2010-02-23 03:29:05 +08:00
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// Jonathan Westhues, April 2006
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
module hi_read_rx_xcorr(
|
|
|
|
pck0, ck_1356meg, ck_1356megb,
|
|
|
|
pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
|
|
|
|
adc_d, adc_clk,
|
|
|
|
ssp_frame, ssp_din, ssp_dout, ssp_clk,
|
|
|
|
cross_hi, cross_lo,
|
|
|
|
dbg,
|
|
|
|
xcorr_is_848, snoop, xcorr_quarter_freq
|
|
|
|
);
|
|
|
|
input pck0, ck_1356meg, ck_1356megb;
|
|
|
|
output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
|
|
|
|
input [7:0] adc_d;
|
|
|
|
output adc_clk;
|
|
|
|
input ssp_dout;
|
|
|
|
output ssp_frame, ssp_din, ssp_clk;
|
|
|
|
input cross_hi, cross_lo;
|
|
|
|
output dbg;
|
|
|
|
input xcorr_is_848, snoop, xcorr_quarter_freq;
|
|
|
|
|
|
|
|
// Carrier is steady on through this, unless we're snooping.
|
|
|
|
assign pwr_hi = ck_1356megb & (~snoop);
|
|
|
|
assign pwr_oe1 = 1'b0;
|
|
|
|
assign pwr_oe2 = 1'b0;
|
|
|
|
assign pwr_oe3 = 1'b0;
|
|
|
|
assign pwr_oe4 = 1'b0;
|
|
|
|
|
|
|
|
reg ssp_clk;
|
|
|
|
reg ssp_frame;
|
|
|
|
|
|
|
|
reg fc_div_2;
|
|
|
|
always @(posedge ck_1356meg)
|
|
|
|
fc_div_2 = ~fc_div_2;
|
|
|
|
|
|
|
|
reg fc_div_4;
|
|
|
|
always @(posedge fc_div_2)
|
|
|
|
fc_div_4 = ~fc_div_4;
|
|
|
|
|
|
|
|
reg fc_div_8;
|
|
|
|
always @(posedge fc_div_4)
|
|
|
|
fc_div_8 = ~fc_div_8;
|
|
|
|
|
|
|
|
reg adc_clk;
|
|
|
|
|
|
|
|
always @(xcorr_is_848 or xcorr_quarter_freq or ck_1356meg)
|
|
|
|
if(~xcorr_quarter_freq)
|
|
|
|
begin
|
|
|
|
if(xcorr_is_848)
|
|
|
|
// The subcarrier frequency is fc/16; we will sample at fc, so that
|
|
|
|
// means the subcarrier is 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 ...
|
|
|
|
adc_clk <= ck_1356meg;
|
|
|
|
else
|
|
|
|
// The subcarrier frequency is fc/32; we will sample at fc/2, and
|
|
|
|
// the subcarrier will look identical.
|
|
|
|
adc_clk <= fc_div_2;
|
|
|
|
end
|
|
|
|
else
|
|
|
|
begin
|
|
|
|
if(xcorr_is_848)
|
|
|
|
// The subcarrier frequency is fc/64
|
|
|
|
adc_clk <= fc_div_4;
|
|
|
|
else
|
|
|
|
// The subcarrier frequency is fc/128
|
|
|
|
adc_clk <= fc_div_8;
|
|
|
|
end
|
|
|
|
|
|
|
|
// When we're a reader, we just need to do the BPSK demod; but when we're an
|
|
|
|
// eavesdropper, we also need to pick out the commands sent by the reader,
|
|
|
|
// using AM. Do this the same way that we do it for the simulated tag.
|
|
|
|
reg after_hysteresis, after_hysteresis_prev;
|
|
|
|
reg [11:0] has_been_low_for;
|
|
|
|
always @(negedge adc_clk)
|
|
|
|
begin
|
|
|
|
if(& adc_d[7:0]) after_hysteresis <= 1'b1;
|
|
|
|
else if(~(| adc_d[7:0])) after_hysteresis <= 1'b0;
|
|
|
|
|
|
|
|
if(after_hysteresis)
|
|
|
|
begin
|
|
|
|
has_been_low_for <= 7'b0;
|
|
|
|
end
|
|
|
|
else
|
|
|
|
begin
|
|
|
|
if(has_been_low_for == 12'd4095)
|
|
|
|
begin
|
|
|
|
has_been_low_for <= 12'd0;
|
|
|
|
after_hysteresis <= 1'b1;
|
|
|
|
end
|
|
|
|
else
|
|
|
|
has_been_low_for <= has_been_low_for + 1;
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
// Let us report a correlation every 4 subcarrier cycles, or 4*16 samples,
|
|
|
|
// so we need a 6-bit counter.
