proxmark3/armsrc/emvcmd.c

736 lines
28 KiB
C
Raw Normal View History

//Peter Fillmore - 2014
//
//--------------------------------------------------------------------------------
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//--------------------------------------------------------------------------------
//--------------------------------------------------------------------------------
//Routines to support EMV transactions
//--------------------------------------------------------------------------------
#include "emvcmd.h"
static emvtags currentcard; //use to hold emv tags for the reader/card during communications
//static tUart Uart;
// The FPGA will report its internal sending delay in
uint16_t FpgaSendQueueDelay;
//variables used for timing purposes:
//these are in ssp_clk cycles:
//static uint32_t NextTransferTime;
//static uint32_t LastTimeProxToAirStart;
//static uint32_t LastProxToAirDuration;
//load individual tag into current card
void EMVloadvalue(uint32_t tag, uint8_t *datain){
//Dbprintf("TAG=%i\n", tag);
//Dbprintf("DATA=%s\n", datain);
emv_settag(tag, datain, &currentcard);
}
void EMVReadRecord(uint8_t arg0, uint8_t arg1,emvtags *currentcard)
{
uint8_t record = arg0;
uint8_t sfi = arg1 & 0x0F; //convert arg1 to number
uint8_t receivedAnswer[MAX_FRAME_SIZE];
//uint8_t receivedAnswerPar[MAX_PARITY_SIZE];
//variables
tlvtag inputtag; //create the tag structure
//perform read
//write the result to the provided card
if(!emv_readrecord(record,sfi,receivedAnswer)) {
if(EMV_DBGLEVEL >= 1) Dbprintf("readrecord failed");
}
if(*(receivedAnswer+1) == 0x70){
decode_ber_tlv_item(receivedAnswer+1, &inputtag);
emv_decode_field(inputtag.value, inputtag.valuelength, currentcard);
}
else
{
if(EMV_DBGLEVEL >= 1)
Dbprintf("Record not found SFI=%i RECORD=%i", sfi, record);
}
return;
}
void EMVSelectAID(uint8_t *AID, uint8_t AIDlen, emvtags* inputcard)
{
uint8_t receivedAnswer[MAX_FRAME_SIZE];
//uint8_t receivedAnswerPar[MAX_PARITY_SIZE];
//variables
tlvtag inputtag; //create the tag structure
//perform select
if(!emv_select(AID, AIDlen, receivedAnswer)){
if(EMV_DBGLEVEL >= 1) Dbprintf("AID Select failed");
return;
}
//write the result to the provided card
if(*(receivedAnswer+1) == 0x6F){
//decode the 6F template
decode_ber_tlv_item(receivedAnswer+1, &inputtag);
//store 84 and A5 tags
emv_decode_field(inputtag.value, inputtag.valuelength, &currentcard);
//decode the A5 tag
if(currentcard.tag_A5_len > 0)
emv_decode_field(currentcard.tag_A5, currentcard.tag_A5_len, &currentcard);
//copy this result to the DFName
if(currentcard.tag_84_len == 0)
memcpy(currentcard.tag_DFName, currentcard.tag_84, currentcard.tag_84_len);
//decode the BF0C result, assuming 1 directory entry for now
if(currentcard.tag_BF0C_len !=0){
emv_decode_field(currentcard.tag_BF0C, currentcard.tag_BF0C_len, &currentcard);}
