proxmark3/armsrc/em4x50.c

1486 lines
42 KiB
C
Raw Normal View History

2020-06-15 20:32:51 +08:00
//-----------------------------------------------------------------------------
// Copyright (C) 2020 tharexde
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency EM4x50 commands
//-----------------------------------------------------------------------------
#include "fpgaloader.h"
#include "ticks.h"
#include "dbprint.h"
#include "lfadc.h"
#include "commonutil.h"
2020-06-15 20:32:51 +08:00
#include "em4x50.h"
#include "flashmem.h"
2020-10-25 23:40:39 +08:00
#include "BigBuf.h"
#include "appmain.h" // tear
2020-06-15 20:32:51 +08:00
// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
// EM4x50 units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
// T0 = TIMER_CLOCK1 / 125000 = 192
#ifndef T0
#define T0 192
#endif
#define EM4X50_T_TAG_QUARTER_PERIOD 16
#define EM4X50_T_TAG_HALF_PERIOD 32
#define EM4X50_T_TAG_THREE_QUARTER_PERIOD 48
#define EM4X50_T_TAG_FULL_PERIOD 64
#define EM4X50_T_TAG_TPP 64
#define EM4X50_T_TAG_TWA 64
#define EM4X50_T_WAITING_FOR_DBLLIW 1550
#define EM4X50_T_WAITING_FOR_SNGLLIW 140 // this value seems to be
2020-11-20 06:18:04 +08:00
// critical;
// if it's too low
// (e.g. < 120) some cards
// are no longer readable
// although they're ok
2020-06-15 20:32:51 +08:00
#define EM4X50_TAG_TOLERANCE 8
#define EM4X50_TAG_WORD 45
#define EM4X50_COMMAND_LOGIN 0x01
#define EM4X50_COMMAND_RESET 0x80
2020-06-15 20:32:51 +08:00
#define EM4X50_COMMAND_WRITE 0x12
#define EM4X50_COMMAND_WRITE_PASSWORD 0x11
2020-06-15 20:32:51 +08:00
#define EM4X50_COMMAND_SELECTIVE_READ 0x0A
int gHigh = 190;
int gLow = 60;
2020-11-20 06:18:04 +08:00
//==============================================================================
2020-06-15 20:32:51 +08:00
// auxiliary functions
2020-11-20 06:18:04 +08:00
//==============================================================================
2020-06-15 20:32:51 +08:00
static void wait_timer(uint32_t period) {
2020-06-15 20:32:51 +08:00
// do nothing for <period> using timer0
2020-07-12 02:53:07 +08:00
2020-10-22 06:42:18 +08:00
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
while (AT91C_BASE_TC0->TC_CV < period);
2020-06-15 20:32:51 +08:00
}
2020-11-20 06:18:04 +08:00
static bool extract_parities(uint64_t word, uint32_t *data) {
// extract and check parities
// return result of parity check and extracted plain data
uint8_t row_parities = 0x0, col_parities = 0x0;
uint8_t row_parities_calculated = 0x0, col_parities_calculated = 0x0;
*data = 0x0;
// extract plain data (32 bits) from raw word (45 bits)
for (int i = 0; i < 4; i++) {
*data <<= 8;
*data |= (word >> ((4 - i) * 9 + 1)) & 0xFF;
}
// extract row parities (4 bits + stop bit) from raw word (45 bits)
for (int i = 0; i < 5; i++) {
row_parities <<= 1;
row_parities |= (word >> ((4 - i) * 9)) & 0x1;
}
// extract col_parities (8 bits, no stop bit) from raw word (45 bits)
col_parities = (word >> 1) & 0xFF;
// check extracted parities against extracted data
// calculate row parities from data
for (int i = 0; i < 4; i++) {
row_parities_calculated <<= 1;
for (int j = 0; j < 8; j++) {
row_parities_calculated ^= (*data >> ((3 - i) * 8 + (7 - j))) & 0x1;
}
}
// add stop bit (always zero)
row_parities_calculated <<= 1;
// calculate column parities from data
for (int i = 0; i < 8; i++) {
col_parities_calculated <<= 1;
for (int j = 0; j < 4; j++) {
col_parities_calculated ^= (*data >> ((3 - j) * 8 + (7 - i))) & 0x1;
}
}
if ((row_parities == row_parities_calculated) && (col_parities == col_parities_calculated))
return true;
return false;
}
2020-06-15 20:32:51 +08:00
static void em4x50_setup_read(void) {
2020-07-12 02:53:07 +08:00
2020-06-15 20:32:51 +08:00
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// 50ms for the resonant antenna to settle.
SpinDelay(50);
2020-09-06 05:58:21 +08:00
2020-06-15 20:32:51 +08:00
// Now set up the SSC to get the ADC samples that are now streaming at us.
2020-07-02 18:33:53 +08:00
FpgaSetupSsc(FPGA_MAJOR_MODE_LF_READER);
2020-07-12 02:53:07 +08:00
2020-06-15 20:32:51 +08:00
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_125);
// Connect the A/D to the peak-detected low-frequency path.
