generate digits in reverse order */
s[i++] = n % 10 + '0'; /* get next digit */
} while ((n /= 10) > 0); /* delete it */
if (sign < 0)
s[i++] = '-';
s[i] = '\0';
reverse(s);
}
//////////////////////////////////////// END 'itoa' CODE
//-----------------------------------------------------------------------------
// Encode (into the ToSend buffers) an identify request, which is the first
// thing that you must send to a tag to get a response.
//-----------------------------------------------------------------------------
static void BuildIdentifyRequest(void)
{
uint8_t cmd[5];
uint16_t crc;
// one sub-carrier, inventory, 1 slot, fast rate
// AFI is at bit 5 (1<<4) when doing an INVENTORY
cmd[0] = (1 << 2) | (1 << 5) | (1 << 1);
// inventory command code
cmd[1] = 0x01;
// no mask
cmd[2] = 0x00;
//Now the CRC
crc = Crc(cmd, 3);
cmd[3] = crc & 0xff;
cmd[4] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid)
{
uint8_t cmd[12];
uint16_t crc;
// If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
// followed by teh block data
// one sub-carrier, inventory, 1 slot, fast rate
cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
// System Information command code
cmd[1] = 0x2B;
// UID may be optionally specified here
// 64-bit UID
cmd[2] = 0x32;
cmd[3]= 0x4b;
cmd[4] = 0x03;
cmd[5] = 0x01;
cmd[6] = 0x00;
cmd[7] = 0x10;
cmd[8] = 0x05;
cmd[9]= 0xe0; // always e0 (not exactly unique)
//Now the CRC
crc = Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
cmd[10] = crc & 0xff;
cmd[11] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
static void BuildSelectRequest( uint8_t uid[])
{
// uid[6]=0x31; // this is getting ignored - the uid array is not happening...
uint8_t cmd[12];
uint16_t crc;
// one sub-carrier, inventory, 1 slot, fast rate
//cmd[0] = (1 << 2) | (1 << 5) | (1 << 1); // INVENTROY FLAGS
cmd[0] = (1 << 4) | (1 << 5) | (1 << 1); // Select and addressed FLAGS
// SELECT command code
cmd[1] = 0x25;
// 64-bit UID
// cmd[2] = uid[0];//0x32;
// cmd[3]= uid[1];//0x4b;
// cmd[4] = uid[2];//0x03;
// cmd[5] = uid[3];//0x01;
// cmd[6] = uid[4];//0x00;
// cmd[7] = uid[5];//0x10;
// cmd[8] = uid[6];//0x05;
cmd[2] = 0x32;//
cmd[3] = 0x4b;
cmd[4] = 0x03;
cmd[5] = 0x01;
cmd[6] = 0x00;
cmd[7] = 0x10;
cmd[8] = 0x05; // infineon?
