proxmark3/armsrc/smartcard.c

724 lines
24 KiB
C
Raw Normal View History

/**************************************************************************************************
*
* @project Proxmark 3
* @file smartcard.c
* @author Chris Nocker <nocker02@gmail.com>
* @created 03/04/2018
* @brief Implements communication with a smart card.
*
*************************************************************************************************/
#include "smartcard.h"
//#define SMART_CARD_DEBUG_ENABLED
#ifndef SMART_CARD_DEBUG_ENABLED
#endif // SMART_CARD_DEBUG_ENABLED
// -- Defines ---------------------------------------------------------------------------------- //
#define SMART_CARD_RST_PIN AT91C_PIO_PA1
#define SMART_CARD_IO_PIN AT91C_PIO_PA5
#define SMART_CARD_CLK_PIN AT91C_PIO_PA7
#define SMART_CARD_RST_LO AT91C_BASE_PIOA->PIO_CODR |= SMART_CARD_RST_PIN
#define SMART_CARD_RST_HI AT91C_BASE_PIOA->PIO_SODR |= SMART_CARD_RST_PIN
#define SMART_CARD_RST_STATE AT91C_BASE_PIOA->PIO_ODSR & SMART_CARD_RST_PIN
#define SMART_CARD_IO_LO AT91C_BASE_PIOA->PIO_CODR |= SMART_CARD_IO_PIN
#define SMART_CARD_IO_HI AT91C_BASE_PIOA->PIO_SODR |= SMART_CARD_IO_PIN
#define SMART_CARD_IO_STATE AT91C_BASE_PIOA->PIO_ODSR & SMART_CARD_IO_PIN
#define SMART_CARD_CLK_LO AT91C_BASE_PIOA->PIO_CODR |= SMART_CARD_CLK_PIN
#define SMART_CARD_CLK_HI AT91C_BASE_PIOA->PIO_SODR |= SMART_CARD_CLK_PIN
#define SMART_CARD_CLK_STATE AT91C_BASE_PIOA->PIO_ODSR & SMART_CARD_CLK_PIN
#define SMART_CARD_IO_OUPUT_MODE AT91C_BASE_PIOA->PIO_OER = SMART_CARD_IO_PIN
#define SMART_CARD_IO_RECEPTION_MODE AT91C_BASE_PIOA->PIO_ODR = SMART_CARD_IO_PIN
#define SMART_CARD_RECEIVE_BUFFER_SIZE (10)
#define SMART_CARD_TRANSMIT_BUFFER_SIZE (10)
#define SMART_CARD_CLOCK AT91C_BASE_PWMC_CH1
// true = the distance between a and b is greater than c
#define RANGE(a,b,c) ((MAX(a,b))-(MIN(a,b))>(c))
// -- Private Variables ------------------------------------------------------------------------ //
static bool triggerDeactivation;
static bool communicationsEstablished;
static uint16_t receiveBuffer[SMART_CARD_RECEIVE_BUFFER_SIZE]; // Raw received bytes that need their parity checked before using them
static uint8_t receiveGetPtr;
static uint8_t receivePutPtr;
static uint8_t transmitBuffer[SMART_CARD_TRANSMIT_BUFFER_SIZE];
static uint8_t transmitGetPtr;
static uint8_t transmitPutPtr;
static bool generateClk;
static bool receptionMode;
static bool transmitMode;
/**
* @brief Get a transmit byte
* @description Get a byte from the transmit buffer
* @param receivedByte Pointer to return the byte from the buffer to the caller
* @return bool true = A byte was removed from the buffer and returned to the caller
* false = No byte available
*/
static bool SMART_CARD_GetTransmitByte( uint8_t * receivedByte ) {
bool result = false;
uint8_t tempGetPtr = transmitGetPtr;
// Move the temp put pointer to the next index
if ( ++tempGetPtr >= SMART_CARD_RECEIVE_BUFFER_SIZE ) {
tempGetPtr = 0;
}
// If the get pointer does not match the put pointer then there is data to be taken from the buffer
if ( transmitGetPtr != transmitPutPtr ) {
*receivedByte = transmitBuffer[transmitGetPtr];
transmitGetPtr = tempGetPtr;
result = true;
}
return result;
}
/**
* @brief Put transmit byte
* @description Store a byte in the transmit buffer
* @param transmitByte The byte to try and put in the buffer
* @return bool true = Operation was performed successfully
* false = No room in buffer :-(
*/
static bool SMART_CARD_PutTransmitByte( uint8_t transmitByte ) {