//retrieve the AID, use the AID to decide what transaction flow to use
if(currentcard.tag_61_len !=0){
emv_decode_field(currentcard.tag_61, currentcard.tag_61_len, &currentcard);}
}
if(EMV_DBGLEVEL >= 2)
DbpString("SELECT AID COMPLETED");
}
int EMVGetProcessingOptions(uint8_t *PDOL, uint8_t PDOLlen, emvtags* inputcard)
{
uint8_t receivedAnswer[MAX_FRAME_SIZE];
//uint8_t receivedAnswerPar[MAX_PARITY_SIZE];
//variables
tlvtag inputtag; //create the tag structure
//perform pdol
if(!emv_getprocessingoptions(PDOL, PDOLlen, receivedAnswer)){
if(EMV_DBGLEVEL >= 1) Dbprintf("get processing options failed");
return 0;
}
//write the result to the provided card
//FORMAT 1 received
if(receivedAnswer[1] == 0x80){
//store AIP
//decode tag 80
decode_ber_tlv_item(receivedAnswer+1, &inputtag);
memcpy(currentcard.tag_82, &inputtag.value, sizeof(currentcard.tag_82));
memcpy(currentcard.tag_94, &inputtag.value[2], inputtag.valuelength - sizeof(currentcard.tag_82));
currentcard.tag_94_len = inputtag.valuelength - sizeof(currentcard.tag_82);
}
else if(receivedAnswer[1] == 0x77){
//decode the 77 template
decode_ber_tlv_item(receivedAnswer+1, &inputtag);
//store 82 and 94 tags (AIP, AFL)
emv_decode_field(inputtag.value, inputtag.valuelength, &currentcard);
}
if(EMV_DBGLEVEL >= 2)
DbpString("GET PROCESSING OPTIONS COMPLETE");
return 1;
}
int EMVGetChallenge(emvtags* inputcard)
{
uint8_t receivedAnswer[MAX_FRAME_SIZE];
//variables
//tlvtag inputtag; //create the tag structure
//perform select
if(!emv_getchallenge(receivedAnswer)){
if(EMV_DBGLEVEL >= 1) Dbprintf("get processing options failed");
return 1;
}
return 0;
}
int EMVGenerateAC(uint8_t refcontrol, emvtags* inputcard)
{
uint8_t receivedAnswer[MAX_FRAME_SIZE];
uint8_t cdolcommand[MAX_FRAME_SIZE];
uint8_t cdolcommandlen = 0;
tlvtag temptag;
if(currentcard.tag_8C_len > 0) {
emv_generateDOL(currentcard.tag_8C, currentcard.tag_8C_len, &currentcard, cdolcommand, &cdolcommandlen); }
else{
//cdolcommand = NULL; //cdol val is null
cdolcommandlen = 0;
}
//variables
//tlvtag inputtag; //create the tag structure
//perform select
if(!emv_generateAC(refcontrol, cdolcommand, cdolcommandlen,receivedAnswer)){
if(EMV_DBGLEVEL >= 1) Dbprintf("get processing options failed");
return 1;
}
if(receivedAnswer[2] == 0x77) //format 2 data field returned
{
decode_ber_tlv_item(&receivedAnswer[2], &temptag);
emv_decode_field(temptag.value, temptag.valuelength, &currentcard);
}
return 0;
}
//function to perform paywave transaction
//takes in TTQ, amount authorised, unpredicable number and transaction currency code
int EMV_PaywaveTransaction()
{
uint8_t cardMode = 0;
//determine mode of transaction from TTQ
if((currentcard.tag_9F66[0] & 0x40) == 0x40) {
cardMode = VISA_EMV;
}
else if((currentcard.tag_9F66[0] & 0x20) == 0x20) {
cardMode = VISA_FDDA;
}
else if((currentcard.tag_9F66[0] & 0x80) == 0x80) {