cmd[9]= 0xe0; // always e0 (not exactly unique)
// DbpIntegers(cmd[8],cmd[7],cmd[6]);
// Now the CRC
crc = Crc(cmd, 10); // the crc needs to be calculated over 10 bytes
cmd[10] = crc & 0xff;
cmd[11] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
static void __attribute__((unused)) BuildReadBlockRequest(uint8_t *uid, uint8_t blockNumber )
{
uint8_t cmd[13];
uint16_t crc;
// If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
// followed by teh block data
// one sub-carrier, inventory, 1 slot, fast rate
cmd[0] = (1 << 6)| (1 << 5) | (1 << 1); // no SELECT bit
// READ BLOCK command code
cmd[1] = 0x20;
// UID may be optionally specified here
// 64-bit UID
cmd[2] = 0x32;
cmd[3]= 0x4b;
cmd[4] = 0x03;
cmd[5] = 0x01;
cmd[6] = 0x00;
cmd[7] = 0x10;
cmd[8] = 0x05;
cmd[9]= 0xe0; // always e0 (not exactly unique)
// Block number to read
cmd[10] = blockNumber;//0x00;
//Now the CRC
crc = Crc(cmd, 11); // the crc needs to be calculated over 2 bytes
cmd[11] = crc & 0xff;
cmd[12] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid)
{
uint8_t cmd[14];
uint16_t crc;
// If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
// followed by teh block data
// one sub-carrier, inventory, 1 slot, fast rate
cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
// READ Multi BLOCK command code
cmd[1] = 0x23;
// UID may be optionally specified here
// 64-bit UID
cmd[2] = 0x32;
cmd[3]= 0x4b;
cmd[4] = 0x03;
cmd[5] = 0x01;
cmd[6] = 0x00;
cmd[7] = 0x10;
cmd[8] = 0x05;
cmd[9]= 0xe0; // always e0 (not exactly unique)
// First Block number to read
cmd[10] = 0x00;
// Number of Blocks to read
cmd[11] = 0x2f; // read quite a few
//Now the CRC
crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
cmd[12] = crc & 0xff;
cmd[13] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode)
{
uint8_t cmd[14];
uint16_t crc;
// If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
// followed by teh block data
// one sub-carrier, inventory, 1 slot, fast rate
cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
// READ BLOCK command code
cmd[1] = CmdCode;
// UID may be optionally specified here
// 64-bit UID
cmd[2] = 0x32;
cmd[3]= 0x4b;
cmd[4] = 0x03;
cmd[5] = 0x01;
cmd[6] = 0x00;
cmd[7] = 0x10;
cmd[8] = 0x05;
cmd[9]= 0xe0; // always e0 (not exactly unique)
// Parameter
cmd[10] = 0x00;
cmd[11] = 0x0a;
// cmd[12] = 0x00;
// cmd[13] = 0x00; //Now the CRC
crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
cmd[12] = crc & 0xff;
cmd[13] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode)
{
uint8_t cmd[14];
uint16_t crc;
// If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
// followed by teh block data
// one sub-carrier, inventory, 1 slot, fast rate
cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
// READ BLOCK command code
cmd[1] = CmdCode;
// UID may be optionally specified here
// 64-bit UID
cmd[2] = 0x32;
cmd[3]= 0x4b;
cmd[4] = 0x03;
cmd[5] = 0x01;
cmd[6] = 0x00;
cmd[7] = 0x10;
cmd[8] = 0x05;
cmd[9]= 0xe0; // always e0 (not exactly unique)
// Parameter
cmd[10] = 0x05; // for custom codes this must be manufcturer code
cmd[11] = 0x00;
// cmd[12] = 0x00;
// cmd[13] = 0x00; //Now the CRC
crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
cmd[12] = crc & 0xff;
cmd[13] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
/////////////////////////////////////////////////////////////////////////
// Now the VICC>VCD responses when we are simulating a tag
////////////////////////////////////////////////////////////////////
static void BuildInventoryResponse(void)
{
uint8_t cmd[12];
uint16_t crc;
// one sub-carrier, inventory, 1 slot, fast rate
// AFI is at bit 5 (1<<4) when doing an INVENTORY
cmd[0] = 0; //(1 << 2) | (1 << 5) | (1 << 1);
cmd[1] = 0;
// 64-bit UID
cmd[2] = 0x32;
cmd[3]= 0x4b;
cmd[4] = 0x03;
cmd[5] = 0x01;
cmd[6] = 0x00;
cmd[7] = 0x10;
cmd[8] = 0x05;
cmd[9]= 0xe0;
//Now the CRC
crc = Crc(cmd, 10);
cmd[10] = crc & 0xff;
cmd[11] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
//-----------------------------------------------------------------------------
// Transmit the command (to the tag) that was placed in ToSend[].
//-----------------------------------------------------------------------------
static void TransmitTo15693Tag(const uint8_t *cmd, int len, int *samples, int *wait)
{
int c;
// FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
if(*wait < 10) { *wait = 10; }
// for(c = 0; c < *wait;) {
// if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
// AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
// c++;
// }
// if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
// volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
// (void)r;
// }
// WDT_HIT();
// }
c = 0;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = cmd[c];
c++;
if(c >= len) {
break;
}
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
(void)r;
}
WDT_HIT();
}
*samples = (c + *wait) << 3;
}
//-----------------------------------------------------------------------------
// Transmit the command (to the reader) that was placed in ToSend[].