bool result = false;
uint8_t tempPutPtr = transmitPutPtr;
// Move the temp put pointer to the next index
if ( ++tempPutPtr >= SMART_CARD_RECEIVE_BUFFER_SIZE ) {
tempPutPtr = 0;
}
// If the new put pointer does not match the get pointer then it is safe to save this byte
if ( tempPutPtr != transmitGetPtr ) {
transmitBuffer[transmitPutPtr] = transmitByte;
transmitPutPtr = tempPutPtr;
result = true;
}
return result;
}
/**
* @brief Get received byte
* @description Get a byte from the receive buffer
* @param receivedByte Pointer to return the byte from the buffer to the caller
* @return bool true = A byte was removed from the buffer and returned to the caller
* false = No byte available
*/
static bool SMART_CARD_GetRecievedByte( uint16_t * receivedByte ) {
bool result = false;
uint8_t tempGetPtr = receiveGetPtr;
// Move the temp put pointer to the next index
if ( ++tempGetPtr >= SMART_CARD_RECEIVE_BUFFER_SIZE ) {
tempGetPtr = 0;
}
// If the get pointer does not match the put pointer then there is data to be taken from the buffer
if ( receiveGetPtr != receivePutPtr ) {
*receivedByte = receiveBuffer[receiveGetPtr];
receiveGetPtr = tempGetPtr;
result = true;
}
return result;
}
/**
* @brief Put received byte
* @description Store a verified, received byte in the receive buffer
* @param receivedByte The byte to try and put in the buffer
* @return bool true = Operation was performed successfully
* false = No room in buffer :-(
*/
static bool SMART_CARD_PutRecievedByte( uint16_t receivedByte ) {
bool result = false;
uint8_t tempPutPtr = receivePutPtr;
// Move the temp put pointer to the next index
if ( ++tempPutPtr >= SMART_CARD_RECEIVE_BUFFER_SIZE ) {
tempPutPtr = 0;
}
// If the new put pointer does not match the get pointer then it is safe to save this byte
if ( tempPutPtr != receiveGetPtr ) {
receiveBuffer[receivePutPtr] = receivedByte;
receivePutPtr = tempPutPtr;
result = true;
}
return result;
}
/**
* @brief Calculate byte parity
* @description Calculate the parity of a byte
* @param dataByte Byte to calculate the parity of
* @return bool true = Parity of the byte is high
* false = Parity of the byte is low
*/
static bool SMART_CARD_CalculateByteParity( uint8_t dataByte ) {
bool result;
uint8_t i, parity;
// Accumulate the parity
for ( i = 0, parity = 0; i < 8; i++ ) {
if ( dataByte & ( 1 << i ) ) {
parity++;
}
}
// The high (1) bits of the byte plus the parity bit must be even for the byte to be considered as good
result = ( parity % 2 ) ? true : false;
return result;
}
/**
* @brief Verify received byte parity
* @description Calculate the parity of a received sampled byte and compare it to the parity in the received sampled byte
* @param receivedSampledByte Byte to verify the parity of
* @return bool true = Parity of the received byte is good
* false = Parity of the received byte is bad (reject)
*/
static bool SMART_CARD_VerifyReceivedByteParity( uint16_t receivedSampledByte ) {
bool result;
uint8_t dataByte = (uint8_t)(receivedSampledByte >> 1 );
// Check if the calculated parity is the same as the parity in the received sampled byte
if ( SMART_CARD_CalculateByteParity( dataByte ) == ( receivedSampledByte & 1 ) )
result = true;
else
result = false;
return result;
}
/**
* @brief Maintain the smart card connection
* @description Send and receive commands
* @param void
* @return bool true = Operation was performed successfully
* false = An error occurred
*/
static bool SMART_CARD_MaintainConnection( void ) {