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
2020-07-12 02:53:07 +08:00
2020-06-15 20:32:51 +08:00
// Steal this pin from the SSP (SPI communication channel with fpga) and
// use it to control the modulation
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
// Disable modulation at default, which means enable the field
LOW(GPIO_SSC_DOUT);
2020-07-12 02:53:07 +08:00
2020-06-15 20:32:51 +08:00
// Enable Peripheral Clock for
// TIMER_CLOCK0, used to measure exact timing before answering
2020-11-16 04:59:25 +08:00
AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0);// | (1 << AT91C_ID_TC1);
2020-06-18 05:08:02 +08:00
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
2020-06-15 20:32:51 +08:00
// Disable timer during configuration
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
// TC0: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK;
2020-07-12 02:53:07 +08:00
2020-06-15 20:32:51 +08:00
// TC1: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers
2020-07-12 02:53:07 +08:00
2020-06-15 20:32:51 +08:00
// Enable and reset counters
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
2020-07-12 02:53:07 +08:00
2020-06-15 20:32:51 +08:00
// synchronized startup procedure
while (AT91C_BASE_TC0->TC_CV > 0) {}; // wait until TC1 returned to zero
2020-07-12 02:53:07 +08:00
2020-06-15 20:32:51 +08:00
// Watchdog hit
WDT_HIT();
}
static void em4x50_setup_sim(void) {
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_125);
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
}
2020-11-20 06:18:04 +08:00
//==============================================================================
2020-06-15 20:32:51 +08:00
// functions for "reader" use case
2020-11-20 06:18:04 +08:00
//==============================================================================
2020-06-15 20:32:51 +08:00
static bool get_signalproperties(void) {
2020-07-12 02:53:07 +08:00
// calculate signal properties (mean amplitudes) from measured data:
// 32 amplitudes (maximum values) -> mean amplitude value -> gHigh -> gLow
2020-07-12 02:53:07 +08:00
bool signal_found = false;
int no_periods = 32, pct = 75, noise = 140;
2020-07-12 02:53:07 +08:00
uint8_t sample_ref = 127;
uint8_t sample_max_mean = 0;
uint8_t sample_max[no_periods];
uint32_t sample_max_sum = 0;
2020-07-12 02:53:07 +08:00
memcpy(sample_max, 0x00, sizeof(sample_max));
// wait until signal/noise > 1 (max. 32 periods)
for (int i = 0; i < T0 * no_periods; i++) {
2020-07-12 02:53:07 +08:00
2020-09-05 19:25:57 +08:00
if (BUTTON_PRESS()) return false;
2020-09-24 05:45:43 +08:00
// about 2 samples per bit period
wait_timer(T0 * EM4X50_T_TAG_HALF_PERIOD);
if (AT91C_BASE_SSC->SSC_RHR > noise) {
signal_found = true;
break;
}
}
2020-07-12 02:53:07 +08:00
2020-09-06 05:58:21 +08:00
if (signal_found == false)
return false;
// calculate mean maximum value of 32 periods, each period has a length of
// 3 single "full periods" to eliminate the influence of a listen window
for (int i = 0; i < no_periods; i++) {
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
while (AT91C_BASE_TC0->TC_CV < T0 * 3 * EM4X50_T_TAG_FULL_PERIOD) {
2020-07-12 02:53:07 +08:00
2020-09-05 19:25:57 +08:00
if (BUTTON_PRESS()) return false;
2020-07-12 02:53:07 +08:00
2020-09-24 05:45:43 +08:00
volatile uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if (sample > sample_max[i])
sample_max[i] = sample;
2020-07-12 02:53:07 +08:00
}
2020-07-12 02:53:07 +08:00
sample_max_sum += sample_max[i];
}
2020-07-12 02:53:07 +08:00
sample_max_mean = sample_max_sum / no_periods;
2020-07-12 02:53:07 +08:00
// set global envelope variables
gHigh = sample_ref + pct * (sample_max_mean - sample_ref) / 100;
gLow = sample_ref - pct * (sample_max_mean - sample_ref) / 100;
2020-10-22 06:42:18 +08:00
return true;
}
2020-10-22 06:55:29 +08:00
static bool invalid_bit(void) {
2020-07-12 02:53:07 +08:00
2020-10-22 06:42:18 +08:00
// returns true if bit is undefined by evaluating a single sample within
// a bit period (given there is no LIW, ACK or NAK)
// This function is used for identifying a listen window in functions
2020-06-15 20:32:51 +08:00
// "find_double_listen_window" and "check_ack"
// get sample at 3/4 of bit period
wait_timer(T0 * EM4X50_T_TAG_THREE_QUARTER_PERIOD);
2020-07-12 02:53:07 +08:00
uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
2020-06-15 20:32:51 +08:00
// wait until end of bit period
wait_timer(T0 * EM4X50_T_TAG_QUARTER_PERIOD);
2020-06-15 20:32:51 +08:00
2020-10-22 06:42:18 +08:00
// bit in "undefined" state?
if (sample <= gHigh && sample >= gLow)
return true;
2020-07-12 02:53:07 +08:00
2020-10-22 06:42:18 +08:00
return false;
2020-06-15 20:32:51 +08:00
}
static uint32_t get_pulse_length(void) {
2020-08-13 18:25:04 +08:00
2020-09-24 05:45:43 +08:00
int32_t timeout = (T0 * 3 * EM4X50_T_TAG_FULL_PERIOD);
2020-08-13 18:25:04 +08:00
2020-09-05 18:50:30 +08:00
// iterates pulse length (low -> high -> low)
2020-09-24 05:45:43 +08:00
2020-09-05 18:50:30 +08:00
volatile uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
2020-08-13 18:25:04 +08:00
2020-10-22 06:42:18 +08:00
while (sample > gLow && (timeout--))
2020-06-15 20:32:51 +08:00
sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
2020-09-24 05:45:43 +08:00
2020-09-05 18:50:30 +08:00
if (timeout == 0)
return 0;
2020-06-15 20:32:51 +08:00
2020-11-16 04:59:25 +08:00
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
timeout = (T0 * 3 * EM4X50_T_TAG_FULL_PERIOD);
2020-09-24 05:45:43 +08:00
2020-10-22 06:42:18 +08:00
while (sample < gHigh && (timeout--))
2020-06-15 20:32:51 +08:00
sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
2020-09-05 18:50:30 +08:00
if (timeout == 0)
return 0;
2020-06-15 20:32:51 +08:00
2020-09-05 18:50:30 +08:00
timeout = (T0 * 3 * EM4X50_T_TAG_FULL_PERIOD);
2020-10-22 06:42:18 +08:00
while (sample > gLow && (timeout--))
2020-06-15 20:32:51 +08:00
sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
2020-09-05 18:50:30 +08:00
if (timeout == 0)
return 0;
2020-11-16 04:59:25 +08:00
return (uint32_t)AT91C_BASE_TC0->TC_CV;
2020-09-06 05:58:21 +08:00
2020-06-15 20:32:51 +08:00
}
static bool check_pulse_length(uint32_t pl, int length) {
2020-10-12 02:06:03 +08:00
2020-06-15 20:32:51 +08:00
// check if pulse length <pl> corresponds to given length <length>
2020-09-24 05:16:39 +08:00
return ((pl >= T0 * (length - EM4X50_TAG_TOLERANCE)) && (pl <= T0 * (length + EM4X50_TAG_TOLERANCE)));
2020-06-15 20:32:51 +08:00
}
2020-09-05 19:25:57 +08:00
static void em4x50_reader_send_bit(int bit) {
2020-09-24 05:45:43 +08:00
2020-06-15 20:32:51 +08:00
// send single bit according to EM4x50 application note and datasheet
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
// reset clock for the next bit
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
if (bit == 0) {