//-----------------------------------------------------------------------------
static void TransmitTo15693Reader(const uint8_t *cmd, int len, int *samples, int *wait)
{
int c;
// FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR); // No requirement to energise my coils
if(*wait < 10) { *wait = 10; }
c = 0;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = cmd[c];
c++;
if(c >= len) {
break;
}
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
(void)r;
}
WDT_HIT();
}
*samples = (c + *wait) << 3;
}
static int GetIso15693AnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed)
{
int c = 0;
uint8_t *dest = (uint8_t *)BigBuf;
int getNext = 0;
int8_t prev = 0;
// NOW READ RESPONSE
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
//spindelay(60); // greg - experiment to get rid of some of the 0 byte/failed reads
c = 0;
getNext = FALSE;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x43;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
int8_t b;
b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
// The samples are correlations against I and Q versions of the
// tone that the tag AM-modulates, so every other sample is I,
// every other is Q. We just want power, so abs(I) + abs(Q) is
// close to what we want.
if(getNext) {
int8_t r;
if(b < 0) {
r = -b;
} else {
r = b;
}
if(prev < 0) {
r -= prev;
} else {
r += prev;
}
dest[c++] = (uint8_t)r;
if(c >= 2000) {
break;
}
} else {
prev = b;
}
getNext = !getNext;
}
}
//////////////////////////////////////////
/////////// DEMODULATE ///////////////////
//////////////////////////////////////////
int i, j;
int max = 0, maxPos=0;
int skip = 4;
// if(GraphTraceLen < 1000) return; // THIS CHECKS FOR A BUFFER TO SMALL
// First, correlate for SOF
for(i = 0; i < 100; i++) {
int corr = 0;
for(j = 0; j < arraylen(FrameSOF); j += skip) {
corr += FrameSOF[j]*dest[i+(j/skip)];
}
if(corr > max) {
max = corr;
maxPos = i;
}
}
// DbpString("SOF at %d, correlation %d", maxPos,max/(arraylen(FrameSOF)/skip));
int k = 0; // this will be our return value
// greg - If correlation is less than 1 then there's little point in continuing
if ((max/(arraylen(FrameSOF)/skip)) >= 1)
{
i = maxPos + arraylen(FrameSOF)/skip;
uint8_t outBuf[20];
memset(outBuf, 0, sizeof(outBuf));
uint8_t mask = 0x01;
for(;;) {
int corr0 = 0, corr1 = 0, corrEOF = 0;
for(j = 0; j < arraylen(Logic0); j += skip) {
corr0 += Logic0[j]*dest[i+(j/skip)];
}
for(j = 0; j < arraylen(Logic1); j += skip) {
corr1 += Logic1[j]*dest[i+(j/skip)];
}
for(j = 0; j < arraylen(FrameEOF); j += skip) {
corrEOF += FrameEOF[j]*dest[i+(j/skip)];
}
// Even things out by the length of the target waveform.