if((currentcard.tag_9F66[1] & 0x80) == 1) { //CVN17
cardMode = VISA_CVN17;
} else {
cardMode = VISA_DCVV;
}
}
EMVSelectAID(currentcard.tag_4F,currentcard.tag_4F_len, &currentcard); //perform second AID command
//get PDOL
uint8_t pdolcommand[20]; //20 byte buffer for pdol data
uint8_t pdolcommandlen = 0;
if(currentcard.tag_9F38_len > 0) {
emv_generateDOL(currentcard.tag_9F38, currentcard.tag_9F38_len, &currentcard, pdolcommand, &pdolcommandlen);
}
Dbhexdump(pdolcommandlen, pdolcommand,false);
if(!EMVGetProcessingOptions(pdolcommand,pdolcommandlen, &currentcard)) {
if(EMV_DBGLEVEL >= 1) Dbprintf("PDOL failed");
return 1;
}
Dbprintf("AFL=");
Dbhexdump(currentcard.tag_94_len, currentcard.tag_94,false);
Dbprintf("AIP=");
Dbhexdump(2, currentcard.tag_82, false);
emv_decodeAIP(currentcard.tag_82);
//
// //decode the AFL list and read records
uint8_t i = 0;
uint8_t sfi = 0;
uint8_t recordstart = 0;
uint8_t recordend = 0;
if(currentcard.tag_94_len > 0){
while( i < currentcard.tag_94_len){
sfi = (currentcard.tag_94[i++] & 0xF8) >> 3;
recordstart = currentcard.tag_94[i++];
recordend = currentcard.tag_94[i++];
for(int j=recordstart; j<(recordend+1); j++){
//read records
EMVReadRecord(j,sfi, &currentcard);
//while(responsebuffer[0] == 0xF2) {
// EMVReadRecord(j,sfi, &currentcard);
//}
}
i++;
}
}
else {
EMVReadRecord(1,1,&currentcard);
EMVReadRecord(1,2,&currentcard);
EMVReadRecord(1,3,&currentcard);
EMVReadRecord(2,1,&currentcard);
EMVReadRecord(2,2,&currentcard);
EMVReadRecord(2,3,&currentcard);
EMVReadRecord(3,1,&currentcard);
EMVReadRecord(3,3,&currentcard);
EMVReadRecord(4,2,&currentcard);
}
//EMVGetChallenge(&currentcard);
//memcpy(currentcard.tag_9F4C,&responsebuffer[1],8); // ICC UN
EMVGenerateAC(0x81,&currentcard);
Dbprintf("CARDMODE=%i",cardMode);
return 0;
}
int EMV_PaypassTransaction()
{
//uint8_t *responsebuffer = emv_get_bigbufptr();
//tlvtag temptag; //buffer for decoded tags
//get the current block counter
//select the AID (Mastercard
EMVSelectAID(currentcard.tag_4F,currentcard.tag_4F_len, &currentcard);
//get PDOL
uint8_t pdolcommand[20]; //20 byte buffer for pdol data
uint8_t pdolcommandlen = 0;
if(currentcard.tag_9F38_len > 0) {
emv_generateDOL(currentcard.tag_9F38, currentcard.tag_9F38_len, &currentcard, pdolcommand, &pdolcommandlen);
}
if(EMVGetProcessingOptions(pdolcommand,pdolcommandlen, &currentcard)) {
if(EMV_DBGLEVEL >= 1) Dbprintf("PDOL failed");
return 1;
}
Dbprintf("AFL=");
Dbhexdump(currentcard.tag_94_len, currentcard.tag_94,false);
Dbprintf("AIP=");
Dbhexdump(2, currentcard.tag_82, false);
emv_decodeAIP(currentcard.tag_82);
//decode the AFL list and read records
uint8_t i = 0;
uint8_t sfi = 0;
uint8_t recordstart = 0;
uint8_t recordend = 0;
while( i< currentcard.tag_94_len){
sfi = (currentcard.tag_94[i++] & 0xF8) >> 3;
recordstart = currentcard.tag_94[i++];
recordend = currentcard.tag_94[i++];