// disable modulation (drops the field) for 7 cycles of carrier
2020-06-15 20:32:51 +08:00
// period (Opt64)
LOW(GPIO_SSC_DOUT);
while (AT91C_BASE_TC0->TC_CV < T0 * 7);
// enable modulation (activates the field) for remaining first
// half of bit period
HIGH(GPIO_SSC_DOUT);
while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_HALF_PERIOD);
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
// disable modulation for second half of bit period
LOW(GPIO_SSC_DOUT);
while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_FULL_PERIOD);
} else {
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
// bit = "1" means disable modulation for full bit period
LOW(GPIO_SSC_DOUT);
while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_FULL_PERIOD);
}
}
2020-09-05 19:25:57 +08:00
static void em4x50_reader_send_byte(uint8_t byte) {
// send byte (without parity)
2020-09-24 05:45:43 +08:00
2020-09-05 19:25:57 +08:00
for (int i = 0; i < 8; i++)
2020-09-24 05:45:43 +08:00
em4x50_reader_send_bit((byte >> (7 - i)) & 1);
2020-06-15 20:32:51 +08:00
2020-09-05 19:25:57 +08:00
}
2020-06-15 20:32:51 +08:00
2020-09-05 19:25:57 +08:00
static void em4x50_reader_send_byte_with_parity(uint8_t byte) {
2020-06-15 20:32:51 +08:00
2020-09-05 19:25:57 +08:00
// send byte followed by its (equal) parity bit
2020-09-24 05:45:43 +08:00
2020-09-05 19:25:57 +08:00
int parity = 0, bit = 0;
2020-09-24 05:45:43 +08:00
2020-09-05 19:25:57 +08:00
for (int i = 0; i < 8; i++) {
2020-09-24 05:45:43 +08:00
bit = (byte >> (7 - i)) & 1;
2020-09-05 19:25:57 +08:00
em4x50_reader_send_bit(bit);
parity ^= bit;
}
em4x50_reader_send_bit(parity);
}
2020-06-15 20:32:51 +08:00
2020-10-22 06:42:18 +08:00
static void em4x50_reader_send_word(const uint32_t word) {
2020-09-24 05:45:43 +08:00
2020-09-05 19:25:57 +08:00
// send 32 bit word with parity bits according to EM4x50 datasheet
2020-10-22 06:42:18 +08:00
// word hast be sent in msb notation
2020-09-24 05:45:43 +08:00
2020-10-22 06:42:18 +08:00
uint8_t bytes[4] = {0x0, 0x0, 0x0, 0x0};
for (int i = 0; i < 4; i++) {
bytes[i] = (word >> (24 - (8 * i))) & 0xFF;
2020-09-05 19:25:57 +08:00
em4x50_reader_send_byte_with_parity(bytes[i]);
2020-10-22 06:42:18 +08:00
}
2020-09-05 19:25:57 +08:00
// send column parities
em4x50_reader_send_byte(bytes[0] ^ bytes[1] ^ bytes[2] ^ bytes[3]);
2020-06-15 20:32:51 +08:00
2020-09-05 19:25:57 +08:00
// send final stop bit (always "0")
em4x50_reader_send_bit(0);
}
2020-06-15 20:32:51 +08:00
2020-09-05 18:50:30 +08:00
static bool find_single_listen_window(void) {
2020-08-13 18:25:04 +08:00
2020-07-01 06:45:46 +08:00
// find single listen window
2020-08-13 18:25:04 +08:00
2020-07-01 06:45:46 +08:00
int cnt_pulses = 0;
2020-08-13 18:25:04 +08:00
2020-09-05 18:50:30 +08:00
while (cnt_pulses < EM4X50_T_WAITING_FOR_SNGLLIW) {
2020-08-13 18:25:04 +08:00
2020-07-01 06:45:46 +08:00
// identification of listen window is done via evaluation of
// pulse lengths
if (check_pulse_length(get_pulse_length(), 3 * EM4X50_T_TAG_FULL_PERIOD)) {
2020-08-13 18:25:04 +08:00
2020-07-01 06:45:46 +08:00
if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) {
2020-08-13 18:25:04 +08:00
2020-07-01 06:45:46 +08:00
// listen window found
return true;
}
}
2020-09-06 05:58:21 +08:00
cnt_pulses++;
2020-07-01 06:45:46 +08:00
}
2020-08-13 18:25:04 +08:00
2020-07-01 06:45:46 +08:00
return false;
}
2020-10-04 04:59:21 +08:00
static int find_double_listen_window(bool bcommand) {
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
// find two successive listen windows that indicate the beginning of
// data transmission
// double listen window to be detected within 1600 pulses -> worst case
// reason: first detectable double listen window after 34 words
// -> 34 words + 34 single listen windows -> about 1600 pulses
2020-08-13 18:25:04 +08:00
int cnt_pulses = 0;
2020-08-13 18:25:04 +08:00
2020-09-05 18:50:30 +08:00
while (cnt_pulses < EM4X50_T_WAITING_FOR_DBLLIW) {
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
// identification of listen window is done via evaluation of
// pulse lengths
if (check_pulse_length(get_pulse_length(), 3 * EM4X50_T_TAG_FULL_PERIOD)) {
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) {
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
// first listen window found
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
if (bcommand) {
// SpinDelay(10);
2020-06-15 20:32:51 +08:00
// data transmission from card has to be stopped, because
// a commamd shall be issued
2020-08-13 18:25:04 +08:00
2020-10-24 07:18:06 +08:00
// unfortunately the position in listen window (where
2020-06-15 20:32:51 +08:00
// command request has to be sent) has gone, so if a
// second window follows - sync on this to issue a command
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
// skip the next bit...
wait_timer(T0 * EM4X50_T_TAG_FULL_PERIOD);
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
// ...and check if the following bit does make sense
// (if not it is the correct position within the second
// listen window)
2020-10-22 06:55:29 +08:00
if (invalid_bit()) {
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
// send RM for request mode
2020-09-05 19:25:57 +08:00
em4x50_reader_send_bit(0);
em4x50_reader_send_bit(0);
2020-06-15 20:32:51 +08:00
return true;
}
}
if (check_pulse_length(get_pulse_length(), 3 * EM4X50_T_TAG_FULL_PERIOD)) {
// return although second listen window consists of one
// more bit period but this period is necessary for
// evaluating further pulse lengths
return true;
}
}
}
2020-10-04 04:59:21 +08:00
cnt_pulses++;
2020-06-15 20:32:51 +08:00
}
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
return false;
}
2020-07-01 06:45:46 +08:00
static bool find_em4x50_tag(void) {
2020-08-13 18:25:04 +08:00
2020-07-01 06:45:46 +08:00
// function is used to check wether a tag on the proxmark is an
// EM4x50 tag or not -> speed up "lf search" process
2020-09-06 05:58:21 +08:00
return find_single_listen_window();
2020-07-01 06:45:46 +08:00
}
2020-10-04 04:59:21 +08:00
static int request_receive_mode(void) {
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
// To issue a command we have to find a listen window first.
2020-10-24 07:18:06 +08:00
// Because identification and synchronization at the same time is not
2020-06-15 20:32:51 +08:00
// possible when using pulse lengths a double listen window is used.
2020-10-12 02:06:03 +08:00
return find_double_listen_window(true);
2020-06-15 20:32:51 +08:00
}
static bool check_ack(bool bliw) {
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
// returns true if signal structue corresponds to ACK, anything else is
// counted as NAK (-> false)
// Only relevant for pasword writing function:
// If <bliw> is true then within the single listen window right after the
// ack signal a RM request has to be sent.
