proxmark3/common/mbedtls/camellia.h

273 lines
11 KiB
C
Raw Normal View History

2018-11-08 00:05:02 +08:00
/**
* \file camellia.h
*
* \brief Camellia block cipher
*/
/*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: GPL-2.0
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* This file is part of mbed TLS (https://tls.mbed.org)
*/
#ifndef MBEDTLS_CAMELLIA_H
#define MBEDTLS_CAMELLIA_H
#if !defined(MBEDTLS_CONFIG_FILE)
#include "config.h"
#else
#include MBEDTLS_CONFIG_FILE
#endif
#include <stddef.h>
#include <stdint.h>
#define MBEDTLS_CAMELLIA_ENCRYPT 1
#define MBEDTLS_CAMELLIA_DECRYPT 0
#define MBEDTLS_ERR_CAMELLIA_INVALID_KEY_LENGTH -0x0024 /**< Invalid key length. */
#define MBEDTLS_ERR_CAMELLIA_INVALID_INPUT_LENGTH -0x0026 /**< Invalid data input length. */
#define MBEDTLS_ERR_CAMELLIA_HW_ACCEL_FAILED -0x0027 /**< Camellia hardware accelerator failed. */
#ifdef __cplusplus
extern "C" {
#endif
#if !defined(MBEDTLS_CAMELLIA_ALT)
// Regular implementation
//
/**
* \brief CAMELLIA context structure
*/
2019-03-10 07:00:59 +08:00
typedef struct mbedtls_camellia_context {
2018-11-08 00:05:02 +08:00
int nr; /*!< number of rounds */
uint32_t rk[68]; /*!< CAMELLIA round keys */
}
mbedtls_camellia_context;
#else /* MBEDTLS_CAMELLIA_ALT */
#include "camellia_alt.h"
#endif /* MBEDTLS_CAMELLIA_ALT */
/**
* \brief Initialize CAMELLIA context
*
* \param ctx CAMELLIA context to be initialized
*/
2019-03-10 07:00:59 +08:00
void mbedtls_camellia_init(mbedtls_camellia_context *ctx);
2018-11-08 00:05:02 +08:00
/**
* \brief Clear CAMELLIA context
*
* \param ctx CAMELLIA context to be cleared
*/
2019-03-10 07:00:59 +08:00
void mbedtls_camellia_free(mbedtls_camellia_context *ctx);
2018-11-08 00:05:02 +08:00
/**
* \brief CAMELLIA key schedule (encryption)
*
* \param ctx CAMELLIA context to be initialized
* \param key encryption key
* \param keybits must be 128, 192 or 256
*
* \return 0 if successful, or MBEDTLS_ERR_CAMELLIA_INVALID_KEY_LENGTH
*/
2019-03-10 07:00:59 +08:00
int mbedtls_camellia_setkey_enc(mbedtls_camellia_context *ctx, const unsigned char *key,
unsigned int keybits);
2018-11-08 00:05:02 +08:00
/**
* \brief CAMELLIA key schedule (decryption)
*
* \param ctx CAMELLIA context to be initialized
* \param key decryption key
* \param keybits must be 128, 192 or 256
*
* \return 0 if successful, or MBEDTLS_ERR_CAMELLIA_INVALID_KEY_LENGTH
*/
2019-03-10 07:00:59 +08:00
int mbedtls_camellia_setkey_dec(mbedtls_camellia_context *ctx, const unsigned char *key,
unsigned int keybits);
2018-11-08 00:05:02 +08:00
/**
* \brief CAMELLIA-ECB block encryption/decryption
*
* \param ctx CAMELLIA context
* \param mode MBEDTLS_CAMELLIA_ENCRYPT or MBEDTLS_CAMELLIA_DECRYPT
* \param input 16-byte input block
* \param output 16-byte output block
*
* \return 0 if successful
*/
2019-03-10 07:00:59 +08:00
int mbedtls_camellia_crypt_ecb(mbedtls_camellia_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16]);
2018-11-08 00:05:02 +08:00
#if defined(MBEDTLS_CIPHER_MODE_CBC)
/**
* \brief CAMELLIA-CBC buffer encryption/decryption
* Length should be a multiple of the block
* size (16 bytes)
*
* \note Upon exit, the content of the IV is updated so that you can
* call the function same function again on the following
* block(s) of data and get the same result as if it was
* encrypted in one call. This allows a "streaming" usage.
* If on the other hand you need to retain the contents of the
* IV, you should either save it manually or use the cipher
* module instead.
*
* \param ctx CAMELLIA context
* \param mode MBEDTLS_CAMELLIA_ENCRYPT or MBEDTLS_CAMELLIA_DECRYPT
* \param length length of the input data
* \param iv initialization vector (updated after use)
* \param input buffer holding the input data
* \param output buffer holding the output data
*
* \return 0 if successful, or
* MBEDTLS_ERR_CAMELLIA_INVALID_INPUT_LENGTH
*/
2019-03-10 07:00:59 +08:00
int mbedtls_camellia_crypt_cbc(mbedtls_camellia_context *ctx,
int mode,
size_t length,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output);
2018-11-08 00:05:02 +08:00
#endif /* MBEDTLS_CIPHER_MODE_CBC */
#if defined(MBEDTLS_CIPHER_MODE_CFB)
/**
* \brief CAMELLIA-CFB128 buffer encryption/decryption
*
* Note: Due to the nature of CFB you should use the same key schedule for
* both encryption and decryption. So a context initialized with
* mbedtls_camellia_setkey_enc() for both MBEDTLS_CAMELLIA_ENCRYPT and CAMELLIE_DECRYPT.
