proxmark3/armsrc/appmain.c

1058 lines
28 KiB
C
Raw Normal View History

//-----------------------------------------------------------------------------
// Jonathan Westhues, Mar 2006
// Edits by Gerhard de Koning Gans, Sep 2007 (##)
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// The main application code. This is the first thing called after start.c
// executes.
//-----------------------------------------------------------------------------
#include "usb_cdc.h"
#include "cmd.h"
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
2010-02-21 08:10:28 +08:00
#include "printf.h"
#include "string.h"
2010-02-21 08:10:28 +08:00
#include <stdarg.h>
#include "legicrf.h"
#include <hitag2.h>
#include "lfsampling.h"
#include "BigBuf.h"
#ifdef WITH_LCD
2012-12-05 07:39:18 +08:00
#include "LCD.h"
#endif
#define abs(x) ( ((x)<0) ? -(x) : (x) )
//=============================================================================
// A buffer where we can queue things up to be sent through the FPGA, for
// any purpose (fake tag, as reader, whatever). We go MSB first, since that
// is the order in which they go out on the wire.
//=============================================================================
#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
uint8_t ToSend[TOSEND_BUFFER_SIZE];
int ToSendMax;
static int ToSendBit;
struct common_area common_area __attribute__((section(".commonarea")));
void ToSendReset(void)
{
ToSendMax = -1;
ToSendBit = 8;
}
void ToSendStuffBit(int b)
{
if(ToSendBit >= 8) {
ToSendMax++;
ToSend[ToSendMax] = 0;
ToSendBit = 0;
}
if(b) {
ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
}
ToSendBit++;
if(ToSendMax >= sizeof(ToSend)) {
ToSendBit = 0;
DbpString("ToSendStuffBit overflowed!");
}
}
//=============================================================================
// Debug print functions, to go out over USB, to the usual PC-side client.
//=============================================================================
void DbpString(char *str)
{
2012-12-09 21:00:19 +08:00
byte_t len = strlen(str);
cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
}
#if 0
void DbpIntegers(int x1, int x2, int x3)
{
2012-12-05 07:39:18 +08:00
cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
}
#endif
void Dbprintf(const char *fmt, ...) {
// should probably limit size here; oh well, let's just use a big buffer
char output_string[128];
va_list ap;
va_start(ap, fmt);
kvsprintf(fmt, output_string, 10, ap);
va_end(ap);
DbpString(output_string);
}
// prints HEX & ASCII
void Dbhexdump(int len, uint8_t *d, bool bAsci) {
int l=0,i;
char ascii[9];
while (len>0) {
if (len>8) l=8;
else l=len;
memcpy(ascii,d,l);
ascii[l]=0;
// filter safe ascii
for (i=0;i<l;i++)
if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
if (bAsci) {
Dbprintf("%-8s %*D",ascii,l,d," ");
} else {
Dbprintf("%*D",l,d," ");
}
len-=8;
d+=8;
}
}
//-----------------------------------------------------------------------------
// Read an ADC channel and block till it completes, then return the result
// in ADC units (0 to 1023). Also a routine to average 32 samples and
// return that.
//-----------------------------------------------------------------------------
static int ReadAdc(int ch)
{
uint32_t d;
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
AT91C_BASE_ADC->ADC_MR =
ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
// Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
// Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
// of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
//
// The maths are:
// If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
//
// v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
//
// Note: with the "historic" values in the comments above, the error was 34% !!!
AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
;
d = AT91C_BASE_ADC->ADC_CDR[ch];
return d;
}
int AvgAdc(int ch) // was static - merlok
{
int i;
int a = 0;
for(i = 0; i < 32; i++) {
a += ReadAdc(ch);
}
return (a + 15) >> 5;
}
void MeasureAntennaTuning(void)
{
uint8_t LF_Results[256];
int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
LED_B_ON();
/*
* Sweeps the useful LF range of the proxmark from
* 46.8kHz (divisor=255) to 600kHz (divisor=19) and
* read the voltage in the antenna, the result left
* in the buffer is a graph which should clearly show
* the resonating frequency of your LF antenna
* ( hopefully around 95 if it is tuned to 125kHz!)