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
while (AT91C_BASE_TC0->TC_CV < T0 * 4 * EM4X50_T_TAG_FULL_PERIOD) {
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) {
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
// The received signal is either ACK or NAK.
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) {
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
// Now the signal must be ACK.
if (!bliw) {
return true;
} else {
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
// send RM request after ack signal
// wait for 2 bits (remaining "bit" of ACK signal + first
// "bit" of listen window)
wait_timer(T0 * 2 * EM4X50_T_TAG_FULL_PERIOD);
2020-08-13 18:25:04 +08:00
2020-10-24 07:18:06 +08:00
// check for listen window (if first bit cannot be interpreted
2020-06-15 20:32:51 +08:00
// as a valid bit it must belong to a listen window)
2020-10-22 06:55:29 +08:00
if (invalid_bit()) {
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
// send RM for request mode
2020-09-05 19:25:57 +08:00
em4x50_reader_send_bit(0);
em4x50_reader_send_bit(0);
2020-06-15 20:32:51 +08:00
return true;
}
}
} else {
2020-08-13 18:25:04 +08:00
// It's NAK -> stop searching
break;
2020-06-15 20:32:51 +08:00
}
}
}
return false;
}
2020-10-12 02:06:03 +08:00
static int get_word_from_bitstream(uint32_t *data) {
2020-06-15 20:32:51 +08:00
// decodes one word by evaluating pulse lengths and previous bit;
// word must have 45 bits in total:
// 32 data bits + 4 row parity bits + 8 column parity bits + 1 stop bit
2020-08-13 18:25:04 +08:00
2020-10-12 02:06:03 +08:00
bool bitchange = false;
int cnt = 0;
2020-06-15 20:32:51 +08:00
uint32_t pl = 0;
2020-10-12 02:06:03 +08:00
uint64_t word = 0x0;
*data = 0x0;
2020-06-15 20:32:51 +08:00
// initial bit value depends on last pulse length of listen window
pl = get_pulse_length();
if (check_pulse_length(pl, 3 * EM4X50_T_TAG_HALF_PERIOD)) {
// pulse length = 1.5
2020-10-12 02:06:03 +08:00
word = 0x1;
2020-06-15 20:32:51 +08:00
} else if (check_pulse_length(pl, 2 * EM4X50_T_TAG_FULL_PERIOD)) {
// pulse length = 2
2020-10-12 02:06:03 +08:00
bitchange = true;
2020-06-15 20:32:51 +08:00
} else {
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
// pulse length = 2.5
2020-10-12 02:06:03 +08:00
word = 0x1;
cnt++;
2020-06-15 20:32:51 +08:00
}
// identify remaining bits based on pulse lengths
// between two listen windows only pulse lengths of 1, 1.5 and 2 are possible
while (BUTTON_PRESS() == false) {
2020-09-24 05:45:43 +08:00
2020-10-12 02:06:03 +08:00
cnt++;
word <<= 1;
2020-06-15 20:32:51 +08:00
pl = get_pulse_length();
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
if (check_pulse_length(pl, EM4X50_T_TAG_FULL_PERIOD)) {
// pulse length = 1 -> keep former bit value
2020-10-12 02:06:03 +08:00
word |= (word >> 1) & 0x1;
2020-06-15 20:32:51 +08:00
} else if (check_pulse_length(pl, 3 * EM4X50_T_TAG_HALF_PERIOD)) {
// pulse length = 1.5 -> decision on bit change
2020-08-13 18:25:04 +08:00
2020-10-12 02:06:03 +08:00
if (bitchange) {
2020-06-15 20:32:51 +08:00
// if number of pulse lengths with 1.5 periods is even -> add bit
2020-10-12 02:06:03 +08:00
word |= (word >> 1) & 0x1;
word <<= 1;
2020-06-15 20:32:51 +08:00
// pulse length of 1.5 changes bit value
2020-10-12 02:06:03 +08:00
word |= ((word >> 1) & 0x1) ^ 0x1;
cnt++;
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
// next time add only one bit
2020-10-12 02:06:03 +08:00
bitchange = false;
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
} else {
2020-10-12 02:06:03 +08:00
word |= ((word >> 1) & 0x1) ^ 0x1;
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
// next time two bits have to be added
2020-10-12 02:06:03 +08:00
bitchange = true;
2020-06-15 20:32:51 +08:00
}
} else if (check_pulse_length(pl, 2 * EM4X50_T_TAG_FULL_PERIOD)) {
// pulse length of 2 means: adding 2 bits "01"
2020-10-12 02:06:03 +08:00
cnt++;
word <<= 1;
word |= 0x1;
2020-06-15 20:32:51 +08:00
} else if (check_pulse_length(pl, 3 * EM4X50_T_TAG_FULL_PERIOD)) {
// pulse length of 3 indicates listen window -> clear last
2020-10-12 02:06:03 +08:00
// bit (= 0) and return (without parities)
word >>= 2;
return (extract_parities(word, data)) ? --cnt : 0;
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
}
}
return BUTTON_SINGLE_CLICK;
2020-06-15 20:32:51 +08:00
}
2020-06-27 06:20:56 +08:00
//==============================================================================
2020-11-20 06:18:04 +08:00
// functions for "simulating" use case
2020-06-27 06:20:56 +08:00
//==============================================================================
2020-06-15 20:32:51 +08:00
2020-11-20 06:18:04 +08:00
static bool em4x50_sim_send_bit(uint8_t bit) {
uint16_t check = 0;
for (int t = 0; t < EM4X50_T_TAG_FULL_PERIOD; t++) {
// wait until SSC_CLK goes HIGH
// used as a simple detection of a reader field?