for(int j=recordstart; j<(recordend+1); j++){
//read records
EMVReadRecord(j,sfi, &currentcard);
//while(responsebuffer[0] == 0xF2) {
// EMVReadRecord(j,sfi, &currentcard);
//}
}
i++;
}
/* get ICC dynamic data */
if((currentcard.tag_82[0] & AIP_CDA_SUPPORTED) == AIP_CDA_SUPPORTED)
{
//DDA supported, so perform GENERATE AC
//generate the iCC UN
EMVGetChallenge(&currentcard);
//memcpy(currentcard.tag_9F4C,&responsebuffer[1],8); // ICC UN
EMVGenerateAC(0x80,&currentcard);
//generate AC2
//if(currentcard.tag_8D_len > 0) {
// emv_generateDOL(currentcard.tag_8D, currentcard.tag_8D_len, &currentcard, cdolcommand, &cdolcommandlen); }
//else{
// //cdolcommand = NULL; //cdol val is null
// cdolcommandlen = 0;
//}
//emv_generateAC(0x80, cdolcommand,cdolcommandlen, &currentcard);
//if(responsebuffer[1] == 0x77) //format 2 data field returned
//{
// decode_ber_tlv_item(&responsebuffer[1], &temptag);
// emv_decode_field(temptag.value, temptag.valuelength, &currentcard);
//}
}
//generate cryptographic checksum
//uint8_t udol[4] = {0x00,0x00,0x00,0x00};
//emv_computecryptogram(udol, sizeof(udol));
//if(responsebuffer[1] == 0x77) //format 2 data field returned
//{
// decode_ber_tlv_item(&responsebuffer[1], &temptag);
// emv_decode_field(temptag.value, temptag.valuelength, &currentcard);
//}
return 0;
}
void EMVTransaction()
{
//params
uint8_t uid[10] = {0x00};
uint32_t cuid = 0;
//setup stuff
BigBuf_free(); BigBuf_Clear_ext(false);
clear_trace();
set_tracing(TRUE);
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
while(true) {
if(!iso14443a_select_card(uid, NULL, &cuid, true, 0)) {
if(EMV_DBGLEVEL >= 1) Dbprintf("Can't select card");
break;
}
//selectPPSE
EMVSelectAID((uint8_t *)DF_PSE, 14, &currentcard); //hard coded len
//get response
if (!memcmp(currentcard.tag_4F, AID_MASTERCARD, sizeof(AID_MASTERCARD))){
Dbprintf("Mastercard Paypass Card Detected");
EMV_PaypassTransaction();
}
else if (!memcmp(currentcard.tag_4F, AID_VISA, sizeof(AID_VISA))){
Dbprintf("VISA Paywave Card Detected");
EMV_PaywaveTransaction();
}
//TODO: add other card schemes like AMEX, JCB, China Unionpay etc
break;
}
if (EMV_DBGLEVEL >= 2) DbpString("EMV TRANSACTION FINISHED");
//finish up
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
void EMVdumpcard(void){
dumpCard(&currentcard);
}
//SIMULATOR CODE
//-----------------------------------------------------------------------------
// Main loop of simulated tag: receive commands from reader, decide what
// response to send, and send it.
//-----------------------------------------------------------------------------
void SimulateEMVcard()
{
/*
//uint8_t sak; //select ACKnowledge
uint16_t readerPacketLen = 64; //reader packet length - provided by RATS, default to 64 bytes if RATS not supported
// The first response contains the ATQA (note: bytes are transmitted in reverse order).