// TODO: This functions implementation is not yet complete
bool result = true;
uint16_t rxByte;
uint8_t verifiedRxByte;
// See if there has been a new byte sampled
if ( SMART_CARD_GetRecievedByte( &rxByte ) ) {
// Check that the parity is correct
if ( SMART_CARD_VerifyReceivedByteParity( rxByte ) ) {
verifiedRxByte = rxByte >> 1;
// TODO: Dummy code that is to remove compiler warnings during development
if ( verifiedRxByte ) {
SMART_CARD_PutTransmitByte( verifiedRxByte );
}
}
}
return result;
}
/**
* @brief Disable the clock
* @description
* @param void
* @return void
*/
static void SMART_CARD_DisableClock( void ) {
// Disable TC2
//AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_PWMC->PWMC_DIS = PWM_CHANNEL(1);
generateClk = false;
}
/**
* @brief Enable the clock
* @description
* @param void
* @return void
*/
static void SMART_CARD_EnableClock( void ) {
// Enable and reset TC2
//AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(1);
generateClk = true;
}
/**
* @brief Perform deactivation
* @description Control the signals to the smart card to perform a deactivation operation
* @param void
* @return bool true = Operation was performed successfully
* false = An error occurred
*/
static void SMART_CARD_PerformDeactivation( void ) {
/*
* 1. Reset L
* 2. CLK L
* 3. I/O L
* 4. VCC L (NOTE: This may require a circuit change!!!)
*/
SMART_CARD_RST_LO;
SMART_CARD_IO_LO;
SMART_CARD_DisableClock();
}
/**
* @brief Negotiate parameters
* @description
* @param void
* @return bool true = Operation was performed successfully
* false = An error occurred
*/
//static bool SMART_CARD_NegotiateProtocolParameters( void ) {
// TODO: This functions implementation is not yet complete
// bool result = false;
//
// // Check if the card is in a specific mode
// if ( 0xFF )
// {
// // Have to use this mode
// }
// else
// {
// // Negotiate
// }
//
// return result;
//}
/**
* @brief Class selection
* @description Class selection
* @param void
* @return bool true = Operation was performed successfully
* false = An error occurred
*/
static bool SMART_CARD_ClassSelection( uint8_t class, uint8_t * answer, uint8_t length ) {
bool result = false;
// Check that an answer was received
if ( answer[0] ) {
// Check that the answer was valid
if ( answer[1] ) {
// See if the card indicated a class
if ( answer[2] ) {
// Check that we are happy with the class (i.e. this is the 3V one that we supplied)
if ( answer[2] == 2 ) {
result = true;
} else {
// We cannot work with this class
triggerDeactivation = true;
}
} else {
// Card did not indicate class, just accept this answer
result = true;
}
} else {
// Error handling
}
} else {
// Card did not answer
triggerDeactivation = true;
}
return result;
}
/**
* @brief Process the reset answer
* @description
* @param answer
* @return bool true = Operation was performed successfully
* false = An error occurred
*/
static bool SMART_CARD_ProcessResetAnswer( uint8_t * answer, uint8_t length ) {
// TODO: This functions implementation is not yet complete
bool result = false;
uint8_t class;
for ( class = 0; class < 3; class++ ) {
// We can only do one class as we cannot adjust the VCC voltage
if ( SMART_CARD_ClassSelection( class, answer, length ) ) {
result = true;
break;
} else {
if ( triggerDeactivation ) {
triggerDeactivation = false;
SMART_CARD_PerformDeactivation();
}
}
}
return result;
}
/**
* @brief Perform warm reset
* @description Can be performed at any time (not sure we'll use this one???)
