proxmark3/client/src/cmdanalyse.c

1094 lines
39 KiB
C
Raw Normal View History

//-----------------------------------------------------------------------------
// Copyright (C) 2016 iceman
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Analyse bytes commands
//-----------------------------------------------------------------------------
#include "cmdanalyse.h"
#include <stdlib.h> // size_t
#include <string.h>
#include <ctype.h> // tolower
#include <math.h>
#include "commonutil.h" // reflect...
#include "comms.h" // clearCommandBuffer
#include "cmdparser.h" // command_t
#include "ui.h" // PrintAndLog
#include "crc.h"
#include "crc16.h" // crc16 ccitt
#include "tea.h"
#include "legic_prng.h"
#include "cmddata.h" // demodbuffer
2021-01-07 21:05:03 +08:00
#include "graph.h"
#include "proxgui.h"
#include "cliparser.h"
#include "generator.h" // generate nuid
static int CmdHelp(const char *Cmd);
static uint8_t calculateLRC(uint8_t *bytes, uint8_t len) {
uint8_t LRC = 0;
for (uint8_t i = 0; i < len; i++)
LRC ^= bytes[i];
return LRC;
}
/*
static uint16_t matrixadd ( uint8_t* bytes, uint8_t len){
-----------
0x9c | 1001 1100
0x97 | 1001 0111
0x72 | 0111 0010
0x5e | 0101 1110
-----------------
C32F 9d74
2019-03-10 06:35:06 +08:00
return 0;
}
*/
/*
static uint16_t shiftadd ( uint8_t* bytes, uint8_t len){
2019-03-10 06:35:06 +08:00
return 0;
}
*/
static uint16_t calcSumCrumbAdd(uint8_t *bytes, uint8_t len, uint32_t mask) {
uint16_t sum = 0;
for (uint8_t i = 0; i < len; i++) {
sum += CRUMB(bytes[i], 0);
2019-03-10 06:35:06 +08:00
sum += CRUMB(bytes[i], 2);
sum += CRUMB(bytes[i], 4);
sum += CRUMB(bytes[i], 6);
}
sum &= mask;
return sum;
}
static uint16_t calcSumCrumbAddOnes(uint8_t *bytes, uint8_t len, uint32_t mask) {
2019-03-10 06:35:06 +08:00
return (~calcSumCrumbAdd(bytes, len, mask) & mask);
}
static uint16_t calcSumNibbleAdd(uint8_t *bytes, uint8_t len, uint32_t mask) {
uint16_t sum = 0;
for (uint8_t i = 0; i < len; i++) {
sum += NIBBLE_LOW(bytes[i]);
2019-03-10 06:35:06 +08:00
sum += NIBBLE_HIGH(bytes[i]);
}
sum &= mask;
return sum;
}
static uint16_t calcSumNibbleAddOnes(uint8_t *bytes, uint8_t len, uint32_t mask) {
2019-03-10 06:35:06 +08:00
return (~calcSumNibbleAdd(bytes, len, mask) & mask);
}
static uint16_t calcSumCrumbXor(uint8_t *bytes, uint8_t len, uint32_t mask) {
uint16_t sum = 0;
for (uint8_t i = 0; i < len; i++) {
sum ^= CRUMB(bytes[i], 0);
2019-03-10 06:35:06 +08:00
sum ^= CRUMB(bytes[i], 2);
sum ^= CRUMB(bytes[i], 4);
sum ^= CRUMB(bytes[i], 6);
}
sum &= mask;
return sum;
}
static uint16_t calcSumNibbleXor(uint8_t *bytes, uint8_t len, uint32_t mask) {
uint16_t sum = 0;
for (uint8_t i = 0; i < len; i++) {
sum ^= NIBBLE_LOW(bytes[i]);
2019-03-10 06:35:06 +08:00
sum ^= NIBBLE_HIGH(bytes[i]);
}
sum &= mask;
return sum;
}
static uint16_t calcSumByteXor(uint8_t *bytes, uint8_t len, uint32_t mask) {
uint16_t sum = 0;
for (uint8_t i = 0; i < len; i++) {
2019-03-10 06:35:06 +08:00
sum ^= bytes[i];
}
sum &= mask;
return sum;
}
static uint16_t calcSumByteAdd(uint8_t *bytes, uint8_t len, uint32_t mask) {
uint16_t sum = 0;
for (uint8_t i = 0; i < len; i++) {
2019-03-10 06:35:06 +08:00
sum += bytes[i];
}
sum &= mask;
return sum;
}
// Ones complement
static uint16_t calcSumByteAddOnes(uint8_t *bytes, uint8_t len, uint32_t mask) {
2019-03-10 06:35:06 +08:00
return (~calcSumByteAdd(bytes, len, mask) & mask);
}
static uint16_t calcSumByteSub(uint8_t *bytes, uint8_t len, uint32_t mask) {
uint8_t sum = 0;
for (uint8_t i = 0; i < len; i++) {
2019-03-10 06:35:06 +08:00
sum -= bytes[i];
}
sum &= mask;
return sum;
}
static uint16_t calcSumByteSubOnes(uint8_t *bytes, uint8_t len, uint32_t mask) {
2019-03-10 06:35:06 +08:00
return (~calcSumByteSub(bytes, len, mask) & mask);
}
static uint16_t calcSumNibbleSub(uint8_t *bytes, uint8_t len, uint32_t mask) {
uint8_t sum = 0;
for (uint8_t i = 0; i < len; i++) {
sum -= NIBBLE_LOW(bytes[i]);
2019-03-10 06:35:06 +08:00
sum -= NIBBLE_HIGH(bytes[i]);
}
sum &= mask;
return sum;
}
static uint16_t calcSumNibbleSubOnes(uint8_t *bytes, uint8_t len, uint32_t mask) {
2019-03-10 06:35:06 +08:00
return (~calcSumNibbleSub(bytes, len, mask) & mask);
}
// BSD shift checksum 8bit version
static uint16_t calcBSDchecksum8(uint8_t *bytes, uint8_t len, uint32_t mask) {
2019-03-10 06:35:06 +08:00
uint16_t sum = 0;
2019-03-10 07:00:59 +08:00
for (uint8_t i = 0; i < len; i++) {
2019-03-10 06:35:06 +08:00
sum = ((sum & 0xFF) >> 1) | ((sum & 0x1) << 7); // rotate accumulator
sum += bytes[i]; // add next byte
sum &= 0xFF; //
}
sum &= mask;
return sum;
}
// BSD shift checksum 4bit version
static uint16_t calcBSDchecksum4(uint8_t *bytes, uint8_t len, uint32_t mask) {
2019-03-10 06:35:06 +08:00
uint16_t sum = 0;
2019-03-10 07:00:59 +08:00
for (uint8_t i = 0; i < len; i++) {
2019-03-10 06:35:06 +08:00
sum = ((sum & 0xF) >> 1) | ((sum & 0x1) << 3); // rotate accumulator
sum += NIBBLE_HIGH(bytes[i]); // add high nibble
sum &= 0xF; //
sum = ((sum & 0xF) >> 1) | ((sum & 0x1) << 3); // rotate accumulator
sum += NIBBLE_LOW(bytes[i]); // add low nibble
sum &= 0xF; //
}
sum &= mask;
return sum;
}
// 0xFF - ( n1 ^ n... )
static uint16_t calcXORchecksum(uint8_t *bytes, uint8_t len, uint32_t mask) {
return 0xFF - calcSumByteXor(bytes, len, mask);
}
//2148050707DB0A0E000001C4000000
// measuring LFSR maximum length