*/
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
for (i=255; i>=19; i--) {
WDT_HIT();
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
SpinDelay(20);
adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
if (i==95) vLf125 = adcval; // voltage at 125Khz
if (i==89) vLf134 = adcval; // voltage at 134Khz
LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
if(LF_Results[i] > peak) {
peakv = adcval;
peak = LF_Results[i];
peakf = i;
//ptr = i;
}
}
for (i=18; i >= 0; i--) LF_Results[i] = 0;
LED_A_ON();
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(20);
vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_A_OFF();
LED_B_OFF();
return;
}
void MeasureAntennaTuningHf(void)
{
int vHf = 0; // in mV
DbpString("Measuring HF antenna, press button to exit");
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
for (;;) {
SpinDelay(20);
vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
Dbprintf("%d mV",vHf);
if (BUTTON_PRESS()) break;
}
DbpString("cancelled");
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
void ReadMem(int addr)
{
const uint8_t *data = ((uint8_t *)addr);
Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
}
/* osimage version information is linked in */
extern struct version_information version_information;
/* bootrom version information is pointed to from _bootphase1_version_pointer */
2015-06-25 18:22:34 +08:00
extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
void SendVersion(void)
{
2015-06-25 18:22:34 +08:00
char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
/* Try to find the bootrom version information. Expect to find a pointer at
* symbol _bootphase1_version_pointer, perform slight sanity checks on the
* pointer, then use it.
*/
char *bootrom_version = *(char**)&_bootphase1_version_pointer;
if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
2015-06-25 18:22:34 +08:00
strcat(VersionString, "bootrom version information appears invalid\n");
} else {
FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
2015-06-25 18:22:34 +08:00
strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
}
FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
2015-06-25 18:22:34 +08:00
strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
2015-06-25 18:22:34 +08:00
FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
// Send Chip ID and used flash memory
uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
uint32_t compressed_data_section_size = common_area.arg1;
cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
}
#ifdef WITH_LF
// samy's sniff and repeat routine
void SamyRun()
{
DbpString("Stand-alone mode! No PC necessary.");
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
// 3 possible options? no just 2 for now
#define OPTS 2
int high[OPTS], low[OPTS];
// Oooh pretty -- notify user we're in elite samy mode now
LED(LED_RED, 200);
LED(LED_ORANGE, 200);
LED(LED_GREEN, 200);
LED(LED_ORANGE, 200);
LED(LED_RED, 200);
LED(LED_ORANGE, 200);
LED(LED_GREEN, 200);
LED(LED_ORANGE, 200);
LED(LED_RED, 200);
int selected = 0;
int playing = 0;
int cardRead = 0;
// Turn on selected LED
LED(selected + 1, 0);
for (;;)
{
2012-12-06 00:14:10 +08:00
usb_poll();
WDT_HIT();
// Was our button held down or pressed?
int button_pressed = BUTTON_HELD(1000);
SpinDelay(300);
// Button was held for a second, begin recording
if (button_pressed > 0 && cardRead == 0)
{
LEDsoff();
LED(selected + 1, 0);
LED(LED_RED2, 0);
// record
DbpString("Starting recording");
// wait for button to be released
while(BUTTON_PRESS())
WDT_HIT();
/* need this delay to prevent catching some weird data */
SpinDelay(500);
CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
LEDsoff();
LED(selected + 1, 0);
// Finished recording
// If we were previously playing, set playing off
// so next button push begins playing what we recorded
playing = 0;
cardRead = 1;
}
else if (button_pressed > 0 && cardRead == 1)
{
LEDsoff();
LED(selected + 1, 0);
LED(LED_ORANGE, 0);
// record
Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
// wait for button to be released
while(BUTTON_PRESS())
WDT_HIT();
/* need this delay to prevent catching some weird data */
SpinDelay(500);
CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
LEDsoff();
LED(selected + 1, 0);
// Finished recording
// If we were previously playing, set playing off
// so next button push begins playing what we recorded
playing = 0;
cardRead = 0;
}
// Change where to record (or begin playing)
else if (button_pressed)
{
// Next option if we were previously playing
if (playing)
selected = (selected + 1) % OPTS;
playing = !playing;
LEDsoff();
LED(selected + 1, 0);
// Begin transmitting
if (playing)
{
LED(LED_GREEN, 0);
DbpString("Playing");
// wait for button to be released
while(BUTTON_PRESS())
WDT_HIT();
Dbprintf("%x %x %x", selected, high[selected], low[selected]);
CmdHIDsimTAG(high[selected], low[selected], 0);
DbpString("Done playing");
if (BUTTON_HELD(1000) > 0)
{
DbpString("Exiting");
LEDsoff();
return;
}
/* We pressed a button so ignore it here with a delay */
SpinDelay(300);
// when done, we're done playing, move to next option
selected = (selected + 1) % OPTS;
playing = !playing;
LEDsoff();
LED(selected + 1, 0);
}
else
while(BUTTON_PRESS())
WDT_HIT();
}
}
}
#endif
/*
OBJECTIVE
Listen and detect an external reader. Determine the best location
for the antenna.