//uint8_t atqapacket[2];
// The second response contains the (mandatory) first 24 bits of the UID
uint8_t uid0packet[5] = {0x00};
memcpy(uid0packet, currentcard.UID, sizeof(uid0packet));
// Check if the uid uses the (optional) part
uint8_t uid1packet[5] = {0x00};
memcpy(uid1packet, currentcard.UID, sizeof(uid1packet));
// Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
uid0packet[4] = uid0packet[0] ^ uid0packet[1] ^ uid0packet[2] ^ uid0packet[3];
// Prepare the mandatory SAK (for 4 and 7 byte UID)
uint8_t sak0packet[3] = {0x00};
memcpy(sak0packet,&currentcard.SAK1,1);
ComputeCrc14443(CRC_14443_A, sak0packet, 1, &sak0packet[1], &sak0packet[2]);
uint8_t sak1packet[3] = {0x00};
memcpy(sak1packet,&currentcard.SAK2,1);
// Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
ComputeCrc14443(CRC_14443_A, sak1packet, 1, &sak1packet[1], &sak1packet[2]);
uint8_t authanspacket[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
//setup response to ATS
uint8_t ratspacket[currentcard.ATS_len];
memcpy(ratspacket,currentcard.ATS, currentcard.ATS_len);
AppendCrc14443a(ratspacket,sizeof(ratspacket)-2);
// Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
// TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
// TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
// TC(1) = 0x02: CID supported, NAD not supported
//ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
//Receive Acknowledge responses differ by PCB byte
uint8_t rack0packet[] = {0xa2,0x00,0x00};
AppendCrc14443a(rack0packet,1);
uint8_t rack1packet[] = {0xa3,0x00,0x00};
AppendCrc14443a(rack1packet,1);
//Negative Acknowledge
uint8_t rnak0packet[] = {0xb2,0x00,0x00};
uint8_t rnak1packet[] = {0xb3,0x00,0x00};
AppendCrc14443a(rnak0packet,1);
AppendCrc14443a(rnak1packet,1);
//Protocol and parameter selection response, just say yes
uint8_t ppspacket[] = {0xd0,0x00,0x00};
AppendCrc14443a(ppspacket,1);
//hardcoded WTX packet - set to max time (49)
uint8_t wtxpacket[] ={0xf2,0x31,0x00,0x00};
AppendCrc14443a(wtxpacket,2);
//added additional responses for different readers, namely protocol parameter select and Receive acknowledments. - peter fillmore.
//added defininitions for predone responses to aid readability
#define ATR 0
#define UID1 1
#define UID2 2
#define SELACK1 3
#define SELACK2 4
#define AUTH_ANS 5
#define ATS 6
#define RACK0 7
#define RACK1 8
#define RNAK0 9
#define RNAK1 10
#define PPSresponse 11
#define WTX 12
#define TAG_RESPONSE_COUNT 13
tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
{ .response = currentcard.ATQA, .response_n = sizeof(currentcard.ATQA) }, // Answer to request - respond with card type
{ .response = uid0packet, .response_n = sizeof(uid0packet) }, // Anticollision cascade1 - respond with uid
{ .response = uid1packet, .response_n = sizeof(uid1packet) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
{ .response = sak0packet, .response_n = sizeof(sak0packet) }, // Acknowledge select - cascade 1
{ .response = sak1packet, .response_n = sizeof(sak1packet) }, // Acknowledge select - cascade 2
{ .response = authanspacket, .response_n = sizeof(authanspacket) }, // Authentication answer (random nonce)
{ .response = ratspacket, .response_n = sizeof(ratspacket) }, // dummy ATS (pseudo-ATR), answer to RATS
{ .response = rack0packet, .response_n = sizeof(rack0packet) }, //R(ACK)0
{ .response = rack1packet, .response_n = sizeof(rack1packet) }, //R(ACK)0
{ .response = rnak0packet, .response_n = sizeof(rnak0packet) }, //R(NAK)0
{ .response = rnak1packet, .response_n = sizeof(rnak1packet) }, //R(NAK)1
{ .response = ppspacket, .response_n = sizeof(ppspacket)}, //PPS packet
{ .response = wtxpacket, .response_n = sizeof(wtxpacket)}, //WTX packet
};
//calculated length of predone responses
uint16_t allocatedtaglen = 0;
for(int i=0;i<TAG_RESPONSE_COUNT;i++){
allocatedtaglen += responses[i].response_n;
}
//uint8_t selectOrder = 0;