static int CmdAnalyseLfsr(const char *Cmd) {
2021-01-09 19:32:50 +08:00
CLIParserContext *ctx;
CLIParserInit(&ctx, "analyse lfsr",
"looks at LEGIC Prime's lfsr, iterates the first 48 values",
"analyse lfsr --iv 55"
);
void *argtable[] = {
arg_param_begin,
arg_str1(NULL, "iv", "<hex>", "init vector data (1 hex byte)"),
arg_str0(NULL, "find", "<hex>", "lfsr data to find (1 hex byte)"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
int iv_len = 0;
uint8_t idata[1] = {0};
int res = CLIParamHexToBuf(arg_get_str(ctx, 1), idata, sizeof(idata), &iv_len);
if (res) {
CLIParserFree(ctx);
PrintAndLogEx(FAILED, "Error parsing IV byte");
return PM3_EINVARG;
}
int f_len = 0;
uint8_t fdata[1] = {0};
res = CLIParamHexToBuf(arg_get_str(ctx, 2), fdata, sizeof(fdata), &f_len);
CLIParserFree(ctx);
2021-01-09 19:32:50 +08:00
if (res) {
PrintAndLogEx(FAILED, "Error parsing FIND byte");
return PM3_EINVARG;
}
2021-01-09 19:32:50 +08:00
uint8_t iv = idata[0];
uint8_t find = fdata[0];
PrintAndLogEx(INFO, "LEGIC Prime lfsr");
PrintAndLogEx(INFO, "iv..... 0x%02X", iv);
PrintAndLogEx(INFO, "----+------+-------+--------------");
PrintAndLogEx(INFO, " i# | lfsr | ^0x40 | 0x%02X ^ lfsr", find);
PrintAndLogEx(INFO, "----+------+-------+--------------");
2019-03-10 06:35:06 +08:00
for (uint8_t i = 0x01; i < 0x30; i += 1) {
legic_prng_init(iv);
legic_prng_forward(i);
2019-06-12 21:41:23 +08:00
uint16_t lfsr = legic_prng_get_bits(12); /* Any nonzero start state will work. */
2021-01-09 19:32:50 +08:00
PrintAndLogEx(INFO, " %02X | %03X | %03X | %03X", i, lfsr, 0x40 ^ lfsr, find ^ lfsr);
2019-03-10 06:35:06 +08:00
}
2021-01-09 19:32:50 +08:00
PrintAndLogEx(INFO, "----+------+-------+--------------");
return PM3_SUCCESS;
}
2021-01-09 19:32:50 +08:00
static int CmdAnalyseLCR(const char *Cmd) {
2021-01-07 21:05:03 +08:00
CLIParserContext *ctx;
CLIParserInit(&ctx, "analyse lcr",
"Specifying the bytes of a UID with a known LRC will find the last byte value\n"
"needed to generate that LRC with a rolling XOR. All bytes should be specified in HEX.",
"analyse lcr -d 04008064BA -> Target (BA) requires final LRC XOR byte value: 5A"
);
void *argtable[] = {
arg_param_begin,
arg_str1("d", "data", "<hex>", "bytes to calc missing XOR in a LCR"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
int dlen = 0;
uint8_t data[100] = {0x00};
int res = CLIParamHexToBuf(arg_get_str(ctx, 1), data, sizeof(data), &dlen);
CLIParserFree(ctx);
2021-01-14 18:39:45 +08:00
2021-01-07 21:05:03 +08:00
if (res) {
PrintAndLogEx(FAILED, "Error parsing bytes");
return PM3_EINVARG;
2019-03-10 06:35:06 +08:00
}
2021-01-07 21:05:03 +08:00
uint8_t finalXor = calculateLRC(data, dlen);
PrintAndLogEx(SUCCESS, "Target [%02X] requires final LRC XOR byte value: " _YELLOW_("0x%02X"), data[dlen - 1], finalXor);
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
2019-03-10 06:35:06 +08:00
2021-01-07 21:05:03 +08:00
static int CmdAnalyseCRC(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "analyse crc",
"A stub method to test different crc implementations inside the PM3 sourcecode.\n"
"Just because you figured out the poly, doesn't mean you get the desired output",
"analyse crc -d 137AF00A0A0D"
);
void *argtable[] = {
arg_param_begin,
arg_str1("d", "data", "<hex>", "bytes to calc crc"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
int dlen = 0;
uint8_t data[1024] = {0x00};
int res = CLIParamHexToBuf(arg_get_str(ctx, 1), data, sizeof(data), &dlen);
CLIParserFree(ctx);
2021-01-14 18:39:45 +08:00
2021-01-07 21:05:03 +08:00
if (res) {
PrintAndLogEx(FAILED, "Error parsing bytes");
return PM3_EINVARG;
2019-03-10 06:35:06 +08:00
}
2021-01-07 21:05:03 +08:00
PrintAndLogEx(INFO, "\nTests with (%d) | %s", dlen, sprint_hex(data, dlen));
2019-03-10 06:35:06 +08:00
// 51 f5 7a d6
uint8_t uid[] = {0x51, 0xf5, 0x7a, 0xd6}; //12 34 56
init_table(CRC_LEGIC);
uint8_t legic8 = CRC8Legic(uid, sizeof(uid));
2021-01-07 21:05:03 +08:00
PrintAndLogEx(INFO, "Legic 16 | %X (EF6F expected) [legic8 = %02x]", crc16_legic(data, dlen, legic8), legic8);
2019-03-10 06:35:06 +08:00
init_table(CRC_FELICA);
2021-01-07 21:05:03 +08:00
PrintAndLogEx(INFO, "FeliCa | %X ", crc16_xmodem(data, dlen));
2019-03-10 06:35:06 +08:00
2021-01-07 21:05:03 +08:00
PrintAndLogEx(INFO, "\nTests of reflection. Current methods in source code");
PrintAndLogEx(INFO, " reflect(0x3e23L,3) is %04X == 0x3e26", reflect(0x3e23L, 3));
PrintAndLogEx(INFO, " reflect8(0x80) is %02X == 0x01", reflect8(0x80));
PrintAndLogEx(INFO, " reflect16(0x8000) is %04X == 0x0001", reflect16(0xc6c6));
2019-03-10 06:35:06 +08:00
uint8_t b1, b2;
// ISO14443 crc B
2021-01-07 21:05:03 +08:00
compute_crc(CRC_14443_B, data, dlen, &b1, &b2);
2019-03-10 06:35:06 +08:00
uint16_t crcBB_1 = b1 << 8 | b2;
2021-01-07 21:05:03 +08:00
uint16_t bbb = Crc16ex(CRC_14443_B, data, dlen);
PrintAndLogEx(INFO, "ISO14443 crc B | %04x == %04x \n", crcBB_1, bbb);
2019-03-10 06:35:06 +08:00
// Test of CRC16, '123456789' string.
//
2021-01-07 21:05:03 +08:00
PrintAndLogEx(INFO, "\n\nStandard test with 31 32 33 34 35 36 37 38 39 '123456789'\n\n");
2019-03-10 07:00:59 +08:00
uint8_t dataStr[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39 };
2019-03-10 06:35:06 +08:00
legic8 = CRC8Legic(dataStr, sizeof(dataStr));
//these below has been tested OK.
