proxmark3/client/loclass/cipher.c

275 lines
8.9 KiB
C
Raw Normal View History

2014-09-12 05:23:46 +08:00
/*****************************************************************************
* WARNING
*
* THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
*
* USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
* PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
* AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
*
* THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
*
*****************************************************************************
*
* This file is part of loclass. It is a reconstructon of the cipher engine
2014-09-12 05:23:46 +08:00
* used in iClass, and RFID techology.
*
* The implementation is based on the work performed by
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
* Milosch Meriac in the paper "Dismantling IClass".
*
* Copyright (C) 2014 Martin Holst Swende
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, or, at your option, any later version.
2014-09-12 05:23:46 +08:00
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with loclass. If not, see <http://www.gnu.org/licenses/>.
*
*
2014-09-12 05:23:46 +08:00
****************************************************************************/
2014-09-12 05:23:46 +08:00
#include "cipher.h"
#include "cipherutils.h"
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <stdint.h>
#ifndef ON_DEVICE
2014-09-12 05:23:46 +08:00
#include "fileutils.h"
#endif
2014-09-12 05:23:46 +08:00
/**
* Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2
* consisting of the following four components:
2019-03-10 06:35:06 +08:00
* 1. the left register l = (l 0 . . . l 7 ) F 8/2 ;
* 2. the right register r = (r 0 . . . r 7 ) F 8/2 ;
* 3. the top register t = (t 0 . . . t 15 ) F 16/2 .
* 4. the bottom register b = (b 0 . . . b 7 ) F 8/2 .
2014-09-12 05:23:46 +08:00
**/
typedef struct {
2019-03-10 06:35:06 +08:00
uint8_t l;
uint8_t r;
uint8_t b;
uint16_t t;
2014-09-12 05:23:46 +08:00
} State;
/**
2019-03-10 06:35:06 +08:00
* Definition 2. The feedback function for the top register T : F 16/2 F 2
* is defined as
* T (x 0 x 1 . . . . . . x 15 ) = x 0 x 1 x 5 x 7 x 10 x 11 x 14 x 15 .
2014-09-12 05:23:46 +08:00
**/
static bool T(State state) {
2019-03-10 06:35:06 +08:00
bool x0 = state.t & 0x8000;
bool x1 = state.t & 0x4000;
bool x5 = state.t & 0x0400;
bool x7 = state.t & 0x0100;
bool x10 = state.t & 0x0020;
bool x11 = state.t & 0x0010;
bool x14 = state.t & 0x0002;
bool x15 = state.t & 0x0001;
return x0 ^ x1 ^ x5 ^ x7 ^ x10 ^ x11 ^ x14 ^ x15;
2014-09-12 05:23:46 +08:00
}
/**
2019-03-10 06:35:06 +08:00
* Similarly, the feedback function for the bottom register B : F 8/2 F 2 is defined as
* B(x 0 x 1 . . . x 7 ) = x 1 x 2 x 3 x 7 .
2014-09-12 05:23:46 +08:00
**/
static bool B(State state) {
2019-03-10 06:35:06 +08:00
bool x1 = state.b & 0x40;
bool x2 = state.b & 0x20;
bool x3 = state.b & 0x10;
bool x7 = state.b & 0x01;
return x1 ^ x2 ^ x3 ^ x7;
2014-09-12 05:23:46 +08:00
}
/**
2019-03-10 06:35:06 +08:00
* Definition 3 (Selection function). The selection function select : F 2 × F 2 ×
* F 8/2 F 3/2 is defined as select(x, y, r) = z 0 z 1 z 2 where
* z 0 = (r 0 r 2 ) (r 1 r 3 ) (r 2 r 4 )
* z 1 = (r 0 r 2 ) (r 5 r 7 ) r 1 r 6 x y
* z 2 = (r 3 r 5 ) (r 4 r 6 ) r 7 x