INSTRUCTIONS:
Inside the ListenReaderField() function, there is two mode.
By default, when you call the function, you will enter mode 1.
If you press the PM3 button one time, you will enter mode 2.
If you press the PM3 button a second time, you will exit the function.
DESCRIPTION OF MODE 1:
This mode just listens for an external reader field and lights up green
for HF and/or red for LF. This is the original mode of the detectreader
function.
DESCRIPTION OF MODE 2:
This mode will visually represent, using the LEDs, the actual strength of the
current compared to the maximum current detected. Basically, once you know
what kind of external reader is present, it will help you spot the best location to place
your antenna. You will probably not get some good results if there is a LF and a HF reader
at the same place! :-)
LIGHT SCHEME USED:
*/
static const char LIGHT_SCHEME[] = {
0x0, /* ---- | No field detected */
0x1, /* X--- | 14% of maximum current detected */
0x2, /* -X-- | 29% of maximum current detected */
0x4, /* --X- | 43% of maximum current detected */
0x8, /* ---X | 57% of maximum current detected */
0xC, /* --XX | 71% of maximum current detected */
0xE, /* -XXX | 86% of maximum current detected */
0xF, /* XXXX | 100% of maximum current detected */
};
static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
void ListenReaderField(int limit)
{
int lf_av, lf_av_new, lf_baseline= 0, lf_max;
int hf_av, hf_av_new, hf_baseline= 0, hf_max;
int mode=1, display_val, display_max, i;
#define LF_ONLY 1
#define HF_ONLY 2
#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
// switch off FPGA - we don't want to measure our own signal
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
if(limit != HF_ONLY) {
Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
lf_baseline = lf_av;
}
hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
if (limit != LF_ONLY) {
Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
hf_baseline = hf_av;
}
for(;;) {
if (BUTTON_PRESS()) {
SpinDelay(500);
switch (mode) {
case 1:
mode=2;
DbpString("Signal Strength Mode");
break;
case 2:
default:
DbpString("Stopped");
LEDsoff();
return;
break;
}
}
WDT_HIT();
if (limit != HF_ONLY) {
if(mode == 1) {
if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
LED_D_ON();
else
LED_D_OFF();
}
lf_av_new = AvgAdc(ADC_CHAN_LF);
// see if there's a significant change
if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
lf_av = lf_av_new;
if (lf_av > lf_max)
lf_max = lf_av;
}
}
if (limit != LF_ONLY) {
if (mode == 1){
if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
LED_B_ON();
else
LED_B_OFF();
}
hf_av_new = AvgAdc(ADC_CHAN_HF);
// see if there's a significant change
if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
hf_av = hf_av_new;
if (hf_av > hf_max)
hf_max = hf_av;
}
}
if(mode == 2) {
if (limit == LF_ONLY) {
display_val = lf_av;
display_max = lf_max;
} else if (limit == HF_ONLY) {
display_val = hf_av;
display_max = hf_max;
} else { /* Pick one at random */
if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
display_val = hf_av;
display_max = hf_max;
} else {
display_val = lf_av;
display_max = lf_max;
}
}
for (i=0; i<LIGHT_LEN; i++) {
if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
break;
}
}
}
}
}
void UsbPacketReceived(uint8_t *packet, int len)
{
UsbCommand *c = (UsbCommand *)packet;
2014-09-18 18:38:31 +08:00
//Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
2012-12-05 07:39:18 +08:00
switch(c->cmd) {
#ifdef WITH_LF
case CMD_SET_LF_SAMPLING_CONFIG:
setSamplingConfig((sample_config *) c->d.asBytes);
break;
case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0);
break;
case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
break;