*
* \note Upon exit, the content of the IV is updated so that you can
* call the function same function again on the following
* block(s) of data and get the same result as if it was
* encrypted in one call. This allows a "streaming" usage.
* If on the other hand you need to retain the contents of the
* IV, you should either save it manually or use the cipher
* module instead.
*
* \param ctx CAMELLIA context
* \param mode MBEDTLS_CAMELLIA_ENCRYPT or MBEDTLS_CAMELLIA_DECRYPT
* \param length length of the input data
* \param iv_off offset in IV (updated after use)
* \param iv initialization vector (updated after use)
* \param input buffer holding the input data
* \param output buffer holding the output data
*
* \return 0 if successful, or
* MBEDTLS_ERR_CAMELLIA_INVALID_INPUT_LENGTH
*/
2019-03-10 07:00:59 +08:00
int mbedtls_camellia_crypt_cfb128(mbedtls_camellia_context *ctx,
int mode,
size_t length,
size_t *iv_off,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output);
2018-11-08 00:05:02 +08:00
#endif /* MBEDTLS_CIPHER_MODE_CFB */
#if defined(MBEDTLS_CIPHER_MODE_CTR)
/**
* \brief CAMELLIA-CTR buffer encryption/decryption
*
* Note: Due to the nature of CTR you should use the same key schedule for
* both encryption and decryption. So a context initialized with
* mbedtls_camellia_setkey_enc() for both MBEDTLS_CAMELLIA_ENCRYPT and MBEDTLS_CAMELLIA_DECRYPT.
*
* \warning You must never reuse a nonce value with the same key. Doing so
* would void the encryption for the two messages encrypted with
* the same nonce and key.
*
* There are two common strategies for managing nonces with CTR:
*
* 1. You can handle everything as a single message processed over
* successive calls to this function. In that case, you want to
* set \p nonce_counter and \p nc_off to 0 for the first call, and
* then preserve the values of \p nonce_counter, \p nc_off and \p
* stream_block across calls to this function as they will be
* updated by this function.
*
* With this strategy, you must not encrypt more than 2**128
* blocks of data with the same key.
*
* 2. You can encrypt separate messages by dividing the \p
* nonce_counter buffer in two areas: the first one used for a
* per-message nonce, handled by yourself, and the second one
* updated by this function internally.
*
* For example, you might reserve the first 12 bytes for the
* per-message nonce, and the last 4 bytes for internal use. In that
* case, before calling this function on a new message you need to
* set the first 12 bytes of \p nonce_counter to your chosen nonce
* value, the last 4 to 0, and \p nc_off to 0 (which will cause \p
* stream_block to be ignored). That way, you can encrypt at most
* 2**96 messages of up to 2**32 blocks each with the same key.
*
* The per-message nonce (or information sufficient to reconstruct
* it) needs to be communicated with the ciphertext and must be unique.
* The recommended way to ensure uniqueness is to use a message
* counter. An alternative is to generate random nonces, but this
* limits the number of messages that can be securely encrypted:
* for example, with 96-bit random nonces, you should not encrypt
* more than 2**32 messages with the same key.
*
* Note that for both stategies, sizes are measured in blocks and
* that a CAMELLIA block is 16 bytes.
*
* \warning Upon return, \p stream_block contains sensitive data. Its
* content must not be written to insecure storage and should be
* securely discarded as soon as it's no longer needed.
*
* \param ctx CAMELLIA context
* \param length The length of the data
* \param nc_off The offset in the current stream_block (for resuming
* within current cipher stream). The offset pointer to
* should be 0 at the start of a stream.
* \param nonce_counter The 128-bit nonce and counter.
* \param stream_block The saved stream-block for resuming. Is overwritten
* by the function.
* \param input The input data stream
* \param output The output data stream
*
* \return 0 if successful
*/
2019-03-10 07:00:59 +08:00
int mbedtls_camellia_crypt_ctr(mbedtls_camellia_context *ctx,
size_t length,
size_t *nc_off,
unsigned char nonce_counter[16],
unsigned char stream_block[16],
const unsigned char *input,
unsigned char *output);
2018-11-08 00:05:02 +08:00
#endif /* MBEDTLS_CIPHER_MODE_CTR */
/**
* \brief Checkup routine
*
* \return 0 if successful, or 1 if the test failed
*/
2019-03-10 07:00:59 +08:00
int mbedtls_camellia_self_test(int verbose);
2018-11-08 00:05:02 +08:00
#ifdef __cplusplus
}
#endif
#endif /* camellia.h */