2021-01-07 21:05:03 +08:00
PrintAndLogEx(INFO, "Confirmed CRC Implementations");
PrintAndLogEx(INFO, "-------------------------------------\n");
PrintAndLogEx(INFO, "CRC 8 based\n\n");
PrintAndLogEx(INFO, "LEGIC: CRC8 : %X (C6 expected)", legic8);
PrintAndLogEx(INFO, "MAXIM: CRC8 : %X (A1 expected)", CRC8Maxim(dataStr, sizeof(dataStr)));
PrintAndLogEx(INFO, "-------------------------------------\n");
PrintAndLogEx(INFO, "CRC16 based\n\n");
2019-03-10 06:35:06 +08:00
// input from commandline
2021-01-07 21:05:03 +08:00
PrintAndLogEx(INFO, "CCITT | %X (29B1 expected)", Crc16ex(CRC_CCITT, dataStr, sizeof(dataStr)));
2019-03-10 06:35:06 +08:00
2019-03-10 07:00:59 +08:00
uint8_t poll[] = {0xb2, 0x4d, 0x12, 0x01, 0x01, 0x2e, 0x3d, 0x17, 0x26, 0x47, 0x80, 0x95, 0x00, 0xf1, 0x00, 0x00, 0x00, 0x01, 0x43, 0x00, 0xb3, 0x7f};
2021-01-07 21:05:03 +08:00
PrintAndLogEx(INFO, "FeliCa | %04X (B37F expected)", Crc16ex(CRC_FELICA, poll + 2, sizeof(poll) - 4));
PrintAndLogEx(INFO, "FeliCa | %04X (0000 expected)", Crc16ex(CRC_FELICA, poll + 2, sizeof(poll) - 2));
2019-03-10 06:35:06 +08:00
uint8_t sel_corr[] = { 0x40, 0xe1, 0xe1, 0xff, 0xfe, 0x5f, 0x02, 0x3c, 0x43, 0x01};
2021-01-07 21:05:03 +08:00
PrintAndLogEx(INFO, "iCLASS | %04x (0143 expected)", Crc16ex(CRC_ICLASS, sel_corr, sizeof(sel_corr) - 2));
PrintAndLogEx(INFO, "---------------------------------------------------------------\n\n\n");
2019-03-10 06:35:06 +08:00
// ISO14443 crc A
compute_crc(CRC_14443_A, dataStr, sizeof(dataStr), &b1, &b2);
uint16_t crcAA = b1 << 8 | b2;
2021-01-07 21:05:03 +08:00
PrintAndLogEx(INFO, "ISO14443 crc A | %04x or %04x (BF05 expected)\n", crcAA, Crc16ex(CRC_14443_A, dataStr, sizeof(dataStr)));
2019-03-10 06:35:06 +08:00
// ISO14443 crc B
compute_crc(CRC_14443_B, dataStr, sizeof(dataStr), &b1, &b2);
uint16_t crcBB = b1 << 8 | b2;
2021-01-07 21:05:03 +08:00
PrintAndLogEx(INFO, "ISO14443 crc B | %04x or %04x (906E expected)\n", crcBB, Crc16ex(CRC_14443_B, dataStr, sizeof(dataStr)));
2019-03-10 06:35:06 +08:00
// ISO15693 crc (x.25)
compute_crc(CRC_15693, dataStr, sizeof(dataStr), &b1, &b2);
uint16_t crcCC = b1 << 8 | b2;
2021-01-07 21:05:03 +08:00
PrintAndLogEx(INFO, "ISO15693 crc X25| %04x or %04x (906E expected)\n", crcCC, Crc16ex(CRC_15693, dataStr, sizeof(dataStr)));
2019-03-10 06:35:06 +08:00
// ICLASS
compute_crc(CRC_ICLASS, dataStr, sizeof(dataStr), &b1, &b2);
uint16_t crcDD = b1 << 8 | b2;
2021-01-07 21:05:03 +08:00
PrintAndLogEx(INFO, "ICLASS crc | %04x or %04x\n", crcDD, Crc16ex(CRC_ICLASS, dataStr, sizeof(dataStr)));
2019-03-10 06:35:06 +08:00
// FeliCa
compute_crc(CRC_FELICA, dataStr, sizeof(dataStr), &b1, &b2);
uint16_t crcEE = b1 << 8 | b2;
2021-01-07 21:05:03 +08:00
PrintAndLogEx(INFO, "FeliCa | %04x or %04x (31C3 expected)\n", crcEE, Crc16ex(CRC_FELICA, dataStr, sizeof(dataStr)));
2019-03-10 06:35:06 +08:00
2021-01-07 21:05:03 +08:00
return PM3_SUCCESS;
}
2021-01-09 18:27:05 +08:00
static int CmdAnalyseCHKSUM(const char *Cmd) {
2021-01-09 18:27:05 +08:00
CLIParserContext *ctx;
CLIParserInit(&ctx, "analyse chksum",
"The bytes will be added with eachother and than limited with the applied mask\n"
"Finally compute ones' complement of the least significant bytes.",
"analyse chksum -d 137AF00A0A0D -> expected output: 0x61\n"
"analyse chksum -d 137AF00A0A0D -m FF"
);
void *argtable[] = {
arg_param_begin,
arg_str1("d", "data", "<hex>", "bytes to calc checksum"),
arg_str0("m", "mask", "<hex>", "bit mask to limit the output (4 hex bytes max)"),
arg_lit0("v", "verbose", "verbose"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
int dlen = 0;
uint8_t data[100] = {0x00};
2019-03-10 06:35:06 +08:00
memset(data, 0x0, sizeof(data));
2021-01-09 18:27:05 +08:00
int res = CLIParamHexToBuf(arg_get_str(ctx, 1), data, sizeof(data), &dlen);
if (res) {
CLIParserFree(ctx);
PrintAndLogEx(FAILED, "Error parsing bytes");
return PM3_EINVARG;
}
const char *s = arg_get_str(ctx, 2)->sval[0];
bool verbose = arg_get_lit(ctx, 3);
CLIParserFree(ctx);
2021-01-14 18:39:45 +08:00
2021-01-09 18:27:05 +08:00
uint32_t mlen = 0;
2021-01-14 18:39:45 +08:00
if (s)
2021-01-09 18:27:05 +08:00
mlen = strlen(s);
if (mlen > 8) {
PrintAndLogEx(FAILED, "Mask value is max 4 hex bytes");
2021-01-14 18:39:45 +08:00
return PM3_EINVARG;
2021-01-09 18:27:05 +08:00
}
2019-03-10 06:35:06 +08:00
2021-01-09 18:27:05 +08:00
uint32_t mask = 0;
if (mlen == 0) {
mask = 0xFFFF;
} else {
for (int i = 0; i < mlen; i++) {
char c = s[i];
// capitalize
if (c >= 'a' && c <= 'f')
c -= 32;
// convert to numeric value
if (c >= '0' && c <= '9')
c -= '0';
else if (c >= 'A' && c <= 'F')
c -= 'A' - 10;
else
continue;
mask <<= 4;
mask |= c;
2019-03-10 06:35:06 +08:00
}
}
2021-01-09 18:27:05 +08:00
PrintAndLogEx(INFO, "Mask value 0x%x", mask);
if (verbose) {
PrintAndLogEx(INFO, "------------------+-------------+------------------+-----------------+------------------+-----------+-------------");
PrintAndLogEx(INFO, " add | sub | add 1's compl | sub 1's compl | xor | |");
PrintAndLogEx(INFO, "byte nibble crumb | byte nibble | byte nibble cumb | byte nibble | byte nibble cumb | BSD | 0xFF - (n^n)");
PrintAndLogEx(INFO, "------------------+-------------+------------------+-----------------+------------------+-----------+-------------");