case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
break;
2011-12-16 19:00:51 +08:00
case CMD_HID_DEMOD_FSK:
CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
2011-12-16 19:00:51 +08:00
break;
case CMD_HID_SIM_TAG:
CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
2011-12-16 19:00:51 +08:00
break;
case CMD_FSK_SIM_TAG:
CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_ASK_SIM_TAG:
CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
2015-02-22 10:36:02 +08:00
case CMD_PSK_SIM_TAG:
CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_HID_CLONE_TAG:
2013-07-09 01:56:05 +08:00
CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
2011-12-16 19:00:51 +08:00
break;
2014-03-19 04:52:48 +08:00
case CMD_IO_DEMOD_FSK:
CmdIOdemodFSK(c->arg[0], 0, 0, 1);
2014-03-19 04:52:48 +08:00
break;
case CMD_IO_CLONE_TAG:
2014-03-19 04:52:48 +08:00
CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
break;
case CMD_EM410X_DEMOD:
CmdEM410xdemod(c->arg[0], 0, 0, 1);
break;
case CMD_EM410X_WRITE_TAG:
WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
break;
2011-12-16 19:00:51 +08:00
case CMD_READ_TI_TYPE:
ReadTItag();
break;
case CMD_WRITE_TI_TYPE:
WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
break;
case CMD_SIMULATE_TAG_125K:
2015-05-05 06:34:20 +08:00
LED_A_ON();
SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
LED_A_OFF();
2011-12-16 19:00:51 +08:00
break;
case CMD_LF_SIMULATE_BIDIR:
SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
break;
case CMD_INDALA_CLONE_TAG:
CopyIndala64toT55x7(c->arg[0], c->arg[1]);
break;
case CMD_INDALA_CLONE_TAG_L:
CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
break;
2013-07-09 01:56:05 +08:00
case CMD_T55XX_READ_BLOCK:
T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
break;
case CMD_T55XX_WRITE_BLOCK:
T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
break;
case CMD_T55XX_READ_TRACE:
2013-07-09 01:56:05 +08:00
T55xxReadTrace();
break;
case CMD_PCF7931_READ:
2013-07-09 01:56:05 +08:00
ReadPCF7931();
cmd_send(CMD_ACK,0,0,0,0,0);
break;
case CMD_EM4X_READ_WORD:
EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
break;
case CMD_EM4X_WRITE_WORD:
EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
break;
#endif
#ifdef WITH_HITAG
case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
SnoopHitag(c->arg[0]);
break;
case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
break;
case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
break;
#endif
#ifdef WITH_ISO15693
case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
AcquireRawAdcSamplesIso15693();
break;
case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
RecordRawAdcSamplesIso15693();
break;
case CMD_ISO_15693_COMMAND:
DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
break;
case CMD_ISO_15693_FIND_AFI:
BruteforceIso15693Afi(c->arg[0]);
break;
case CMD_ISO_15693_DEBUG:
SetDebugIso15693(c->arg[0]);
break;
case CMD_READER_ISO_15693:
ReaderIso15693(c->arg[0]);
break;
2011-12-16 19:00:51 +08:00
case CMD_SIMTAG_ISO_15693:
SimTagIso15693(c->arg[0], c->d.asBytes);
2011-12-16 19:00:51 +08:00
break;
#endif
2011-12-16 19:00:51 +08:00
#ifdef WITH_LEGICRF
case CMD_SIMULATE_TAG_LEGIC_RF:
LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
break;
2010-05-06 19:24:01 +08:00
2011-12-16 19:00:51 +08:00
case CMD_WRITER_LEGIC_RF:
LegicRfWriter(c->arg[1], c->arg[0]);
break;
2010-05-06 19:24:01 +08:00
case CMD_READER_LEGIC_RF:
LegicRfReader(c->arg[0], c->arg[1]);
break;
#endif
#ifdef WITH_ISO14443b
case CMD_READ_SRI512_TAG:
2015-06-18 15:52:53 +08:00
ReadSTMemoryIso14443b(0x0F);
break;
2011-12-16 19:00:51 +08:00
case CMD_READ_SRIX4K_TAG:
2015-06-18 15:52:53 +08:00
ReadSTMemoryIso14443b(0x7F);
2011-12-16 19:00:51 +08:00