* @param void
* @return bool true = Operation was performed successfully
* false = An error occurred
*/
//static bool SMART_CARD_PerformWarmReset( void ) {
// TODO: This functions implementation is not yet complete
// bool result = false;
// /*
// * 1. the interface device initiates a warm reset (at time Tc) by putting RST to state L for at least 400 clock cycles (delay te) while VCC remains powered and CLK provided
// * 2. The card shall set I/O to state H within 200 clock cycles (delay td) after state L is applied to RST
// * 3. RST is put to state H
// * 4. The answer on I/O shall begin between 400 and 40 000 clock cycles (delay tf) after the rising edge of the signal on RST
// * 5. If the answer does not begin within 40 000 clock cycles with RST at state H, the interface device shall perform a deactivation
// */
//
// return result;
//}
/**
* @brief Perform cold reset
* @description We are outputting the CLK to the smart card. Wait for the initial reset answer
* @param void
* @return bool true = Operation was performed successfully
* false = An error occurred
*/
static bool SMART_CARD_PerformColdReset( void ) {
// TODO: This functions implementation is not yet complete
bool result = false;
/*
* 1. The card shall set I/O to state H within 200 clock cycles
* The cold reset results from maintaining RST at state L for at least 400 clock cycles (delay tb) after the clock signal is applied to CLK
* 2. The interface device shall ignore the state on I/O while RST is at state L
* 3. RST is put to state H
* 4. The answer on I/O shall begin between 400 and 40 000 clock cycles (delay tc) after the rising edge of the signal on RST
* 5. If the answer does not begin within 40 000 clock cycles with RST at state H, the interface device shall perform a deactivation
*/
return result;
}
/**
* @brief Activate the smart card interface
* @description Control the interface signals to perform an activation on the smart card
* @param void
* @return void
*/
static void SMART_CARD_ActivateInterface( void ) {
/*
* 1. RST shall be put to state L
* 2. VCC shall be powered
* 3. I/O in the interface device shall be put in reception mode
* 4. CLK shall be provided with a clock signal (1MHz to 5MHz)
*/
SMART_CARD_RST_LO;
SMART_CARD_IO_RECEPTION_MODE;
SMART_CARD_EnableClock();
}
/**
* @brief Establish communications
* @description Activate the smart card, perform a cold reset & process the reset answer
* @param void
* @return bool true = Operation was performed successfully and communications have been established
* false = An error occurred
*/
static bool SMART_CARD_EstablishCommunications( void ) {
// TODO: This functions implementation is not yet complete
bool result = false;
uint8_t answer;
// Activate the interface
SMART_CARD_ActivateInterface();
// Perform a cold reset
result = SMART_CARD_PerformColdReset();
// Process the "answer" if it was received
if ( result ) {
result = SMART_CARD_ProcessResetAnswer( &answer, 100 );
// Check if the "answer" was acceptable
if ( !result ) {
// Delay for 20ms
WaitMS( 20 );
}
}
return result;
}
/**
* @brief Configure timer
* @description Configure the timer to generate an interrupt every 500ns. This is 2MHz. From this we will
* generate the 1MHz clock signal and sample the I/O line every 2 interrupt triggers
* @param void
* @return void
*/
static void SMART_CARD_ConfigureClock( void ) {
/*
AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC2); // Enable Clock TC2
AT91C_BASE_TCB->TCB_BMR &= AT91C_TCB_TC2XC2S; // Clear the external clock selection
AT91C_BASE_TCB->TCB_BMR |= AT91C_TCB_TC2XC2S_NONE; // XC2 Clock = None
// Configure TC2 to count up to RC, then reset and generate an interrupt