while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
WDT_HIT();
if (check == 1000) {
if (BUTTON_PRESS())
return false;
check = 0;
}
++check;
}
if (bit)
OPEN_COIL();
else
SHORT_COIL();
check = 0;
//wait until SSC_CLK goes LOW
while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
WDT_HIT();
if (check == 1000) {
if (BUTTON_PRESS())
return false;
check = 0;
}
++check;
}
if (t == EM4X50_T_TAG_HALF_PERIOD)
bit ^= 1;
}
return true;
}
static bool em4x50_sim_send_byte(uint8_t byte) {
// send byte
for (int i = 0; i < 8; i++)
if (!em4x50_sim_send_bit((byte >> (7 - i)) & 1))
return false;
return true;
}
static bool em4x50_sim_send_byte_with_parity(uint8_t byte) {
uint8_t parity = 0x0;
// send byte with parity (even)
for (int i = 0; i < 8; i++)
parity ^= (byte >> i) & 1;
if (!em4x50_sim_send_byte(byte))
return false;;
if (!em4x50_sim_send_bit(parity))
return false;
return true;
}
bool em4x50_sim_send_word(uint32_t word) {
uint8_t cparity = 0x00;
// word has tobe sent in msb, not lsb
word = reflect32(word);
// 4 bytes each with even row parity bit
for (int i = 0; i < 4; i++)
if (!em4x50_sim_send_byte_with_parity((word >> ((3 - i) * 8)) & 0xFF))
return false;
// column parity
for (int i = 0; i < 8; i++) {
cparity <<= 1;
for (int j = 0; j < 4; j++) {
cparity ^= (((word >> ((3 - j) * 8)) & 0xFF) >> (7 - i)) & 1;
}
}
if (!em4x50_sim_send_byte(cparity))
return false;
// stop bit
if (!em4x50_sim_send_bit(0))
return false;
return true;
}
bool em4x50_sim_send_listen_window(void) {
uint16_t check = 0;
for (int t = 0; t < 5 * EM4X50_T_TAG_FULL_PERIOD; t++) {
// wait until SSC_CLK goes HIGH
while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
WDT_HIT();
if (check == 1000) {
if (BUTTON_PRESS())
return false;
check = 0;
}
++check;
}
if (t >= 4 * EM4X50_T_TAG_FULL_PERIOD)
SHORT_COIL();
else if (t >= 3 * EM4X50_T_TAG_FULL_PERIOD)
OPEN_COIL();
else if (t >= EM4X50_T_TAG_FULL_PERIOD)
SHORT_COIL();
else if (t >= EM4X50_T_TAG_HALF_PERIOD)
OPEN_COIL();
else
SHORT_COIL();
check = 0;
// wait until SSC_CLK goes LOW
while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
WDT_HIT();
if (check == 1000) {
if (BUTTON_PRESS())
return false;
check = 0;
}
++check;
}
}
return true;
}
//==============================================================================
// login functions
//==============================================================================
static bool login(uint32_t password) {
2020-06-15 20:32:51 +08:00
// simple login to EM4x50,
// used in operations that require authentication
2020-08-13 18:25:04 +08:00
if (request_receive_mode()) {
2020-06-15 20:32:51 +08:00
// send login command
2020-09-05 19:25:57 +08:00
em4x50_reader_send_byte_with_parity(EM4X50_COMMAND_LOGIN);
2020-06-15 20:32:51 +08:00
// send password
2020-09-05 19:25:57 +08:00
em4x50_reader_send_word(password);
wait_timer(T0 * EM4X50_T_TAG_TPP);
2020-06-15 20:32:51 +08:00
// check if ACK is returned
if (check_ack(false))
return PM3_SUCCESS;
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
} else {
2020-08-13 18:25:04 +08:00
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
2020-06-15 20:32:51 +08:00
}
2020-08-13 18:25:04 +08:00
return PM3_EFAILED;
2020-06-15 20:32:51 +08:00
}
2020-11-20 06:18:04 +08:00
static bool brute(uint32_t start, uint32_t stop, uint32_t *pwd) {
// searching for password in given range
bool pwd_found = false;
int cnt = 0;
for (*pwd = start; *pwd <= stop; (*pwd)++) {
if (login(*pwd) == PM3_SUCCESS) {
pwd_found = true;
break;
}
// print password every 500 iterations
if ((++cnt % 500) == 0) {
// print header
if (cnt == 500) {
Dbprintf("|---------+------------+------------|");
Dbprintf("| no. | pwd (msb) | pwd (lsb) |");
Dbprintf("|---------+------------+------------|");
}
// print data
Dbprintf("|%8i | 0x%08x | 0x%08x |", cnt, reflect32(*pwd), *pwd);
}
if (BUTTON_PRESS())
break;
}
// print footer
if (cnt >= 500)
Dbprintf("|---------+------------+------------|");
return pwd_found;
}
void em4x50_login(uint32_t *password) {
// login into EM4x50
uint8_t status = PM3_EFAILED;
em4x50_setup_read();
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag())
status = login(*password);
lf_finalize();
reply_ng(CMD_LF_EM4X50_LOGIN, status, 0, 0);
}
void em4x50_brute(em4x50_data_t *etd) {
// envoke password search
bool bsuccess = false;
uint32_t pwd = 0x0;
em4x50_setup_read();
if (get_signalproperties() && find_em4x50_tag())
bsuccess = brute(etd->password1, etd->password2, &pwd);
lf_finalize();
reply_ng(CMD_LF_EM4X50_BRUTE, bsuccess, (uint8_t *)(&pwd), 32);
}
void em4x50_chk(uint32_t *offset) {
// check passwords from dictionary content in flash memory
int status = PM3_EFAILED;
uint8_t counter[2] = {0x00, 0x00};
uint16_t isok = 0;
uint16_t pwd_count = 0;
uint16_t pwd_size_available = 0;
uint32_t pwd = 0x0;
uint8_t *pwds = BigBuf_get_EM_addr();
//-----------------------------------------------------------------------------
// Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_LF) here although FPGA is not
// involved in dealing with emulator memory. But if it is called later, it will
// destroy the Emulator Memory.