2019-03-10 06:35:06 +08:00
}
PrintAndLogEx(INFO, "0x%X 0x%X 0x%X | 0x%X 0x%X | 0x%X 0x%X 0x%X | 0x%X 0x%X | 0x%X 0x%X 0x%X | 0x%X 0x%X | 0x%X\n",
2021-01-09 18:27:05 +08:00
calcSumByteAdd(data, dlen, mask)
, calcSumNibbleAdd(data, dlen, mask)
, calcSumCrumbAdd(data, dlen, mask)
, calcSumByteSub(data, dlen, mask)
, calcSumNibbleSub(data, dlen, mask)
, calcSumByteAddOnes(data, dlen, mask)
, calcSumNibbleAddOnes(data, dlen, mask)
, calcSumCrumbAddOnes(data, dlen, mask)
, calcSumByteSubOnes(data, dlen, mask)
, calcSumNibbleSubOnes(data, dlen, mask)
, calcSumByteXor(data, dlen, mask)
, calcSumNibbleXor(data, dlen, mask)
, calcSumCrumbXor(data, dlen, mask)
, calcBSDchecksum8(data, dlen, mask)
, calcBSDchecksum4(data, dlen, mask)
, calcXORchecksum(data, dlen, mask)
2019-03-10 07:00:59 +08:00
);
2021-01-09 18:27:05 +08:00
return PM3_SUCCESS;
}
static int CmdAnalyseDates(const char *Cmd) {
2021-01-09 19:32:50 +08:00
CLIParserContext *ctx;
CLIParserInit(&ctx, "analyse dates",
"Tool to look for date/time stamps in a given array of bytes",
"analyse dates"
);
void *argtable[] = {
arg_param_begin,
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
CLIParserFree(ctx);
2019-03-10 06:35:06 +08:00
PrintAndLogEx(NORMAL, "To be implemented. Feel free to contribute!");
2021-01-09 19:32:50 +08:00
return PM3_SUCCESS;
}
2021-01-09 19:32:50 +08:00
static int CmdAnalyseTEASelfTest(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "analyse tea",
"Crypto TEA self tests",
"analyse tea -d 1122334455667788"
);
2021-01-09 19:32:50 +08:00
void *argtable[] = {
arg_param_begin,
arg_str1("d", "data", "<hex>", "bytes to encrypt ( 8 hex bytes )"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
int dlen = 0;
uint8_t data[8] = {0x00};
int res = CLIParamHexToBuf(arg_get_str(ctx, 1), data, sizeof(data), &dlen);
CLIParserFree(ctx);
if (res) {
PrintAndLogEx(FAILED, "Error parsing bytes");
return PM3_EINVARG;
2019-03-10 06:35:06 +08:00
}
2021-01-09 19:32:50 +08:00
uint8_t v_le[8];
memset(v_le, 0x00, sizeof(v_le));
uint8_t *v_ptr = v_le;
2021-01-14 18:39:45 +08:00
2021-01-09 19:32:50 +08:00
SwapEndian64ex(data, 8, 4, v_ptr);
2019-03-10 06:35:06 +08:00
// ENCRYPTION KEY:
2019-03-10 07:00:59 +08:00
uint8_t key[16] = {0x55, 0xFE, 0xF6, 0x30, 0x62, 0xBF, 0x0B, 0xC1, 0xC9, 0xB3, 0x7C, 0x34, 0x97, 0x3E, 0x29, 0xFB };
2019-03-10 06:35:06 +08:00
uint8_t keyle[16];
2019-03-10 07:00:59 +08:00
uint8_t *key_ptr = keyle;
SwapEndian64ex(key, sizeof(key), 4, key_ptr);
2021-01-09 19:32:50 +08:00
PrintAndLogEx(INFO, "TEA crypto testing");
PrintAndLogEx(INFO, "-----------------------------------+---------");
PrintAndLogEx(INFO, "LE enc.... %s", sprint_hex_ascii(v_ptr, 8));
2019-03-10 06:35:06 +08:00
tea_decrypt(v_ptr, key_ptr);
2021-01-09 19:32:50 +08:00
PrintAndLogEx(INFO, "LE dec.... %s", sprint_hex_ascii(v_ptr, 8));
2019-03-10 06:35:06 +08:00
tea_encrypt(v_ptr, key_ptr);
2021-01-09 19:32:50 +08:00
PrintAndLogEx(INFO, "enc1...... %s", sprint_hex_ascii(v_ptr, 8));
2019-03-10 06:35:06 +08:00
tea_encrypt(v_ptr, key_ptr);
2021-01-09 19:32:50 +08:00
PrintAndLogEx(INFO, "enc2...... %s", sprint_hex_ascii(v_ptr, 8));
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int CmdAnalyseA(const char *Cmd) {
2021-01-09 18:50:26 +08:00
CLIParserContext *ctx;
CLIParserInit(&ctx, "analyse a",
"Iceman's personal garbage test command",
"analyse a -d 137AF00A0A0D"
);
2021-01-09 18:50:26 +08:00
void *argtable[] = {
arg_param_begin,
arg_str1("d", "data", "<hex>", "bytes to manipulate"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
int dlen = 0;
uint8_t data[100] = {0x00};
memset(data, 0x0, sizeof(data));
int res = CLIParamHexToBuf(arg_get_str(ctx, 1), data, sizeof(data), &dlen);
if (res) {
CLIParserFree(ctx);
PrintAndLogEx(FAILED, "Error parsing bytes");
return PM3_EINVARG;
}
CLIParserFree(ctx);
return PM3_SUCCESS;
2019-04-14 17:43:05 +08:00
2021-01-09 18:50:26 +08:00
/*
2019-04-14 17:43:05 +08:00
//uint8_t syncBit = 99;
// The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
// Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
// we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
// (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
# define SYNC_16BIT 0xB24D
uint32_t shiftReg = param_get32ex(Cmd, 0, 0xb24d, 16);
uint8_t bt = param_get8ex(Cmd, 1, 0xBB, 16);
uint8_t byte_offset = 99;
// reverse byte
uint8_t rev = reflect8(bt);
2021-01-09 18:50:26 +08:00
PrintAndLogEx(INFO, "input %02x | %02x \n", bt, rev);
2019-04-14 17:43:05 +08:00
// add byte to shift register
shiftReg = shiftReg << 8 | rev;
2021-01-09 18:50:26 +08:00
PrintAndLogEx(INFO, "shiftreg after %08x | pattern %08x \n", shiftReg, SYNC_16BIT);
2019-04-14 17:43:05 +08:00
uint8_t n0 = 0, n1 = 0;
n0 = (rev & (uint8_t)(~(0xFF >> (8 - 4)))) >> 4;
n1 = (n1 << 4) | (rev & (uint8_t)(~(0xFF << 4)));
2021-01-09 18:50:26 +08:00
PrintAndLogEx(INFO, "rev %02X | %02X %s | %02X %s |\n", rev, n0, pb(n0), n1, pb(n1));
2019-03-10 07:00:59 +08:00
*/
2019-04-14 17:43:05 +08:00
/*
for (int i = 0; i < 16; i++) {
2021-01-09 18:50:26 +08:00
PrintAndLogEx(INFO, " (shiftReg >> %d) & 0xFFFF == %08x ---", i, ((shiftReg >> i) & 0xFFFF));
2019-04-14 17:43:05 +08:00
// kolla om SYNC_PATTERN finns.