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // Disable TC2
AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC2 Clock = MCK(48MHz)/2 = 24MHz
| AT91C_TC_CPCTRG; // Capture Mode, reset the TC2 counter when RC is reached
AT91C_BASE_TC2->TC_RC = 12; // RC Compare value = 24MHz / 2MHz = 12
AT91C_BASE_TC2->TC_IER = AT91C_TC_CPCS; // Generate an interrupt when the RC value is reached
*/
// enable PWM Clock
AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_PWMC);
// Enable channel1 as SMART CARD real-time clock
AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(1);
// 48 MHz / 16 gives 3MHz
SMART_CARD_CLOCK->PWMC_CMR = PWM_CH_MODE_PRESCALER(3); // Channel Mode Register
SMART_CARD_CLOCK->PWMC_CDTYR = 0; // Channel Duty Cycle Register
SMART_CARD_CLOCK->PWMC_CPRDR = 0xffff; // Channel Period Register
AT91C_BASE_PWMC->PWMC_IER = 1 << 1;
// AT91C_BASE_PWMC->PWMC_IDR; // disable interrupt
}
// -- Public Functions ------------------------------------------------------------------------- //
/**
* @brief CLK interrupt handler
*
* @description Implements a bit banged CLK signal to the smart card. Also outputs data on the I/O line on rising
* CLK edges when transmiting and samples the I/O line on falling CLK edges when receiving
* @param void
* @return void
*/
void SMART_CARD_ClockInterruptHandler( void ) {
static uint8_t clkCount;
static uint8_t previousSampleRxClkCount;
static uint8_t previousSampleTxClkCount;
static uint16_t sampledRxData; // The bits of the Rx byte are accumulated here
static uint8_t sampleBitIndex; // Used during both Tx and Rx as the comms are half duplex
static uint8_t transmitByte;
bool sampleBit = SMART_CARD_IO_STATE; // Read the state of the I/O signal in case we are going to use it
// Clear the interrupt
// TODO: This functions implementation is not yet complete... just need to handle the interrupt
// Check if we are meant to be generating the CLK signal
if ( generateClk )
{
// On the even clock counts we will toggle the CLK signal
if ( clkCount++ % 2 )
{
// Read the current state of the CLK signal, if it is High then set it Low and if it is Low set it High
if ( SMART_CARD_CLK_STATE )
{
// Generate a falling edge
SMART_CARD_CLK_LO;
// ******************************************************************* //
// On the falling edge of the CLK signal we sample from the I/O signal //
// ******************************************************************* //
// See if we are receiving
if ( receptionMode )
{
// See if we are already looking for the start of a new byte OR
// It has been a while since we last captured a byte (this provides resynchronising)
if ( ( sampleBitIndex == 0 ) || ( RANGE( clkCount, previousSampleRxClkCount, 5 ) ) )
{
sampleBitIndex = 0;
previousSampleRxClkCount = clkCount;
// The start bit must be low
if ( sampleBit == 0 )
{
// Set the bit index to indicate that we've detected a start bit
sampleBitIndex = 1;
// Initialise the sample data byte where the received bits will be put
sampledRxData = 0;
}
}
// Otherwise see if we are in the process of collecting bits of a sample byte
else if ( ( sampleBitIndex ) && ( sampleBitIndex <= 10 ) )
{
// Shift the bits of the sampled byte up by 1 to make room for this new bit
sampledRxData = sampledRxData << 1;
// Or in the new sample bit
sampledRxData |= sampleBit << sampleBitIndex;
// Check if we've received the start bit, 8 bits of the byte and the parity bit
if ( sampleBitIndex == 10 )
{
// Transfer the sampled data into the receive buffer so that it can be processed
if ( !SMART_CARD_PutRecievedByte( sampledRxData ) )
{
// An error has occured as there was no space to save this byte!