//-----------------------------------------------------------------------------
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
BigBuf_Clear_EM();
// initialize passwords and get number of passwords
if (Flash_ReadData(*offset, counter, sizeof(counter)) != sizeof(counter))
goto OUT;
pwd_count = (uint16_t)(counter[1] << 8 | counter[0]);
if (pwd_count == 0)
goto OUT;
pwd_size_available = 4 * pwd_count;
isok = Flash_ReadData(*offset + 2, pwds, pwd_size_available);
if (isok != pwd_size_available)
goto OUT;
em4x50_setup_read();
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
// try to login with current password
for (int i = 0; i < pwd_count; i++) {
// manual interruption
if (BUTTON_PRESS()) {
status = BUTTON_SINGLE_CLICK;
break;
}
// get next password
pwd = 0x0;
for (int j = 0; j < 4; j++)
pwd |= (*(pwds + 4 * i + j)) << ((3 - j) * 8);
if ((status = login(pwd)) == PM3_SUCCESS)
break;
}
}
OUT:
lf_finalize();
reply_ng(CMD_LF_EM4X50_CHK, status, (uint8_t *)&pwd, 32);
}
2020-06-27 06:20:56 +08:00
//==============================================================================
2020-11-20 06:18:04 +08:00
// reset functions
2020-06-27 06:20:56 +08:00
//==============================================================================
static int reset(void) {
2020-09-24 05:45:43 +08:00
// resets EM4x50 tag (used by write function)
2020-08-13 18:25:04 +08:00
if (request_receive_mode()) {
// send reset command
2020-09-05 19:25:57 +08:00
em4x50_reader_send_byte_with_parity(EM4X50_COMMAND_RESET);
2020-09-24 05:45:43 +08:00
if (check_ack(false))
return PM3_SUCCESS;
2020-11-20 06:18:04 +08:00
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
}
return PM3_EFAILED;
}
void em4x50_reset(void) {
// reset EM4x50
uint8_t status = PM3_EFAILED;
em4x50_setup_read();
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag())
status = reset();
2020-11-20 06:18:04 +08:00
lf_finalize();
reply_ng(CMD_LF_EM4X50_RESET, status, 0, 0);
}
2020-06-27 06:20:56 +08:00
//==============================================================================
2020-06-15 20:32:51 +08:00
// read functions
2020-06-27 06:20:56 +08:00
//==============================================================================
2020-06-15 20:32:51 +08:00
static int standard_read(int *now, uint32_t *words) {
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
// reads data that tag transmits when exposed to reader field
// (standard read mode); number of read words is saved in <now>
2020-08-13 18:25:04 +08:00
int fwr = *now, res = PM3_EFAILED;
2020-06-15 20:32:51 +08:00
2020-10-24 07:18:06 +08:00
// start with the identification of two successive listening windows
2020-09-05 18:50:30 +08:00
if (find_double_listen_window(false)) {
2020-06-15 20:32:51 +08:00
// read and save words until following double listen window is detected
while ((res = get_word_from_bitstream(&words[*now])) == EM4X50_TAG_WORD)
(*now)++;
2020-06-15 20:32:51 +08:00
// number of detected words
*now -= fwr;
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
} else {
2020-08-13 18:25:04 +08:00
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("didn't find a listen window");
2020-06-15 20:32:51 +08:00
}
return res;
2020-06-15 20:32:51 +08:00
}
static int selective_read(uint32_t addresses, uint32_t *words) {
2020-08-13 18:25:04 +08:00
2020-10-22 06:42:18 +08:00
// reads from "first word read" (fwr) to "last word read" (lwr)
// result is verified by "standard read mode"
2020-08-13 18:25:04 +08:00
int status = PM3_EFAILED;
2020-10-22 06:42:18 +08:00
uint8_t fwr = addresses & 0xFF; // first word read (first byte)
uint8_t lwr = (addresses >> 8) & 0xFF; // last word read (second byte)
int now = fwr; // number of words
2020-06-15 20:32:51 +08:00
if (request_receive_mode()) {
// send selective read command
2020-09-05 19:25:57 +08:00
em4x50_reader_send_byte_with_parity(EM4X50_COMMAND_SELECTIVE_READ);
2020-06-15 20:32:51 +08:00
// send address data
2020-09-05 19:25:57 +08:00
em4x50_reader_send_word(addresses);
2020-06-15 20:32:51 +08:00
2020-09-24 05:45:43 +08:00
// look for ACK sequence
2020-06-15 20:32:51 +08:00
if (check_ack(false))
2020-09-24 05:45:43 +08:00
// save and verify via standard read mode (compare number of words)
if ((status = standard_read(&now, words)) == PM3_SUCCESS)
2020-06-15 20:32:51 +08:00
if (now == (lwr - fwr + 1))
return status;
2020-08-13 18:25:04 +08:00
2020-06-15 20:32:51 +08:00
} else {
2020-08-13 18:25:04 +08:00
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
2020-06-15 20:32:51 +08:00
}
return status;
2020-06-15 20:32:51 +08:00
}
void em4x50_read(em4x50_data_t *etd) {
2020-08-13 18:25:04 +08:00
// reads by using "selective read mode" -> bidirectional communication
2020-08-13 18:25:04 +08:00
2020-11-20 06:18:04 +08:00
bool blogin = true;
int status = PM3_EFAILED;
2020-10-28 01:18:02 +08:00
uint32_t words[EM4X50_NO_WORDS] = {0x0};
2020-06-26 20:19:41 +08:00
em4x50_setup_read();
2020-08-13 18:25:04 +08:00
2020-06-26 20:19:41 +08:00
// set gHigh and gLow
2020-09-24 05:45:43 +08:00
if (get_signalproperties() && find_em4x50_tag()) {
// try to login with given password
if (etd->pwd_given)
blogin = (login(etd->password1) == PM3_SUCCESS);
2020-08-13 18:25:04 +08:00
// only one word has to be read -> first word read = last word read
2020-11-20 06:18:04 +08:00
if (blogin)
status = selective_read(etd->addresses, words);
2020-06-26 20:19:41 +08:00
}
2020-08-13 18:25:04 +08:00
2020-09-05 19:25:57 +08:00
LOW(GPIO_SSC_DOUT);
2020-06-26 20:19:41 +08:00
lf_finalize();
2020-10-22 21:07:05 +08:00
reply_ng(CMD_LF_EM4X50_READ, status, (uint8_t *)words, 136);
2020-06-26 20:19:41 +08:00
}
2020-11-20 06:18:04 +08:00
void em4x50_stdread(void) {
2020-08-13 18:25:04 +08:00
2020-11-20 06:18:04 +08:00
// reads data that tag transmits "voluntarily" -> standard read mode
2020-08-13 18:25:04 +08:00
2020-11-20 06:18:04 +08:00
int now = 0;
2020-10-28 01:18:02 +08:00
uint32_t words[EM4X50_NO_WORDS] = {0x0};
2020-08-13 18:25:04 +08:00
em4x50_setup_read();
2020-08-13 18:25:04 +08:00
2020-09-28 05:22:51 +08:00
// set gHigh and gLow
2020-10-22 06:42:18 +08:00
if (get_signalproperties() && find_em4x50_tag())
2020-11-20 06:18:04 +08:00
standard_read(&now, words);
2020-11-21 05:03:19 +08:00
2020-11-20 06:18:04 +08:00
LOW(GPIO_SSC_DOUT);
2020-09-28 05:22:51 +08:00
lf_finalize();
2020-11-20 06:18:04 +08:00
reply_ng(CMD_LF_EM4X50_STDREAD, now, (uint8_t *)words, 4 * now);
2020-09-28 05:22:51 +08:00
}
2020-09-28 05:39:04 +08:00
2020-11-20 06:18:04 +08:00
void em4x50_info(em4x50_data_t *etd) {
2020-10-04 04:59:21 +08:00
2020-11-20 06:18:04 +08:00
// collects as much information as possible via selective read mode