corr0 *= 4;
corr1 *= 4;
if(corrEOF > corr1 && corrEOF > corr0) {
// DbpString("EOF at %d", i);
break;
} else if(corr1 > corr0) {
i += arraylen(Logic1)/skip;
outBuf[k] |= mask;
} else {
i += arraylen(Logic0)/skip;
}
mask <<= 1;
if(mask == 0) {
k++;
mask = 0x01;
}
if((i+(int)arraylen(FrameEOF)) >= 2000) {
DbpString("ran off end!");
break;
}
}
if(mask != 0x01) {
DbpString("error, uneven octet! (discard extra bits!)");
/// DbpString(" mask=%02x", mask);
}
// uint8_t str1 [8];
// itoa(k,str1);
// strcat(str1," octets read");
// DbpString( str1); // DbpString("%d octets", k);
// for(i = 0; i < k; i+=3) {
// //DbpString("# %2d: %02x ", i, outBuf[i]);
// DbpIntegers(outBuf[i],outBuf[i+1],outBuf[i+2]);
// }
for(i = 0; i < k; i++) {
receivedResponse[i] = outBuf[i];
}
} // "end if correlation > 0" (max/(arraylen(FrameSOF)/skip))
return k; // return the number of bytes demodulated
/// DbpString("CRC=%04x", Iso15693Crc(outBuf, k-2));
}
// Now the GetISO15693 message from sniffing command
static int GetIso15693AnswerFromSniff(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed)
{
int c = 0;
uint8_t *dest = (uint8_t *)BigBuf;
int getNext = 0;
int8_t prev = 0;
// NOW READ RESPONSE
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
//spindelay(60); // greg - experiment to get rid of some of the 0 byte/failed reads
c = 0;
getNext = FALSE;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x43;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
int8_t b;
b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
// The samples are correlations against I and Q versions of the
// tone that the tag AM-modulates, so every other sample is I,
// every other is Q. We just want power, so abs(I) + abs(Q) is
// close to what we want.
if(getNext) {
int8_t r;
if(b < 0) {
r = -b;
} else {
r = b;
}
if(prev < 0) {
r -= prev;
} else {
r += prev;
}
dest[c++] = (uint8_t)r;
if(c >= 20000) {
break;
}
} else {
prev = b;
}
getNext = !getNext;
}
}
//////////////////////////////////////////
/////////// DEMODULATE ///////////////////
//////////////////////////////////////////
int i, j;
int max = 0, maxPos=0;
int skip = 4;
// if(GraphTraceLen < 1000) return; // THIS CHECKS FOR A BUFFER TO SMALL
// First, correlate for SOF
for(i = 0; i < 19000; i++) {
int corr = 0;
for(j = 0; j < arraylen(FrameSOF); j += skip) {
corr += FrameSOF[j]*dest[i+(j/skip)];
}
if(corr > max) {
max = corr;
maxPos = i;
}
}
// DbpString("SOF at %d, correlation %d", maxPos,max/(arraylen(FrameSOF)/skip));
int k = 0; // this will be our return value
// greg - If correlation is less than 1 then there's little point in continuing
if ((max/(arraylen(FrameSOF)/skip)) >= 1) // THIS SHOULD BE 1
{
i = maxPos + arraylen(FrameSOF)/skip;
uint8_t outBuf[20];
memset(outBuf, 0, sizeof(outBuf));
uint8_t mask = 0x01;
for(;;) {
int corr0 = 0, corr1 = 0, corrEOF = 0;
for(j = 0; j < arraylen(Logic0); j += skip) {
corr0 += Logic0[j]*dest[i+(j/skip)];
}
for(j = 0; j < arraylen(Logic1); j += skip) {
corr1 += Logic1[j]*dest[i+(j/skip)];
}
for(j = 0; j < arraylen(FrameEOF); j += skip) {
corrEOF += FrameEOF[j]*dest[i+(j/skip)];
}
// Even things out by the length of the target waveform.
corr0 *= 4;
corr1 *= 4;
if(corrEOF > corr1 && corrEOF > corr0) {
// DbpString("EOF at %d", i);
break;
} else if(corr1 > corr0) {
i += arraylen(Logic1)/skip;
outBuf[k] |= mask;
} else {
i += arraylen(Logic0)/skip;
}
mask <<= 1;
if(mask == 0) {
k++;
mask = 0x01;
}
if((i+(int)arraylen(FrameEOF)) >= 2000) {
DbpString("ran off end!");
break;
}
}
if(mask != 0x01) {
DbpString("error, uneven octet! (discard extra bits!)");
/// DbpString(" mask=%02x", mask);
}
// uint8_t str1 [8];
// itoa(k,str1);
// strcat(str1," octets read");
// DbpString( str1); // DbpString("%d octets", k);
// for(i = 0; i < k; i+=3) {
// //DbpString("# %2d: %02x ", i, outBuf[i]);
// DbpIntegers(outBuf[i],outBuf[i+1],outBuf[i+2]);
// }
for(i = 0; i < k; i++) {
receivedResponse[i] = outBuf[i];
}
} // "end if correlation > 0" (max/(arraylen(FrameSOF)/skip))
return k; // return the number of bytes demodulated
/// DbpString("CRC=%04x", Iso15693Crc(outBuf, k-2));
}
//-----------------------------------------------------------------------------
// Start to read an ISO 15693 tag. We send an identify request, then wait
// for the response. The response is not demodulated, just left in the buffer
// so that it can be downloaded to a PC and processed there.