break;
case CMD_SNOOP_ISO_14443B:
2015-06-18 15:52:53 +08:00
SnoopIso14443b();
2011-12-16 19:00:51 +08:00
break;
case CMD_SIMULATE_TAG_ISO_14443B:
2015-06-18 15:52:53 +08:00
SimulateIso14443bTag();
2011-12-16 19:00:51 +08:00
break;
case CMD_ISO_14443B_COMMAND:
SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
break;
#endif
#ifdef WITH_ISO14443a
2011-12-16 19:00:51 +08:00
case CMD_SNOOP_ISO_14443a:
SniffIso14443a(c->arg[0]);
2011-12-16 19:00:51 +08:00
break;
case CMD_READER_ISO_14443a:
2012-12-05 07:39:18 +08:00
ReaderIso14443a(c);
break;
2011-12-16 19:00:51 +08:00
case CMD_SIMULATE_TAG_ISO_14443a:
SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
2011-12-16 19:00:51 +08:00
break;
case CMD_EPA_PACE_COLLECT_NONCE:
2012-12-05 07:39:18 +08:00
EPA_PACE_Collect_Nonce(c);
break;
case CMD_EPA_PACE_REPLAY:
EPA_PACE_Replay(c);
break;
2011-12-16 19:00:51 +08:00
case CMD_READER_MIFARE:
2013-07-09 01:56:05 +08:00
ReaderMifare(c->arg[0]);
break;
case CMD_MIFARE_READBL:
MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFAREU_READBL:
MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
break;
case CMD_MIFAREUC_AUTH:
MifareUC_Auth(c->arg[0],c->d.asBytes);
2014-09-12 05:23:46 +08:00
break;
case CMD_MIFAREU_READCARD:
2015-05-05 06:34:20 +08:00
MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFAREUC_SETPWD:
MifareUSetPwd(c->arg[0], c->d.asBytes);
break;
case CMD_MIFARE_READSC:
MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_WRITEBL:
MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
//case CMD_MIFAREU_WRITEBL_COMPAT:
//MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
//break;
case CMD_MIFAREU_WRITEBL:
MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
break;
case CMD_MIFARE_NESTED:
MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_CHKKEYS:
MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_SIMULATE_MIFARE_CARD:
Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
// emulator
case CMD_MIFARE_SET_DBGMODE:
MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_EML_MEMCLR:
MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_EML_MEMSET:
MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_EML_MEMGET:
MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_EML_CARDLOAD:
MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
// Work with "magic Chinese" card
case CMD_MIFARE_CSETBLOCK:
MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_CGETBLOCK:
MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_CIDENT:
MifareCIdent();
break;
// mifare sniffer
case CMD_MIFARE_SNIFFER:
SniffMifare(c->arg[0]);
break;
2014-09-18 18:38:31 +08:00
//mifare desfire
case CMD_MIFARE_DESFIRE_READBL: break;
case CMD_MIFARE_DESFIRE_WRITEBL: break;
case CMD_MIFARE_DESFIRE_AUTH1:
MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_MIFARE_DESFIRE_AUTH2:
//MifareDES_Auth2(c->arg[0],c->d.asBytes);
break;
case CMD_MIFARE_DES_READER:
//readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
break;
case CMD_MIFARE_DESFIRE_INFO:
MifareDesfireGetInformation();
break;
case CMD_MIFARE_DESFIRE:
MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
break;
case CMD_MIFARE_COLLECT_NONCES:
2015-04-27 00:06:36 +08:00
MifareCollectNonces(c->arg[0], c->arg[1]);
break;
#endif
2011-12-16 19:00:51 +08:00
#ifdef WITH_ICLASS
// Makes use of ISO14443a FPGA Firmware
case CMD_SNOOP_ICLASS:
SnoopIClass();
break;
case CMD_SIMULATE_TAG_ICLASS:
2014-04-17 15:53:54 +08:00
SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
break;
case CMD_READER_ICLASS:
ReaderIClass(c->arg[0]);
break;
2014-09-12 05:23:46 +08:00
case CMD_READER_ICLASS_REPLAY:
ReaderIClass_Replay(c->arg[0], c->d.asBytes);
break;
case CMD_ICLASS_EML_MEMSET:
emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