}
}
// Increment index and wait for next bit
sampleBitIndex++;
// Update the Rx CLK count so we know how long to wait
previousSampleRxClkCount = clkCount;
}
}
}
// CLK is Low so set it High
else
{
// Generate a rising edge
SMART_CARD_CLK_HI;
// ***************************************************************************************** //
// On the rising edge of the CLK signal we output the next bit of the byte to the I/O signal //
// ***************************************************************************************** //
// See if we are transmitting
if ( transmitMode )
{
// See if we are already looking for new byte to transmit OR
// It has been a while since we last sent a byte (this allows for the "pause" time)
if ( ( sampleBitIndex == 0 ) || ( RANGE( clkCount, previousSampleTxClkCount, 7 ) ) )
{
sampleBitIndex = 0;
previousSampleTxClkCount = clkCount;
// See if there is a byte to transmit
if ( SMART_CARD_GetTransmitByte( &transmitByte ) )
{
// The start bit must be low
SMART_CARD_IO_LO;
// Set the bit index to indicate that we've started transmitting
sampleBitIndex = 1;
}
}
// We are in the process of collecting bits of a sample byte
else if ( ( sampleBitIndex ) && ( sampleBitIndex <= 11 ) )
{
// Check if we've output the start bit and the 8 bits of the byte and the parity bit
if ( sampleBitIndex == 11 )
{
// There is nothing left to output, set the I/O signal high during the "pause" time
SMART_CARD_IO_HI;
}
// Check if we've output the start bit and the 8 bits of the byte
else if ( sampleBitIndex == 10 )
{
// Calculate the parity bit and output it appropriately
if ( SMART_CARD_CalculateByteParity( transmitByte ) )
{
SMART_CARD_IO_HI;
}
else
{
SMART_CARD_IO_LO;
}
}
// Otherwise we are still outputting the bits of the byte
else
{
// Set the state of the I/O signal according to the bits of the transmit byte
if ( transmitByte & ( 1 << ( sampleBitIndex - 1 ) ) )
{
SMART_CARD_IO_HI;
}
else
{
SMART_CARD_IO_LO;
}
}
// Increment index for when the next bit is output
sampleBitIndex++;
}
}
}
}
}
}
/**
* @brief Service the smart card interface
* @description Check if a transaction needs to occur
* @param void
* @return bool true = The smart card was service successfully
* false = An error occurred
*/
void SMART_CARD_ServiceSmartCard( void ) {
if ( !communicationsEstablished ) {
// Attempt to establish communications if they are not currently working
communicationsEstablished = SMART_CARD_EstablishCommunications();
} else {
// Communications are working, processs any commands/responses
// If a fatal error occurs we will need to re-establish communications
communicationsEstablished = SMART_CARD_MaintainConnection();
}
}
void SmartCard_setup(void) {
// Enable the pins to be controlled
AT91C_BASE_PIOA->PIO_PER = SMART_CARD_RST_PIN | SMART_CARD_CLK_PIN | SMART_CARD_IO_PIN;
// Configure the pins to be outputs
AT91C_BASE_PIOA->PIO_OER = SMART_CARD_RST_PIN | SMART_CARD_CLK_PIN | SMART_CARD_IO_PIN;
// Configure the IO pin for multi-drive mode (is this right?)
AT91C_BASE_PIOA->PIO_MDER = SMART_CARD_IO_PIN;
AT91C_BASE_PIOA->PIO_PPUER = SMART_CARD_IO_PIN;
// Configure a timer to generate an interrupt for the clock signal and sampling of the I/O line
SMART_CARD_ConfigureClock();
}
void SmartCard_stop(void) {
//StopTicks();
if ( MF_DBGLEVEL > 3 ) Dbprintf("Smart Card Stop");
LED_A_OFF();
}
bool SmartCard_init(void) {
//StartTicks();
LED_A_ON();
SmartCard_setup();
if ( MF_DBGLEVEL > 3 ) Dbprintf("Smart Card Init OK");
return true;
}
void SmartCard_print_status(void) {
DbpString("Smart card module (ISO 7816)");
if (!SmartCard_init()) {
DbpString(" init....................FAIL");
return;
}
DbpString(" init....................OK");
SmartCard_stop();
}