2014-09-12 05:23:46 +08:00
**/
static uint8_t _select(bool x, bool y, uint8_t r) {
2019-03-10 06:35:06 +08:00
bool r0 = r >> 7 & 0x1;
bool r1 = r >> 6 & 0x1;
bool r2 = r >> 5 & 0x1;
bool r3 = r >> 4 & 0x1;
bool r4 = r >> 3 & 0x1;
bool r5 = r >> 2 & 0x1;
bool r6 = r >> 1 & 0x1;
bool r7 = r & 0x1;
2014-09-12 05:23:46 +08:00
2019-06-12 21:41:23 +08:00
bool z0 = (r0 & r2) ^ (r1 & (!r3)) ^ (r2 | r4);
2019-03-10 07:00:59 +08:00
bool z1 = (r0 | r2) ^ (r5 | r7) ^ r1 ^ r6 ^ x ^ y;
2019-06-12 21:41:23 +08:00
bool z2 = (r3 & (!r5)) ^ (r4 & r6) ^ r7 ^ x;
2014-09-12 05:23:46 +08:00
2019-03-10 06:35:06 +08:00
// The three bitz z0.. z1 are packed into a uint8_t:
// 00000ZZZ
//Return value is a uint8_t
uint8_t retval = 0;
retval |= (z0 << 2) & 4;
retval |= (z1 << 1) & 2;
2019-04-16 21:47:21 +08:00
retval |= (z2) & 1;
2014-09-12 05:23:46 +08:00
2019-03-10 06:35:06 +08:00
// Return value 0 <= retval <= 7
return retval;
2014-09-12 05:23:46 +08:00
}
/**
2019-03-10 06:35:06 +08:00
* Definition 4 (Successor state). Let s = l, r, t, b be a cipher state, k (F 82 ) 8
* be a key and y F 2 be the input bit. Then, the successor cipher state s =
* l , r , t , b is defined as
* t := (T (t) r 0 r 4 )t 0 . . . t 14 l := (k [select(T (t),y,r)] b ) l r
* b := (B(b) r 7 )b 0 . . . b 6 r := (k [select(T (t),y,r)] b ) l
2014-09-12 05:23:46 +08:00
*
* @param s - state
* @param k - array containing 8 bytes
**/
static State successor(uint8_t *k, State s, bool y) {
2019-03-10 06:35:06 +08:00
bool r0 = s.r >> 7 & 0x1;
bool r4 = s.r >> 3 & 0x1;
bool r7 = s.r & 0x1;
2014-09-12 05:23:46 +08:00
2019-03-10 07:00:59 +08:00
State successor = {0, 0, 0, 0};
2014-09-12 05:23:46 +08:00
2019-03-10 06:35:06 +08:00
successor.t = s.t >> 1;
successor.t |= (T(s) ^ r0 ^ r4) << 15;
2014-09-12 05:23:46 +08:00
2019-03-10 06:35:06 +08:00
successor.b = s.b >> 1;
successor.b |= (B(s) ^ r7) << 7;
2014-09-12 05:23:46 +08:00
2019-03-10 06:35:06 +08:00
bool Tt = T(s);
2014-09-12 05:23:46 +08:00
2019-03-10 07:00:59 +08:00
successor.l = ((k[_select(Tt, y, s.r)] ^ successor.b) + s.l + s.r) & 0xFF;
successor.r = ((k[_select(Tt, y, s.r)] ^ successor.b) + s.l) & 0xFF;
2014-09-12 05:23:46 +08:00
2019-03-10 06:35:06 +08:00
return successor;
2014-09-12 05:23:46 +08:00
}
/**
2019-03-10 06:35:06 +08:00
* We define the successor function suc which takes a key k (F 82 ) 8 , a state s and
* an input y F 2 and outputs the successor state s . We overload the function suc
* to multiple bit input x F n 2 which we define as
2014-09-12 05:23:46 +08:00
* @param k - array containing 8 bytes
**/
static State suc(uint8_t *k, State s, BitstreamIn *bitstream) {
2019-03-10 07:00:59 +08:00
if (bitsLeft(bitstream) == 0) {
2019-03-10 06:35:06 +08:00
return s;
}
bool lastbit = tailBit(bitstream);
2019-03-10 07:00:59 +08:00
return successor(k, suc(k, s, bitstream), lastbit);
2014-09-12 05:23:46 +08:00
}
/**
2019-03-10 06:35:06 +08:00
* Definition 5 (Output). Define the function output which takes an internal
* state s =< l, r, t, b > and returns the bit r 5 . We also define the function output
* on multiple bits input which takes a key k, a state s and an input x F n 2 as
* output(k, s, ǫ) = ǫ
* output(k, s, x 0 . . . x n ) = output(s) · output(k, s , x 1 . . . x n )
* where s = suc(k, s, x 0 ).