BigBuf_free_keep_EM();
// Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
// Such a response is less time critical, so we can prepare them on the fly
#define DYNAMIC_RESPONSE_BUFFER_SIZE 256 //max frame size
#define DYNAMIC_MODULATION_BUFFER_SIZE 2 + 9*DYNAMIC_RESPONSE_BUFFER_SIZE //(start and stop bit, 8 bit packet with 1 bit parity
//uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
//uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
uint8_t *dynamic_response_buffer = BigBuf_malloc(DYNAMIC_RESPONSE_BUFFER_SIZE);
uint8_t *dynamic_modulation_buffer = BigBuf_malloc(DYNAMIC_MODULATION_BUFFER_SIZE);
tag_response_info_t dynamic_response_info = {
.response = dynamic_response_buffer,
.response_n = 0,
.modulation = dynamic_modulation_buffer,
.modulation_n = 0
};
// allocate buffers from BigBuf (so we're not in the stack)
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
//uint8_t* free_buffer_pointer;
//free_buffer_pointer = BigBuf_malloc((allocatedtaglen*8) +(allocatedtaglen) + (TAG_RESPONSE_COUNT * 3));
BigBuf_malloc((allocatedtaglen*8) +(allocatedtaglen) + (TAG_RESPONSE_COUNT * 3));
// clear trace
clear_trace();
set_tracing(TRUE);
// Prepare the responses of the anticollision phase
// there will be not enough time to do this at the moment the reader sends it REQA
for (size_t i=0; i<TAG_RESPONSE_COUNT; i++)
prepare_allocated_tag_modulation(&responses[i]);
int len = 0;
// To control where we are in the protocol
int order = 0;
int lastorder;
int currentblock = 1; //init to 1
int previousblock = 0; //used to store previous block counter
// Just to allow some checks
int happened = 0;
int happened2 = 0;
int cmdsRecvd = 0;
// We need to listen to the high-frequency, peak-detected path.
iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
cmdsRecvd = 0;
tag_response_info_t* p_response;
LED_A_ON();
for(;;) {
// Clean receive command buffer
if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
DbpString("Button press");
break;
}
p_response = NULL;
// Okay, look at the command now.
previousblock = currentblock; //get previous block
lastorder = order;
currentblock = receivedCmd[0] & 0x01;
if(receivedCmd[0] == 0x26) { // Received a REQUEST
p_response = &responses[ATR]; order = ISO14443A_CMD_REQA;
} else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
p_response = &responses[ATR]; order = ISO14443A_CMD_WUPA;
} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
p_response = &responses[UID1]; order = ISO14443A_CMD_ANTICOLL_OR_SELECT;
} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
p_response = &responses[UID2]; order = ISO14443A_CMD_ANTICOLL_OR_SELECT_2;
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
p_response = &responses[SELACK1]; order = ISO14443A_CMD_ANTICOLL_OR_SELECT;
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
p_response = &responses[SELACK2]; order = ISO14443A_CMD_ANTICOLL_OR_SELECT_2;
} else if((receivedCmd[0] & 0xA2) == 0xA2){ //R-Block received
if(previousblock == currentblock){ //rule 11, retransmit last block
p_response = &dynamic_response_info;
} else {
if((receivedCmd[0] & 0xB2) == 0xB2){ //RNAK, rule 12
if(currentblock == 0)
p_response = &responses[RACK0];
else
p_response = &responses[RACK1];
} else {
//rule 13
//TODO: implement chaining
}
}
}
else if(receivedCmd[0] == 0xD0){ //Protocol and parameter selection response
p_response = &responses[PPSresponse];
order = PPS;
}
else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
//we're an EMV card - so no read commands
p_response = NULL;
} else if(receivedCmd[0] == 0x50) { // Received a HALT
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
p_response = NULL;
order = HLTA;
} else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
p_response = &responses[AUTH_ANS];
order = AUTH;
} else if(receivedCmd[0] == 0xE0) { // Received a RATS request
readerPacketLen = GetReaderLength(receivedCmd); //get length of supported packet