if (((shiftReg >> 7) & 0xFFFF) == SYNC_16BIT) byte_offset = 7;
else if (((shiftReg >> 6) & 0xFFFF) == SYNC_16BIT) byte_offset = 6;
else if (((shiftReg >> 5) & 0xFFFF) == SYNC_16BIT) byte_offset = 5;
else if (((shiftReg >> 4) & 0xFFFF) == SYNC_16BIT) byte_offset = 4;
else if (((shiftReg >> 3) & 0xFFFF) == SYNC_16BIT) byte_offset = 3;
else if (((shiftReg >> 2) & 0xFFFF) == SYNC_16BIT) byte_offset = 2;
else if (((shiftReg >> 1) & 0xFFFF) == SYNC_16BIT) byte_offset = 1;
else if (((shiftReg >> 0) & 0xFFFF) == SYNC_16BIT) byte_offset = 0;
2021-01-09 18:50:26 +08:00
PrintAndLogEx(INFO, "Offset %u \n", byte_offset);
2019-04-14 17:43:05 +08:00
if (byte_offset != 99)
break;
2019-04-14 17:43:05 +08:00
shiftReg >>= 1;
}
2019-04-14 17:43:05 +08:00
uint8_t p1 = (rev & (uint8_t)(~(0xFF << byte_offset)));
2021-01-09 18:50:26 +08:00
PrintAndLogEx(INFO, "Offset %u | leftovers %02x %s \n", byte_offset, p1, pb(p1));
2019-04-14 17:43:05 +08:00
*/
2019-03-10 06:35:06 +08:00
/*
2021-01-09 18:50:26 +08:00
pm3 --> da hex2bin 4db2 0100110110110010
2019-03-10 07:00:59 +08:00
*/
2021-01-09 18:50:26 +08:00
//return PM3_SUCCESS;
2019-03-10 07:00:59 +08:00
/*
// split byte into two parts.
uint8_t offset = 3, n0 = 0, n1 = 0;
rev = 0xB2;
for (uint8_t m=0; m<8; m++) {
offset = m;
n0 = (rev & (uint8_t)(~(0xFF >> (8-offset)))) >> offset;
n1 = (n1 << offset) | (rev & (uint8_t)(~(0xFF << offset)));
2021-01-09 18:50:26 +08:00
PrintAndLogEx(INFO, "rev %02X | %02X %s | %02X %s |\n", rev, n0, pb(n0), n1, pb(n1) );
2019-03-10 07:00:59 +08:00
n0 = 0, n1 = 0;
2021-01-09 18:50:26 +08:00
// PrintAndLogEx(INFO, " (0xFF >> offset) == %s |\n", pb( (0xFF >> offset)) );
//PrintAndLogEx(INFO, "~(0xFF >> (8-offset)) == %s |\n", pb( (uint8_t)(~(0xFF >> (8-offset))) ) );
//PrintAndLogEx(INFO, " rev & xxx == %s\n\n", pb( (rev & (uint8_t)(~(0xFF << offset))) ));
2019-03-10 07:00:59 +08:00
}
2021-01-09 18:50:26 +08:00
return PM3_SUCCESS;
2019-03-10 07:00:59 +08:00
// from A -- x bits into B and the rest into C.
2019-03-10 06:35:06 +08:00
2019-03-10 07:00:59 +08:00
for ( uint8_t i=0; i<8; i++){
2021-01-09 18:50:26 +08:00
PrintAndLogEx(INFO, "%u | %02X %s | %02X %s |\n", i, a, pb(a), b, pb(b) );
2019-03-10 07:00:59 +08:00
b = a & (a & (0xFF >> (8-i)));
a >>=1;
}
2019-03-10 06:35:06 +08:00
2019-03-10 07:00:59 +08:00
*/
2021-01-09 18:50:26 +08:00
// return PM3_SUCCESS;
2019-03-10 06:35:06 +08:00
2019-04-14 17:43:05 +08:00
/*
// 14443-A
uint8_t u14_c[] = {0x09, 0x78, 0x00, 0x92, 0x02, 0x54, 0x13, 0x02, 0x04, 0x2d, 0xe8 }; // atqs w crc
uint8_t u14_w[] = {0x09, 0x78, 0x00, 0x92, 0x02, 0x54, 0x13, 0x02, 0x04, 0x2d, 0xe7 }; // atqs w crc
PrintAndLogEx(FAILED, "14a check wrong crc | %s\n", (check_crc(CRC_14443_A, u14_w, sizeof(u14_w))) ? "YES" : "NO");
PrintAndLogEx(SUCCESS, "14a check correct crc | %s\n", (check_crc(CRC_14443_A, u14_c, sizeof(u14_c))) ? "YES" : "NO");
// 14443-B
uint8_t u14b[] = {0x05, 0x00, 0x08, 0x39, 0x73};
2021-01-09 18:50:26 +08:00
PrintAndLogEx(INFO, "14b check crc | %s\n", (check_crc(CRC_14443_B, u14b, sizeof(u14b))) ? "YES" : "NO");
2019-04-14 17:43:05 +08:00
// 15693 test
uint8_t u15_c[] = {0x05, 0x00, 0x08, 0x39, 0x73}; // correct
uint8_t u15_w[] = {0x05, 0x00, 0x08, 0x39, 0x72}; // wrong
PrintAndLogEx(FAILED, "15 check wrong crc | %s\n", (check_crc(CRC_15693, u15_w, sizeof(u15_w))) ? "YES" : "NO");
PrintAndLogEx(SUCCESS, "15 check correct crc | %s\n", (check_crc(CRC_15693, u15_c, sizeof(u15_c))) ? "YES" : "NO");
// iCLASS test - wrong crc , swapped bytes.