//-----------------------------------------------------------------------------
void AcquireRawAdcSamplesIso15693(void)
{
int c = 0;
uint8_t *dest = (uint8_t *)BigBuf;
int getNext = 0;
int8_t prev = 0;
BuildIdentifyRequest();
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Give the tags time to energize
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(100);
// Now send the command
FpgaSetupSsc();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
c = 0;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = ToSend[c];
c++;
if(c == ToSendMax+3) {
break;
}
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
(void)r;
}
WDT_HIT();
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
c = 0;
getNext = FALSE;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x43;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
int8_t b;
b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
// The samples are correlations against I and Q versions of the
// tone that the tag AM-modulates, so every other sample is I,
// every other is Q. We just want power, so abs(I) + abs(Q) is
// close to what we want.
if(getNext) {
int8_t r;
if(b < 0) {
r = -b;
} else {
r = b;
}
if(prev < 0) {
r -= prev;
} else {
r += prev;
}
dest[c++] = (uint8_t)r;
if(c >= 2000) {
break;
}
} else {
prev = b;
}
getNext = !getNext;
}
}
}
//-----------------------------------------------------------------------------
// Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector
// all demodulation performed in arm rather than host. - greg
//-----------------------------------------------------------------------------
void ReaderIso15693(uint32_t parameter)
{
LED_A_ON();
LED_B_ON();
LED_C_OFF();
LED_D_OFF();
//DbpString(parameter);
//uint8_t *answer0 = (((uint8_t *)BigBuf) + 3560); // allow 100 bytes per reponse (way too much)
uint8_t *answer1 = (((uint8_t *)BigBuf) + 3660); //
uint8_t *answer2 = (((uint8_t *)BigBuf) + 3760);
uint8_t *answer3 = (((uint8_t *)BigBuf) + 3860);
//uint8_t *TagUID= (((uint8_t *)BigBuf) + 3960); // where we hold the uid for hi15reader
// int answerLen0 = 0;
int answerLen1 = 0;
int answerLen2 = 0;
int answerLen3 = 0;
// Blank arrays
memset(BigBuf + 3660, 0, 300);
// Setup SSC
FpgaSetupSsc();
// Start from off (no field generated)
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(200);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaSetupSsc();
// Give the tags time to energize
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(200);
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
int samples = 0;
int tsamples = 0;
int wait = 0;
int elapsed = 0;
// FIRST WE RUN AN INVENTORY TO GET THE TAG UID
// THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
uint8_t TagUID[7]; // where we hold the uid for hi15reader
// BuildIdentifyRequest();
// //TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait);
// TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3
// // Now wait for a response
// responseLen0 = GetIso15693AnswerFromTag(receivedAnswer0, 100, &samples, &elapsed) ;
// if (responseLen0 >=12) // we should do a better check than this
// {
// // really we should check it is a valid mesg
// // but for now just grab what we think is the uid
// TagUID[0] = receivedAnswer0[2];
// TagUID[1] = receivedAnswer0[3];
// TagUID[2] = receivedAnswer0[4];
// TagUID[3] = receivedAnswer0[5];
// TagUID[4] = receivedAnswer0[6];
// TagUID[5] = receivedAnswer0[7];
// TagUID[6] = receivedAnswer0[8]; // IC Manufacturer code
// DbpIntegers(TagUID[6],TagUID[5],TagUID[4]);