|
|
|
|
reg [5:0] corr_i_cnt;
|
|
|
|
reg [5:0] corr_q_cnt;
|
|
|
|
// And a couple of registers in which to accumulate the correlations.
|
|
|
|
reg signed [15:0] corr_i_accum;
|
|
|
|
reg signed [15:0] corr_q_accum;
|
|
|
|
reg signed [7:0] corr_i_out;
|
|
|
|
reg signed [7:0] corr_q_out;
|
|
|
|
|
|
|
|
// ADC data appears on the rising edge, so sample it on the falling edge
|
|
|
|
always @(negedge adc_clk)
|
|
|
|
begin
|
|
|
|
// These are the correlators: we correlate against in-phase and quadrature
|
|
|
|
// versions of our reference signal, and keep the (signed) result to
|
|
|
|
// send out later over the SSP.
|
|
|
|
if(corr_i_cnt == 7'd63)
|
|
|
|
begin
|
|
|
|
if(snoop)
|
|
|
|
begin
|
|
|
|
corr_i_out <= {corr_i_accum[12:6], after_hysteresis_prev};
|
|
|
|
corr_q_out <= {corr_q_accum[12:6], after_hysteresis};
|
|
|
|
end
|
|
|
|
else
|
|
|
|
begin
|
|
|
|
// Only correlations need to be delivered.
|
|
|
|
corr_i_out <= corr_i_accum[13:6];
|
|
|
|
corr_q_out <= corr_q_accum[13:6];
|
|
|
|
end
|
|
|
|
|
|
|
|
corr_i_accum <= adc_d;
|
|
|
|
corr_q_accum <= adc_d;
|
|
|
|
corr_q_cnt <= 4;
|
|
|
|
corr_i_cnt <= 0;
|
|
|
|
end
|
|
|
|
else
|
|
|
|
begin
|
|
|
|
if(corr_i_cnt[3])
|
|
|
|
corr_i_accum <= corr_i_accum - adc_d;
|
|
|
|
else
|
|
|
|
corr_i_accum <= corr_i_accum + adc_d;
|
|
|
|
|
|
|
|
if(corr_q_cnt[3])
|
|
|
|
corr_q_accum <= corr_q_accum - adc_d;
|
|
|
|
else
|
|
|
|
corr_q_accum <= corr_q_accum + adc_d;
|
|
|
|
|
|
|
|
corr_i_cnt <= corr_i_cnt + 1;
|
|
|
|
corr_q_cnt <= corr_q_cnt + 1;
|
|
|
|
end
|
|
|
|
|
|
|
|
// The logic in hi_simulate.v reports 4 samples per bit. We report two
|
|
|
|
// (I, Q) pairs per bit, so we should do 2 samples per pair.
|
|
|
|
if(corr_i_cnt == 6'd31)
|
|
|
|
after_hysteresis_prev <= after_hysteresis;
|
|
|
|
|
|
|
|
// Then the result from last time is serialized and send out to the ARM.
|
|
|
|
// We get one report each cycle, and each report is 16 bits, so the
|
|
|
|
// ssp_clk should be the adc_clk divided by 64/16 = 4.
|
|
|
|
|
|
|
|
if(corr_i_cnt[1:0] == 2'b10)
|
|
|
|
ssp_clk <= 1'b0;
|
|
|
|
|
|
|
|
if(corr_i_cnt[1:0] == 2'b00)
|
|
|
|
begin
|
|
|
|
ssp_clk <= 1'b1;
|
|
|
|
// Don't shift if we just loaded new data, obviously.
|
|
|
|
if(corr_i_cnt != 7'd0)
|
|
|
|
begin
|
|
|
|
corr_i_out[7:0] <= {corr_i_out[6:0], corr_q_out[7]};
|
|
|
|
corr_q_out[7:1] <= corr_q_out[6:0];
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
if(corr_i_cnt[5:2] == 4'b000 || corr_i_cnt[5:2] == 4'b1000)
|
|
|
|
ssp_frame = 1'b1;
|
|
|
|
else
|
|
|
|
ssp_frame = 1'b0;
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
assign ssp_din = corr_i_out[7];
|
|
|
|
|
|
|
|
assign dbg = corr_i_cnt[3];
|
|
|
|
|
|
|
|
// Unused.
|
|
|
|
assign pwr_lo = 1'b0;
|
|
|
|
|
|
|
|
endmodule
|