p_response = &responses[ATS];
order = RATS;
} else if (order == AUTH && len == 8) { // Received {nr] and {ar} (part of authentication)
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
uint32_t nr = bytes_to_num(receivedCmd,4);
uint32_t ar = bytes_to_num(receivedCmd+4,4);
Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
} else {
// Check for ISO 14443A-4 compliant commands, look at left nibble
switch (receivedCmd[0]) {
case 0x0B:
case 0x0A: // IBlock (command)
case 0x02:
case 0x03: {
dynamic_response_info.response_n = 0;
dynamic_response_info.response[0] = receivedCmd[0]; // copy PCB
//dynamic_response_info.response[1] = receivedCmd[1]; // copy PCB
dynamic_response_info.response_n++ ;
switch(receivedCmd[1]) {
case 0x00:
switch(receivedCmd[2]){
case 0xA4: //select
if(receivedCmd[5] == 0x0E){
}
else if(receivedCmd[5] == 0x07){
//selectOrder = 0;
}
else{ //send not supported msg
memcpy(dynamic_response_info.response+1, "\x6a\x82", 2);
dynamic_response_info.response_n += 2;
}
break;
case 0xB2: //read record
if(receivedCmd[3] == 0x01 && receivedCmd[4] == 0x0C){
dynamic_response_info.response_n += 2;
Dbprintf("READ RECORD 1 1");
}
break;
}
break;
case 0x80:
switch(receivedCmd[2]){
case 0xA8: //get processing options
break;
}
}
}break;
case 0x1A:
case 0x1B: { // Chaining command
dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
dynamic_response_info.response_n = 2;
} break;
case 0xaa:
case 0xbb: {
dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
dynamic_response_info.response_n = 2;
} break;
case 0xBA: { //
memcpy(dynamic_response_info.response,"\xAB\x00",2);
dynamic_response_info.response_n = 2;
} break;
case 0xCA:
case 0xC2: { // Readers sends deselect command
//we send the command back - this is what tags do in android implemenation i believe - peterfillmore
memcpy(dynamic_response_info.response,receivedCmd,1);
dynamic_response_info.response_n = 1;
} break;
default: {
// Never seen this command before
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
Dbprintf("Received unknown command (len=%d):",len);
Dbhexdump(len,receivedCmd,false);
// Do not respond
dynamic_response_info.response_n = 0;
} break;
}
if (dynamic_response_info.response_n > 0) {
// Copy the CID from the reader query
//dynamic_response_info.response[1] = receivedCmd[1];
// Add CRC bytes, always used in ISO 14443A-4 compliant cards
AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
dynamic_response_info.response_n += 2;
if(dynamic_response_info.response_n > readerPacketLen){ //throw error if our reader doesn't support the send packet length
Dbprintf("Error: tag response is longer then what the reader supports, TODO:implement command chaining");
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
Dbprintf("Error preparing tag response");
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
break;
}
p_response = &dynamic_response_info;
}
}
// Count number of wakeups received after a halt
if(order == HLTA && lastorder == PPS) { happened++; }
// Count number of other messages after a halt
if(order != HLTA && lastorder == PPS) { happened2++; }
if(cmdsRecvd > 999) {
DbpString("1000 commands later...");
break;
}
cmdsRecvd++;
if (p_response != NULL) {
EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
// do the tracing for the previous reader request and this tag answer:
uint8_t par[MAX_PARITY_SIZE] = {0x00};
GetParity(p_response->response, p_response->response_n, par);
EmLogTrace(Uart.output,
Uart.len,
Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
Uart.parity,
p_response->response,
p_response->response_n,
LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
(LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
par);
}
if (!tracing) {
Dbprintf("Trace Full. Simulation stopped.");
break;
}
}
Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
LED_A_OFF();
BigBuf_free_keep_EM();
*/
}