2020-10-04 04:59:21 +08:00
2020-11-20 06:18:04 +08:00
bool blogin = true;
int status = PM3_EFAILED;
uint32_t addresses = 0x00002100; // read from fwr = 0 to lwr = 33 (0x21)
uint32_t words[EM4X50_NO_WORDS] = {0x0};
2020-10-04 04:59:21 +08:00
2020-09-28 05:39:04 +08:00
em4x50_setup_read();
2020-11-20 06:18:04 +08:00
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
// login with given password
if (etd->pwd_given)
blogin = (login(etd->password1) == PM3_SUCCESS);
if (blogin)
status = selective_read(addresses, words);
}
2020-09-28 05:39:04 +08:00
2020-10-04 04:59:21 +08:00
lf_finalize();
2020-11-20 06:18:04 +08:00
reply_ng(CMD_LF_EM4X50_INFO, status, (uint8_t *)words, 136);
2020-10-04 04:59:21 +08:00
}
2020-10-06 04:59:08 +08:00
void em4x50_watch() {
2020-10-12 02:06:03 +08:00
// read continuously and display standard reads of tag
2020-10-06 04:59:08 +08:00
int now = 0;
2020-10-28 01:18:02 +08:00
uint32_t words[EM4X50_NO_WORDS] = {0x0};
2020-10-06 04:59:08 +08:00
em4x50_setup_read();
while (BUTTON_PRESS() == false) {
WDT_HIT();
memset(words, 0, sizeof(words));
2020-10-06 04:59:08 +08:00
now = 0;
if (get_signalproperties() && find_em4x50_tag()) {
2020-10-06 04:59:08 +08:00
if (standard_read(&now, words) == BUTTON_SINGLE_CLICK)
break;
if (now > 0) {
2020-10-06 04:59:08 +08:00
Dbprintf("");
for (int i = 0; i < now; i++)
Dbprintf("EM4x50 tag data: "
_GREEN_("%08x") " (msb) - " _GREEN_("%08x") " (lsb)",
words[i], reflect32(words[i]));
2020-10-06 04:59:08 +08:00
}
}
}
LOW(GPIO_SSC_DOUT);
lf_finalize();
reply_ng(CMD_LF_EM4X50_WATCH, 1, 0, 0);
2020-10-06 04:59:08 +08:00
}
2020-10-22 06:42:18 +08:00
//==============================================================================
2020-11-20 06:18:04 +08:00
// write functions
2020-10-22 06:42:18 +08:00
//==============================================================================
2020-11-20 06:18:04 +08:00
static int write(uint32_t word, uint32_t addresses) {
2020-10-22 06:42:18 +08:00
2020-11-20 06:18:04 +08:00
// writes <word> to specified <addresses>
if (request_receive_mode()) {
2020-10-22 06:42:18 +08:00
2020-11-20 06:18:04 +08:00
// send write command
em4x50_reader_send_byte_with_parity(EM4X50_COMMAND_WRITE);
// send address data
em4x50_reader_send_byte_with_parity(addresses & 0xFF);
// send data
em4x50_reader_send_word(word);
if (tearoff_hook() == PM3_ETEAROFF) { // tearoff occurred
reply_ng(CMD_LF_EM4X50_WRITE, PM3_ETEAROFF, NULL, 0);
return PM3_ETEAROFF;
} else {
// wait for T0 * EM4X50_T_TAG_TWA (write access time)
wait_timer(T0 * EM4X50_T_TAG_TWA);
// look for ACK sequence
if (check_ack(false)) {
// now EM4x50 needs T0 * EM4X50_T_TAG_TWEE (EEPROM write time)
// for saving data and should return with ACK
if (check_ack(false))
return PM3_SUCCESS;
}
}
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
}
return PM3_EFAILED;
}
static int write_password(uint32_t password, uint32_t new_password) {
// changes password from <password> to <new_password>
if (request_receive_mode()) {
// send write password command
em4x50_reader_send_byte_with_parity(EM4X50_COMMAND_WRITE_PASSWORD);
// send address data
em4x50_reader_send_word(password);
if (tearoff_hook() == PM3_ETEAROFF) { // tearoff occurred
reply_ng(CMD_LF_EM4X50_WRITE, PM3_ETEAROFF, NULL, 0);
return PM3_ETEAROFF;
} else {
// wait for T0 * EM4x50_T_TAG_TPP (processing pause time)
wait_timer(T0 * EM4X50_T_TAG_TPP);
// look for ACK sequence and send rm request
// during following listen window
if (check_ack(true)) {
// send new password
em4x50_reader_send_word(new_password);
// wait for T0 * EM4X50_T_TAG_TWA (write access time)
wait_timer(T0 * EM4X50_T_TAG_TWA);
if (check_ack(false))
if (check_ack(false))
return PM3_SUCCESS;
}
}
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
}
2020-11-21 05:03:19 +08:00
return PM3_EFAILED;
2020-11-20 06:18:04 +08:00
}
void em4x50_write(em4x50_data_t *etd) {
// write operation process for EM4x50 tag,
// single word is written to given address, verified by selective read operation
// wrong password -> return with PM3_EFAILED
int status = PM3_EFAILED;
uint32_t words[EM4X50_NO_WORDS] = {0x0};
2020-10-22 06:42:18 +08:00
em4x50_setup_read();
2020-11-20 06:18:04 +08:00
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
2020-10-22 06:42:18 +08:00
2020-11-20 06:18:04 +08:00
// if password is given try to login first
status = PM3_SUCCESS;
if (etd->pwd_given)
status = login(etd->password1);
2020-10-22 06:42:18 +08:00
2020-11-20 06:18:04 +08:00
if (status == PM3_SUCCESS) {
// write word to given address
status = write(etd->word, etd->addresses);
if (status == PM3_ETEAROFF) {
lf_finalize();
return;
}
if (status == PM3_SUCCESS) {
// to verify result reset EM4x50
status = reset();
if (status == PM3_SUCCESS) {
// if password is given renew login after reset
if (etd->pwd_given)
status = login(etd->password1);
if (status == PM3_SUCCESS) {
// call a selective read
status = selective_read(etd->addresses, words);
if (status == PM3_SUCCESS) {
// compare result with given word
if (words[etd->addresses & 0xFF] != reflect32(etd->word))
status = PM3_EFAILED;
}
}
}
}
}
}
lf_finalize();
reply_ng(CMD_LF_EM4X50_WRITE, status, (uint8_t *)words, 136);
2020-10-22 06:42:18 +08:00
}
2020-11-20 06:18:04 +08:00
void em4x50_writepwd(em4x50_data_t *etd) {
2020-10-22 06:42:18 +08:00
2020-11-20 06:18:04 +08:00
// simple change of password
int status = PM3_EFAILED;
2020-10-22 06:42:18 +08:00
em4x50_setup_read();
2020-11-20 06:18:04 +08:00
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
2020-10-22 06:42:18 +08:00
2020-11-20 06:18:04 +08:00
// login and change password
if (login(etd->password1) == PM3_SUCCESS) {
status = write_password(etd->password1, etd->password2);
if (status == PM3_ETEAROFF) {
lf_finalize();
return;
}
}
}
lf_finalize();
reply_ng(CMD_LF_EM4X50_WRITEPWD, status, 0, 0);
2020-10-22 06:42:18 +08:00
}
2020-10-25 23:40:39 +08:00
void em4x50_restore(em4x50_data_t *etd) {
// restore em4x50 dump file to tag
2020-11-20 06:18:04 +08:00
bool bsuccess = false;
int status = PM3_EFAILED;
int start_word = 3; // first block/address with user data
uint8_t em4x50_mem[DUMP_FILESIZE] = {0x0};
2020-10-25 23:40:39 +08:00
uint32_t addresses = 0x00001F01; // from fwr = 1 to lwr = 31 (0x1F)
uint32_t words_client[EM4X50_NO_WORDS] = {0x0};
uint32_t words_read[EM4X50_NO_WORDS] = {0x0};
//-----------------------------------------------------------------------------
// Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_LF) here although FPGA is not
// involved in dealing with emulator memory. But if it is called later, it will
// destroy the Emulator Memory.