uint8_t iclass_w[] = { 0x40, 0xe1, 0xe1, 0xff, 0xfe, 0x5f, 0x02, 0x3c, 0x01, 0x43};
uint8_t iclass_c[] = { 0x40, 0xe1, 0xe1, 0xff, 0xfe, 0x5f, 0x02, 0x3c, 0x43, 0x01};
PrintAndLogEx(FAILED, "iCLASS check wrong crc | %s\n", (check_crc(CRC_ICLASS, iclass_w, sizeof(iclass_w))) ? "YES" : "NO");
PrintAndLogEx(SUCCESS, "iCLASS check correct crc | %s\n", (check_crc(CRC_ICLASS, iclass_c, sizeof(iclass_c))) ? "YES" : "NO");
// FeliCa test
uint8_t felica_w[] = {0x12, 0x01, 0x01, 0x2e, 0x3d, 0x17, 0x26, 0x47, 0x80, 0x95, 0x00, 0xf1, 0x00, 0x00, 0x00, 0x01, 0x43, 0x00, 0xb3, 0x7e};
uint8_t felica_c[] = {0x12, 0x01, 0x01, 0x2e, 0x3d, 0x17, 0x26, 0x47, 0x80, 0x95, 0x00, 0xf1, 0x00, 0x00, 0x00, 0x01, 0x43, 0x00, 0xb3, 0x7f};
PrintAndLogEx(FAILED, "FeliCa check wrong crc | %s\n", (check_crc(CRC_FELICA, felica_w, sizeof(felica_w))) ? "YES" : "NO");
PrintAndLogEx(SUCCESS, "FeliCa check correct crc | %s\n", (check_crc(CRC_FELICA, felica_c, sizeof(felica_c))) ? "YES" : "NO");
2021-01-09 18:50:26 +08:00
PrintAndLogEx(NORMAL, "\n");
2019-04-14 17:43:05 +08:00
2021-01-09 18:50:26 +08:00
return PM3_SUCCESS;
2019-04-14 17:43:05 +08:00
*/
//piwi
// uid(2e086b1a) nt(230736f6) ks(0b0008000804000e) nr(000000000)
// uid(2e086b1a) nt(230736f6) ks(0e0b0e0b090c0d02) nr(000000001)
// uid(2e086b1a) nt(230736f6) ks(0e05060e01080b08) nr(000000002)
//uint64_t d1[] = {0x2e086b1a, 0x230736f6, 0x0000001, 0x0e0b0e0b090c0d02};
//uint64_t d2[] = {0x2e086b1a, 0x230736f6, 0x0000002, 0x0e05060e01080b08};
// uid(17758822) nt(c0c69e59) ks(080105020705040e) nr(00000001)
// uid(17758822) nt(c0c69e59) ks(01070a05050c0705) nr(00000002)
//uint64_t d1[] = {0x17758822, 0xc0c69e59, 0x0000001, 0x080105020705040e};
//uint64_t d2[] = {0x17758822, 0xc0c69e59, 0x0000002, 0x01070a05050c0705};
// uid(6e442129) nt(8f699195) ks(090d0b0305020f02) nr(00000001)
// uid(6e442129) nt(8f699195) ks(03030508030b0c0e) nr(00000002)
// uid(6e442129) nt(8f699195) ks(02010f030c0d050d) nr(00000003)
// uid(6e442129) nt(8f699195) ks(00040f0f0305030e) nr(00000004)
//uint64_t d1[] = {0x6e442129, 0x8f699195, 0x0000001, 0x090d0b0305020f02};
//uint64_t d2[] = {0x6e442129, 0x8f699195, 0x0000004, 0x00040f0f0305030e};
2019-03-10 07:00:59 +08:00
/*
uid(3e172b29) nt(039b7bd2) ks(0c0e0f0505080800) nr(00000001)
uid(3e172b29) nt(039b7bd2) ks(0e06090d03000b0f) nr(00000002)
*/
2019-04-14 17:43:05 +08:00
/*
uint64_t *keylistA = NULL, *keylistB = NULL;
uint32_t keycountA = 0, keycountB = 0;
// uint64_t d1[] = {0x3e172b29, 0x039b7bd2, 0x0000001, 0, 0x0c0e0f0505080800};
// uint64_t d2[] = {0x3e172b29, 0x039b7bd2, 0x0000002, 0, 0x0e06090d03000b0f};
uint64_t d1[] = {0x6e442129, 0x8f699195, 0x0000001, 0, 0x090d0b0305020f02};
uint64_t d2[] = {0x6e442129, 0x8f699195, 0x0000004, 0, 0x00040f0f0305030e};
keycountA = nonce2key(d1[0], d1[1], d1[2], 0, d1[3], d1[4], &keylistA);
keycountB = nonce2key(d2[0], d2[1], d2[2], 0, d2[3], d2[4], &keylistB);
switch (keycountA) {
case 0:
PrintAndLogEx(FAILED, "Key test A failed\n");
break;
case 1:
PrintAndLogEx(SUCCESS, "KEY A | %012" PRIX64 " ", keylistA[0]);
break;
}
switch (keycountB) {
case 0:
PrintAndLogEx(FAILED, "Key test B failed\n");
break;
case 1:
PrintAndLogEx(SUCCESS, "KEY B | %012" PRIX64 " ", keylistB[0]);
break;
}
2019-03-10 06:35:06 +08:00
2019-04-14 17:43:05 +08:00
free(keylistA);
free(keylistB);
*/
2019-03-10 06:35:06 +08:00
// qsort(keylist, keycount, sizeof(*keylist), compare_uint64);
// keycount = intersection(last_keylist, keylist);
/*
uint64_t keys[] = {
0x7b5b8144a32f, 0x76b46ccc461e, 0x03c3c36ea7a2, 0x171414d31961,
0xe2bfc7153eea, 0x48023d1d1985, 0xff7e1a410953, 0x49a3110249d3,
0xe3515546d015, 0x667c2ac86f85, 0x5774a8d5d6a9, 0xe401c2ca602c,
0x3be7e5020a7e, 0x66dbec3cf90b, 0x4e13f1534605, 0x5c172e1e78c9,
0xeafe51411fbf, 0xc579f0fcdd8f, 0x2146a0d745c3, 0xab31ca60171a,
0x3169130a5035, 0xde5e11ea4923, 0x96fe2aeb9924, 0x828b61e6fcba,
0x8211b0607367, 0xe2936b320f76, 0xaff501e84378, 0x82b31cedb21b,
0xb725d31d4cd3, 0x3b984145b2f1, 0x3b4adb3e82ba, 0x8779075210fe
};
uint64_t keya[] = {
0x7b5b8144a32f, 0x76b46ccc461e, 0x03c3c36ea7a2, 0x171414d31961,
0xe2bfc7153eea, 0x48023d1d1985, 0xff7e1a410953, 0x49a3110249d3,
0xe3515546d015, 0x667c2ac86f85, 0x5774a8d5d6a9, 0xe401c2ca602c,
0x3be7e5020a7e, 0x66dbec3cf90b, 0x4e13f1534605, 0x5c172e1e78c9
};
uint64_t keyb[] = {
0xeafe51411fbf, 0xc579f0fcdd8f, 0x2146a0d745c3, 0xab31ca60171a,
0x3169130a5035, 0xde5e11ea4923, 0x96fe2aeb9924, 0x828b61e6fcba,
0x8211b0607367, 0xe2936b320f76, 0xaff501e84378, 0x82b31cedb21b,
0xb725d31d4cd3, 0x3b984145b2f1, 0x3b4adb3e82ba, 0x8779075210fe
};
*/
/*
uint64_t xor[] = {
0x0DEFED88E531, 0x7577AFA2E1BC, 0x14D7D7BDBEC3, 0xF5ABD3C6278B,
0xAABDFA08276F, 0xB77C275C10D6, 0xB6DD0B434080, 0xAAF2444499C6,
0x852D7F8EBF90, 0x3108821DB92C, 0xB3756A1FB685, 0xDFE627C86A52,
0x5D3C093EF375, 0x28C81D6FBF0E, 0x1204DF4D3ECC, 0xB6E97F5F6776,
0x2F87A1BDC230, 0xE43F502B984C, 0x8A776AB752D9, 0x9A58D96A472F,
0xEF3702E01916, 0x48A03B01D007, 0x14754B0D659E, 0x009AD1868FDD,
0x6082DB527C11, 0x4D666ADA4C0E, 0x2D461D05F163, 0x3596CFF0FEC8,
0x8CBD9258FE22, 0x00D29A7B304B, 0xBC33DC6C9244
};
uint64_t xorA[] = {
0x0DEFED88E531, 0x7577AFA2E1BC, 0x14D7D7BDBEC3, 0xF5ABD3C6278B,
0xAABDFA08276F, 0xB77C275C10D6, 0xB6DD0B434080, 0xAAF2444499C6,