2014-09-12 05:23:46 +08:00
**/
static void output(uint8_t *k, State s, BitstreamIn *in, BitstreamOut *out) {
2019-03-10 07:00:59 +08:00
if (bitsLeft(in) == 0) {
2019-03-10 06:35:06 +08:00
return;
}
2019-03-10 07:00:59 +08:00
pushBit(out, (s.r >> 2) & 1);
2019-03-10 06:35:06 +08:00
//Remove first bit
uint8_t x0 = headBit(in);
2019-03-10 07:00:59 +08:00
State ss = successor(k, s, x0);
output(k, ss, in, out);
2014-09-12 05:23:46 +08:00
}
/**
* Definition 6 (Initial state). Define the function init which takes as input a
* key k (F 82 ) 8 and outputs the initial cipher state s =< l, r, t, b >
**/
static State init(uint8_t *k) {
2019-03-10 06:35:06 +08:00
State s = {
2019-03-10 07:00:59 +08:00
((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l
((k[0] ^ 0x4c) + 0x21) & 0xFF,// r
0x4c, // b
0xE012 // t
2019-03-10 06:35:06 +08:00
};
return s;
2014-09-12 05:23:46 +08:00
}
static void MAC(uint8_t *k, BitstreamIn input, BitstreamOut out) {
2019-03-10 07:00:59 +08:00
uint8_t zeroes_32[] = {0, 0, 0, 0};
BitstreamIn input_32_zeroes = {zeroes_32, sizeof(zeroes_32) * 8, 0};
State initState = suc(k, init(k), &input);
output(k, initState, &input_32_zeroes, &out);
}
2014-09-12 05:23:46 +08:00
void doMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]) {
2019-03-10 06:35:06 +08:00
uint8_t cc_nr[13] = { 0 };
2014-09-12 05:23:46 +08:00
uint8_t div_key[8];
2019-03-10 06:35:06 +08:00
//cc_nr=(uint8_t*) calloc(length+1, sizeof(uint8_t));
2019-03-10 06:35:06 +08:00
memcpy(cc_nr, cc_nr_p, 12);
memcpy(div_key, div_key_p, 8);
2019-03-10 06:35:06 +08:00
reverse_arraybytes(cc_nr, 12);
BitstreamIn bitstream = {cc_nr, 12 * 8, 0};
2019-03-10 07:00:59 +08:00
uint8_t dest [] = {0, 0, 0, 0, 0, 0, 0, 0};
BitstreamOut out = { dest, sizeof(dest) * 8, 0 };
MAC(div_key, bitstream, out);
2019-03-10 06:35:06 +08:00
//The output MAC must also be reversed
reverse_arraybytes(dest, sizeof(dest));
memcpy(mac, dest, 4);
//free(cc_nr);
2014-09-12 05:23:46 +08:00
return;
}
void doMAC_N(uint8_t *address_data_p, uint8_t address_data_size, uint8_t *div_key_p, uint8_t mac[4]) {
2019-03-10 06:35:06 +08:00
uint8_t *address_data;
uint8_t div_key[8];
2019-03-10 07:00:59 +08:00
address_data = (uint8_t *) calloc(address_data_size, sizeof(uint8_t));
2019-03-10 06:35:06 +08:00
memcpy(address_data, address_data_p, address_data_size);
memcpy(div_key, div_key_p, 8);
2019-03-10 06:35:06 +08:00
reverse_arraybytes(address_data, address_data_size);
BitstreamIn bitstream = {address_data, address_data_size * 8, 0};
2019-03-10 07:00:59 +08:00
uint8_t dest [] = {0, 0, 0, 0, 0, 0, 0, 0};
BitstreamOut out = { dest, sizeof(dest) * 8, 0 };
2019-03-10 06:35:06 +08:00
MAC(div_key, bitstream, out);
//The output MAC must also be reversed
reverse_arraybytes(dest, sizeof(dest));
memcpy(mac, dest, 4);
free(address_data);
return;
}
#ifndef ON_DEVICE
int testMAC() {
PrintAndLogEx(SUCCESS, "Testing MAC calculation...");
2014-09-12 05:23:46 +08:00
2019-03-10 06:35:06 +08:00
//From the "dismantling.IClass" paper:
2019-03-10 07:00:59 +08:00
uint8_t cc_nr[] = {0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 0, 0, 0};
2019-03-10 06:35:06 +08:00
//From the paper
2019-03-10 07:00:59 +08:00
uint8_t div_key[8] = {0xE0, 0x33, 0xCA, 0x41, 0x9A, 0xEE, 0x43, 0xF9};
uint8_t correct_MAC[4] = {0x1d, 0x49, 0xC9, 0xDA};
2014-09-12 05:23:46 +08:00
2019-03-10 06:35:06 +08:00
uint8_t calculated_mac[4] = {0};
2019-03-10 07:00:59 +08:00
doMAC(cc_nr, div_key, calculated_mac);
2014-09-12 05:23:46 +08:00
2019-03-10 07:00:59 +08:00
if (memcmp(calculated_mac, correct_MAC, 4) == 0) {
PrintAndLogEx(SUCCESS, "MAC calculation OK!");
2019-03-10 06:35:06 +08:00
} else {
PrintAndLogEx(FAILED, "FAILED: MAC calculation failed:");
2019-03-10 06:35:06 +08:00
printarr(" Calculated_MAC", calculated_mac, 4);
printarr(" Correct_MAC ", correct_MAC, 4);
return 1;
}
return 0;
2014-09-12 05:23:46 +08:00
}
#endif