//-----------------------------------------------------------------------------
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
2020-10-25 23:40:39 +08:00
// read data from flash memory
Flash_ReadData(0, em4x50_mem, 4 * EM4X50_NO_WORDS);
2020-10-31 21:53:52 +08:00
for (int i = 0; i < EM4X50_NO_WORDS; i++)
words_client[i] = reflect32(bytes_to_num(em4x50_mem + (i * 4), 4));
em4x50_setup_read();
2020-10-25 23:40:39 +08:00
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
// login first if password is available
2020-11-20 06:18:04 +08:00
if (etd->pwd_given) {
if (login(etd->password1) == PM3_SUCCESS) {
// successful login allows words 1 and 2 to be written
start_word = 1;
}
}
2020-10-25 23:40:39 +08:00
// write data to each address but ignore addresses
// 0 -> password, 32 -> serial, 33 -> uid
2020-10-27 07:53:50 +08:00
for (int i = start_word; i < EM4X50_NO_WORDS - 2; i++) {
2020-11-20 06:18:04 +08:00
status = write(words_client[i], i);
if (status == PM3_ETEAROFF) {
2020-10-25 23:40:39 +08:00
lf_finalize();
return;
}
}
// to verify result -> reset EM4x50
if (reset() == PM3_SUCCESS) {
2020-10-25 23:40:39 +08:00
// login not necessary because protected word has been set to 0
// -> no read protected words
// -> selective read can be called immediately
if (selective_read(addresses, words_read) == PM3_SUCCESS) {
2020-10-25 23:40:39 +08:00
// check if everything is zero
bsuccess = true;
2020-10-27 07:53:50 +08:00
for (int i = start_word; i < EM4X50_NO_WORDS - 2; i++)
2020-10-25 23:40:39 +08:00
bsuccess &= (reflect32(words_read[i]) == words_client[i]);
}
}
}
2020-11-20 06:18:04 +08:00
if (bsuccess)
status = PM3_SUCCESS;
2020-10-25 23:40:39 +08:00
lf_finalize();
reply_ng(CMD_LF_EM4X50_RESTORE, status, 0, 0);
}
2020-11-20 06:18:04 +08:00
//==============================================================================
// simulate functions
//==============================================================================
void em4x50_sim(void) {
// simulate uploaded data in flash memory
// (currently only a one-way communication is possible)
2020-10-27 07:53:50 +08:00
int status = PM3_SUCCESS;
uint8_t em4x50_mem[DUMP_FILESIZE] = {0x0};
2020-10-27 07:53:50 +08:00
uint32_t words[EM4X50_NO_WORDS] = {0x0};
//-----------------------------------------------------------------------------
// Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_LF) here although FPGA is not
// involved in dealing with emulator memory. But if it is called later, it will
// destroy the Emulator Memory.
//-----------------------------------------------------------------------------
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
// read data from flash memory
Flash_ReadData(0, em4x50_mem, 4 * EM4X50_NO_WORDS);
2020-10-31 21:53:52 +08:00
for (int i = 0; i < EM4X50_NO_WORDS; i++)
words[i] = reflect32(bytes_to_num(em4x50_mem + (i * 4), 4));
em4x50_setup_sim();
// only if valid em4x50 data (e.g. uid == serial)
if (words[EM4X50_DEVICE_SERIAL] != words[EM4X50_DEVICE_ID]) {
2020-10-27 07:53:50 +08:00
// extract control data
int fwr = words[CONFIG_BLOCK] & 0xFF; // first word read
int lwr = (words[CONFIG_BLOCK] >> 8) & 0xFF; // last word read
// extract protection data
int fwrp = words[EM4X50_PROTECTION] & 0xFF; // first word read protected
int lwrp = (words[EM4X50_PROTECTION] >> 8) & 0xFF; // last word read protected
2020-10-27 07:53:50 +08:00
while (!BUTTON_PRESS()) {
WDT_HIT();
2020-10-27 07:53:50 +08:00
em4x50_sim_send_listen_window();
for (int i = fwr; i <= lwr; i++) {
2020-10-27 07:53:50 +08:00
em4x50_sim_send_listen_window();
if ((i >= fwrp) && (i <= lwrp))
em4x50_sim_send_word(0x00);
else
em4x50_sim_send_word(words[i]);
}
2020-10-27 07:53:50 +08:00
}
} else {
status = PM3_ENODATA;
}
BigBuf_free();
lf_finalize();
reply_ng(CMD_LF_EM4X50_SIM, status, 0, 0);
}
2020-10-28 01:18:02 +08:00
2020-11-20 06:18:04 +08:00
//==============================================================================
// standalone mode functions
//==============================================================================
2020-10-28 01:18:02 +08:00
2020-11-20 06:18:04 +08:00
int em4x50_standalone_brute(uint32_t start, uint32_t stop, uint32_t *pwd) {
2020-10-28 01:18:02 +08:00
2020-11-20 06:18:04 +08:00
// envoke password search in standalone mode
int status = false;
2020-10-28 01:18:02 +08:00
em4x50_setup_read();
if (get_signalproperties() && find_em4x50_tag())
2020-11-20 06:18:04 +08:00
status = brute(start, stop, pwd);
else
status = PM3_ETIMEOUT;
2020-11-20 06:18:04 +08:00
lf_finalize();
2020-11-20 06:18:04 +08:00
return status;
}
2020-11-20 06:18:04 +08:00
int em4x50_standalone_read(uint32_t *words) {
2020-11-20 06:18:04 +08:00
int now = 0;
em4x50_setup_read();
2020-11-20 06:18:04 +08:00
if (get_signalproperties() && find_em4x50_tag())
if (find_double_listen_window(false))
while (get_word_from_bitstream(&words[now]) == EM4X50_TAG_WORD)
now++;
2020-11-20 06:18:04 +08:00
return now;
}