0x852D7F8EBF90, 0x3108821DB92C, 0xB3756A1FB685, 0xDFE627C86A52,
0x5D3C093EF375, 0x28C81D6FBF0E, 0x1204DF4D3ECC
};
uint64_t xorB[] = {
0x2F87A1BDC230, 0xE43F502B984C, 0x8A776AB752D9, 0x9A58D96A472F,
0xEF3702E01916, 0x48A03B01D007, 0x14754B0D659E, 0x009AD1868FDD,
0x6082DB527C11, 0x4D666ADA4C0E, 0x2D461D05F163, 0x3596CFF0FEC8,
0x8CBD9258FE22, 0x00D29A7B304B, 0xBC33DC6C9244
};
*/
/*
// xor key A | xor key B
1 | 0DEFED88E531 | 2F87A1BDC230
2 | 7577AFA2E1BC | E43F502B984C
3 | 14D7D7BDBEC3 | 8A776AB752D9
4 | F5ABD3C6278B | 9A58D96A472F
5 | AABDFA08276F | EF3702E01916
6 | B77C275C10D6 | 48A03B01D007
7 | B6DD0B434080 | 14754B0D659E
8 | AAF2444499C6 | 009AD1868FDD
9 | 852D7F8EBF90 | 6082DB527C11
10 | 3108821DB92C | 4D666ADA4C0E
11 | B3756A1FB685 | 2D461D05F163
12 | DFE627C86A52 | 3596CFF0FEC8
13 | 5D3C093EF375 | 8CBD9258FE22
14 | 28C81D6FBF0E | 00D29A7B304B
15 | 1204DF4D3ECC | BC33DC6C9244
*/
// generate xor table :)
/*
for (uint8_t i=0; i<31; i++){
uint64_t a = keys[i] ^ keys[i+1];
2021-01-09 18:50:26 +08:00
PrintAndLogEx(INFO, "%u | %012" PRIX64 " | \n", i, a);
2019-03-10 06:35:06 +08:00
}
*/
/*
uint32_t id = param_get32ex(Cmd, 0, 0x93290142, 16);
uint8_t uid[6] = {0};
num_to_bytes(id,4,uid);
uint8_t key_s0a[] = {
uid[1] ^ uid[2] ^ uid[3] ^ 0x11,
uid[1] ^ 0x72,
uid[2] ^ 0x80,
(uid[0] + uid[1] + uid[2] + uid[3] ) ^ uid[3] ^ 0x19,
0xA3,
0x2F
};
2021-01-09 18:50:26 +08:00
PrintAndLogEx(INFO, "UID | %s\n", sprint_hex(uid,4 ));
PrintAndLogEx(INFO, "KEY A | %s\n", sprint_hex(key_s0a, 6));
2019-03-10 06:35:06 +08:00
// arrays w all keys
uint64_t foo[32] = {0};
//A
foo[0] = bytes_to_num(key_s0a, 6);
//B
//foo[16] = 0xcafe71411fbf;
foo[16] = 0xeafe51411fbf;
for (uint8_t i=0; i<15; i++){
foo[i+1] = foo[i] ^ xorA[i];
foo[i+16+1] = foo[i+16] ^ xorB[i];
}
for (uint8_t i=0; i<15; i++){
uint64_t a = foo[i];
uint64_t b = foo[i+16];
2021-01-09 18:50:26 +08:00
PrintAndLogEx(INFO, "%02u | %012" PRIX64 " %s | %012" PRIX64 " %s\n",
2019-03-10 06:35:06 +08:00
i,
a,
( a == keya[i])?"ok":"err",
b,
( b == keyb[i])?"ok":"err"
);
}
*/
2021-01-09 18:50:26 +08:00
// return PM3_SUCCESS;
}
static int CmdAnalyseNuid(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "analyse nuid",
"Generate 4byte NUID from 7byte UID",
"analyse nuid -d 11223344556677"
);
void *argtable[] = {
arg_param_begin,
arg_str0("d", "data", "<hex>", "bytes to send"),
arg_lit0("t", "test", "self test"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
int uidlen = 0;
2019-03-10 06:35:06 +08:00
uint8_t uid[7] = {0};
int res = CLIParamHexToBuf(arg_get_str(ctx, 1), uid, sizeof(uid), &uidlen);
bool selftest = arg_get_lit(ctx, 2);
CLIParserFree(ctx);
2021-01-14 18:39:45 +08:00
if (res) {
PrintAndLogEx(FAILED, "Error parsing bytes");
return PM3_EINVARG;
}
uint8_t nuid[4] = {0};
2019-03-10 06:35:06 +08:00
/* src: https://www.nxp.com/docs/en/application-note/AN10927.pdf */
/* selftest1 UID 040D681AB52281 -> NUID 8F430FEF */
/* selftest2 UID 04183F09321B85 -> NUID 4F505D7D */
if (selftest) {
2019-03-25 06:36:45 +08:00
uint8_t uid_test1[] = {0x04, 0x0d, 0x68, 0x1a, 0xb5, 0x22, 0x81};
uint8_t nuid_test1[] = {0x8f, 0x43, 0x0f, 0xef};
uint8_t uid_test2[] = {0x04, 0x18, 0x3f, 0x09, 0x32, 0x1b, 0x85};
uint8_t nuid_test2[] = {0x4f, 0x50, 0x5d, 0x7d};
memcpy(uid, uid_test1, sizeof(uid));
mfc_generate4b_nuid(uid, nuid);
2019-03-10 06:35:06 +08:00
PrintAndLogEx(INFO, "Self tests");
2019-03-25 06:36:45 +08:00
bool test1 = (0 == memcmp(nuid, nuid_test1, sizeof(nuid)));
PrintAndLogEx((test1) ? SUCCESS : FAILED, "1. %s -> %s ( %s )"
2021-01-14 18:39:45 +08:00
, sprint_hex_inrow(uid_test1, sizeof(uid_test1))
, sprint_hex(nuid, sizeof(nuid))
, test1 ? _GREEN_("ok") : _RED_("fail")
);
2019-03-10 06:35:06 +08:00
2019-03-25 06:36:45 +08:00
memcpy(uid, uid_test2, sizeof(uid));
mfc_generate4b_nuid(uid, nuid);
2019-03-25 06:36:45 +08:00
bool test2 = (0 == memcmp(nuid, nuid_test2, sizeof(nuid)));
PrintAndLogEx((test2) ? SUCCESS : FAILED, "2. %s -> %s ( %s )\n"
2021-01-14 18:39:45 +08:00
, sprint_hex_inrow(uid_test2, sizeof(uid_test2))
, sprint_hex(nuid, sizeof(nuid))
, test2 ? _GREEN_("ok") : _RED_("fail")
);
return PM3_SUCCESS;
2019-03-10 06:35:06 +08:00
}
if (uidlen != 7) {
PrintAndLogEx(FAILED, "Error parsing bytes");
return PM3_EINVARG;
}
2019-03-10 06:35:06 +08:00
mfc_generate4b_nuid(uid, nuid);
2019-03-10 06:35:06 +08:00
PrintAndLogEx(INFO, "UID | %s \n", sprint_hex(uid, 7));
PrintAndLogEx(INFO, "NUID | %s \n", sprint_hex(nuid, 4));
return PM3_SUCCESS;
}
static int CmdAnalyseDemodBuffer(const char *Cmd) {
2021-01-09 19:32:50 +08:00
CLIParserContext *ctx;
CLIParserInit(&ctx, "analyse demodbuff",
"loads a binary string into demod buffer",
"analyse demodbuff -d 0011101001001011"
);
2021-01-09 19:32:50 +08:00
void *argtable[] = {
arg_param_begin,
arg_str1("d", "data", "<bin>", "binary string to load"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
const char *s = arg_get_str(ctx, 1)->sval[0];
CLIParserFree(ctx);
2021-01-14 18:39:45 +08:00
2021-01-09 19:32:50 +08:00
if (s == NULL) {
PrintAndLogEx(FAILED, "Must provide a binary string");
return PM3_EINVARG;
}
2021-01-09 19:32:50 +08:00
int len = MIN(strlen(s), MAX_DEMOD_BUF_LEN);
// add 1 for null terminator.