//}
// Now send the IDENTIFY command
BuildIdentifyRequest();
//TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait);
TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3
// Now wait for a response
answerLen1 = GetIso15693AnswerFromTag(answer1, 100, &samples, &elapsed) ;
if (answerLen1 >=12) // we should do a better check than this
{
TagUID[0] = answer1[2];
TagUID[1] = answer1[3];
TagUID[2] = answer1[4];
TagUID[3] = answer1[5];
TagUID[4] = answer1[6];
TagUID[5] = answer1[7];
TagUID[6] = answer1[8]; // IC Manufacturer code
// Now send the SELECT command
BuildSelectRequest(TagUID);
TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3
// Now wait for a response
answerLen2 = GetIso15693AnswerFromTag(answer2, 100, &samples, &elapsed);
// Now send the MULTI READ command
// BuildArbitraryRequest(*TagUID,parameter);
BuildArbitraryCustomRequest(TagUID,parameter);
// BuildReadBlockRequest(*TagUID,parameter);
// BuildSysInfoRequest(*TagUID);
//TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait);
TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3
// Now wait for a response
answerLen3 = GetIso15693AnswerFromTag(answer3, 100, &samples, &elapsed) ;
}
Dbprintf("%d octets read from IDENTIFY request: %x %x %x %x %x %x %x %x %x", answerLen1,
answer1[0], answer1[1], answer1[2],
answer1[3], answer1[4], answer1[5],
answer1[6], answer1[7], answer1[8]);
Dbprintf("%d octets read from SELECT request: %x %x %x %x %x %x %x %x %x", answerLen2,
answer2[0], answer2[1], answer2[2],
answer2[3], answer2[4], answer2[5],
answer2[6], answer2[7], answer2[8]);
Dbprintf("%d octets read from XXX request: %x %x %x %x %x %x %x %x %x", answerLen3,
answer3[0], answer3[1], answer3[2],
answer3[3], answer3[4], answer3[5],
answer3[6], answer3[7], answer3[8]);
// str2[0]=0;
// for(i = 0; i < responseLen3; i++) {
// itoa(str1,receivedAnswer3[i]);
// strcat(str2,str1);
// }
// DbpString(str2);
LED_A_OFF();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
}
//-----------------------------------------------------------------------------
// Simulate an ISO15693 TAG, perform anti-collision and then print any reader commands
// all demodulation performed in arm rather than host. - greg
//-----------------------------------------------------------------------------
void SimTagIso15693(uint32_t parameter)
{
LED_A_ON();
LED_B_ON();
LED_C_OFF();
LED_D_OFF();
uint8_t *answer1 = (((uint8_t *)BigBuf) + 3660); //
int answerLen1 = 0;
// Blank arrays
memset(answer1, 0, 100);
// Setup SSC
FpgaSetupSsc();
// Start from off (no field generated)
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(200);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaSetupSsc();
// Give the tags time to energize
// FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); // NO GOOD FOR SIM TAG!!!!
SpinDelay(200);
LED_A_OFF();
LED_B_OFF();
LED_C_ON();
LED_D_OFF();
int samples = 0;
int tsamples = 0;
int wait = 0;
int elapsed = 0;
answerLen1 = GetIso15693AnswerFromSniff(answer1, 100, &samples, &elapsed) ;
if (answerLen1 >=1) // we should do a better check than this
{
// Build a suitable reponse to the reader INVENTORY cocmmand
BuildInventoryResponse();
TransmitTo15693Reader(ToSend,ToSendMax, &tsamples, &wait);
}
Dbprintf("%d octets read from reader command: %x %x %x %x %x %x %x %x %x", answerLen1,
answer1[0], answer1[1], answer1[2],
answer1[3], answer1[4], answer1[5],
answer1[6], answer1[7], answer1[8]);
LED_A_OFF();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
}