break;
#endif
2011-12-16 19:00:51 +08:00
case CMD_BUFF_CLEAR:
BigBuf_Clear();
break;
case CMD_MEASURE_ANTENNA_TUNING:
MeasureAntennaTuning();
break;
case CMD_MEASURE_ANTENNA_TUNING_HF:
MeasureAntennaTuningHf();
break;
case CMD_LISTEN_READER_FIELD:
ListenReaderField(c->arg[0]);
break;
case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(200);
LED_D_OFF(); // LED D indicates field ON or OFF
break;
2013-07-09 01:56:05 +08:00
case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
2012-12-05 07:39:18 +08:00
2013-07-09 01:56:05 +08:00
LED_B_ON();
uint8_t *BigBuf = BigBuf_get_addr();
2013-07-09 01:56:05 +08:00
for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
2013-07-09 01:56:05 +08:00
}
// Trigger a finish downloading signal with an ACK frame
cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
LED_B_OFF();
2013-07-09 01:56:05 +08:00
break;
case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
uint8_t *b = BigBuf_get_addr();
memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
2013-07-09 01:56:05 +08:00
cmd_send(CMD_ACK,0,0,0,0,0);
break;
}
case CMD_READ_MEM:
ReadMem(c->arg[0]);
break;
case CMD_SET_LF_DIVISOR:
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
break;
case CMD_SET_ADC_MUX:
switch(c->arg[0]) {
case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
}
break;
case CMD_VERSION:
SendVersion();
break;
#ifdef WITH_LCD
case CMD_LCD_RESET:
LCDReset();
break;
case CMD_LCD:
LCDSend(c->arg[0]);
break;
#endif
case CMD_SETUP_WRITE:
case CMD_FINISH_WRITE:
2013-07-09 01:56:05 +08:00
case CMD_HARDWARE_RESET:
usb_disable();
SpinDelay(1000);
SpinDelay(1000);
AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
for(;;) {
// We're going to reset, and the bootrom will take control.
}
2013-07-09 01:56:05 +08:00
break;
2013-07-09 01:56:05 +08:00
case CMD_START_FLASH:
if(common_area.flags.bootrom_present) {
common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
}
2013-07-09 01:56:05 +08:00
usb_disable();
AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
for(;;);
2013-07-09 01:56:05 +08:00
break;
case CMD_DEVICE_INFO: {
2012-12-05 07:39:18 +08:00
uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
2013-07-09 01:56:05 +08:00
cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
break;
}
default:
Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
2013-07-09 01:56:05 +08:00
break;
}
}
void __attribute__((noreturn)) AppMain(void)
{
SpinDelay(100);
clear_trace();
if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
/* Initialize common area */
memset(&common_area, 0, sizeof(common_area));
common_area.magic = COMMON_AREA_MAGIC;
common_area.version = 1;
}
common_area.flags.osimage_present = 1;
LED_D_OFF();
LED_C_OFF();
LED_B_OFF();
LED_A_OFF();
// Init USB device
2014-09-18 18:38:31 +08:00
usb_enable();
// The FPGA gets its clock from us from PCK0 output, so set that up.
AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
// PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
AT91C_PMC_PRES_CLK_4;
AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
// Reset SPI
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
// Reset SSC
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
// Load the FPGA image, which we have stored in our flash.
// (the HF version by default)
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
StartTickCount();
2012-12-05 07:39:18 +08:00
#ifdef WITH_LCD
LCDInit();
#endif
2012-12-05 07:39:18 +08:00
byte_t rx[sizeof(UsbCommand)];
size_t rx_len;
for(;;) {
2014-09-18 18:38:31 +08:00
if (usb_poll()) {
rx_len = usb_read(rx,sizeof(UsbCommand));
if (rx_len) {
UsbPacketReceived(rx,rx_len);
}
}
WDT_HIT();
#ifdef WITH_LF
if (BUTTON_HELD(1000) > 0)
SamyRun();
#endif
}
}