uint8_t *data = calloc(len + 1, sizeof(uint8_t));
2021-01-09 19:32:50 +08:00
if (data == NULL)
return PM3_EMALLOC;
2021-01-09 19:32:50 +08:00
for (int i = 0; i <= strlen(s); i++) {
char c = s[i];
if (c == '1')
2019-10-13 06:48:26 +08:00
DemodBuffer[i] = 1;
if (c == '0')
2019-10-13 06:48:26 +08:00
DemodBuffer[i] = 0;
2020-08-29 17:31:03 +08:00
PrintAndLogEx(NORMAL, "%c" NOLF, c);
}
2020-08-29 17:31:03 +08:00
PrintAndLogEx(NORMAL, "");
DemodBufferLen = len;
free(data);
PrintAndLogEx(HINT, "Use `" _YELLOW_("data print") "` to view demod buffer");
return PM3_SUCCESS;
}
2020-08-29 17:31:03 +08:00
static int CmdAnalyseFreq(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "analyse freq",
"calc wave lengths",
"analyse freq"
);
2020-08-29 17:31:03 +08:00
void *argtable[] = {
arg_param_begin,
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
CLIParserFree(ctx);
2020-08-29 17:31:03 +08:00
const double c = 299792458;
double len_125 = c / 125000;
double len_134 = c / 134000;
double len_1356 = c / 13560000;
double rf_range_125 = len_125 / (M_PI * 2);
double rf_range_134 = len_134 / (M_PI * 2);
double rf_range_1356 = len_1356 / (M_PI * 2);
2020-08-29 17:31:03 +08:00
PrintAndLogEx(INFO, "Wavelengths");
PrintAndLogEx(INFO, " 125 kHz has %f m, rf range %f m", len_125, rf_range_125);
PrintAndLogEx(INFO, " 134 kHz has %f m, rf range %f m", len_134, rf_range_134);
PrintAndLogEx(INFO, " 13.56 mHz has %f m, rf range %f m", len_1356, rf_range_1356);
return PM3_SUCCESS;
}
static int CmdAnalyseFoo(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "analyze foo",
"experiments of cliparse",
"analyse foo -r a0000000a0002021"
2021-01-14 18:39:45 +08:00
);
void *argtable[] = {
arg_param_begin,
arg_strx0("r", "raw", "<hex>", "raw bytes (strx)"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, false);
// raw param
int datalen = 256;
uint8_t data[256];
CLIGetHexWithReturn(ctx, 1, data, &datalen);
2021-01-14 18:39:45 +08:00
int data3len = 512;
uint8_t data3[512];
CLIGetStrWithReturn(ctx, 1, data3, &data3len);
CLIParserFree(ctx);
PrintAndLogEx(INFO, "-r");
PrintAndLogEx(INFO, "Got: %s", sprint_hex_inrow(data, datalen));
PrintAndLogEx(INFO, "Got: %s", data3);
2021-01-14 18:39:45 +08:00
ClearGraph(false);
GraphTraceLen = 15000;
for (int i = 0; i < 4095; i++) {
int o = 0;
// 0010 0000
if (i & 0x2000) o |= 0x80; // corr_i_accum[13]
// 0001 1100
if (i & 0x1C00) o |= 0x40; // corr_i_accum[12] | corr_i_accum[11] | corr_i_accum[10]
// 0000 1110
if (i & 0x0E00) o |= 0x20; // corr_i_accum[12] | corr_i_accum[11] | corr_i_accum[9],
o |= (i & 0x1F0) >> 4; // corr_i_accum[8:4]
GraphBuffer[i] = o;
}
for (int i = 0; i < 4095; i++) {
int o = 0;
// Send 8 bits of in phase tag signal
//if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111)
if ((i & 0x3800) == 0 || (i & 0x3800) == 0x3800) {
o |= (i & 0xFF0) >> 4; // corr_i_out <= corr_i_accum[11:4];
} else {
// truncate to maximum value
//if (corr_i_accum[13] == 1'b0)
if ((i & 0x2000) == 0) {
o |= 0x7f; // corr_i_out <= 8'b01111111;
}
}
GraphBuffer[i + 5000] = o;
}
for (int i = 0; i < 4095; i++) {
int o = i >> 5;
GraphBuffer[i + 10000] = o;
}
RepaintGraphWindow();
ShowGraphWindow();
2020-08-29 17:31:03 +08:00
return PM3_SUCCESS;
}
static command_t CommandTable[] = {
{"help", CmdHelp, AlwaysAvailable, "This help"},
{"lcr", CmdAnalyseLCR, AlwaysAvailable, "Generate final byte for XOR LRC"},
{"crc", CmdAnalyseCRC, AlwaysAvailable, "Stub method for CRC evaluations"},
{"chksum", CmdAnalyseCHKSUM, AlwaysAvailable, "Checksum with adding, masking and one's complement"},
{"dates", CmdAnalyseDates, AlwaysAvailable, "Look for datestamps in a given array of bytes"},
{"tea", CmdAnalyseTEASelfTest, AlwaysAvailable, "Crypto TEA test"},
{"lfsr", CmdAnalyseLfsr, AlwaysAvailable, "LFSR tests"},
{"a", CmdAnalyseA, AlwaysAvailable, "num bits test"},
{"nuid", CmdAnalyseNuid, AlwaysAvailable, "create NUID from 7byte UID"},
2020-09-07 16:39:15 +08:00
{"demodbuff", CmdAnalyseDemodBuffer, AlwaysAvailable, "Load binary string to demodbuffer"},
2020-08-29 17:31:03 +08:00
{"freq", CmdAnalyseFreq, AlwaysAvailable, "Calc wave lengths"},
{"foo", CmdAnalyseFoo, AlwaysAvailable, "muxer"},
{NULL, NULL, NULL, NULL}
};
static int CmdHelp(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
CmdsHelp(CommandTable);
2019-03-10 06:35:06 +08:00
return 0;
}
int CmdAnalyse(const char *Cmd) {
clearCommandBuffer();
2019-04-19 06:47:51 +08:00
return CmdsParse(CommandTable, Cmd);
}