proxmark3/armsrc/mifaresniff_disabled.c

337 lines
12 KiB
C
Raw Normal View History

//-----------------------------------------------------------------------------
// Copyright (C) Gerhard de Koning Gans - May 2008
2022-01-06 09:19:46 +08:00
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
//
2022-01-06 09:19:46 +08:00
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// See LICENSE.txt for the text of the license.
//-----------------------------------------------------------------------------
// Routines to support mifare classic sniffer.
//-----------------------------------------------------------------------------
2020-03-24 18:56:03 +08:00
#include "mifaresniff_disabled.h"
#ifndef CheckCrc14A
2019-07-24 06:52:24 +08:00
# define CheckCrc14A(data, len) check_crc(CRC_14443_A, (data), (len))
#endif
//static int sniffState = SNF_INIT;
static uint8_t sniffUIDType = 0;
2019-03-10 07:00:59 +08:00
static uint8_t sniffUID[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
static uint8_t sniffATQA[2] = {0, 0};
static uint8_t sniffSAK = 0;
static uint8_t sniffBuf[17];
static uint32_t timerData = 0;
//-----------------------------------------------------------------------------
// MIFARE sniffer.
//
// if no activity for 2sec, it sends the collected data to the client.
//-----------------------------------------------------------------------------
// "hf mf sniff"
void RAMFUNC SniffMifare(uint8_t param) {
2019-03-10 03:34:41 +08:00
// param:
// bit 0 - trigger from first card answer
// bit 1 - trigger from first reader 7-bit request
// C(red) A(yellow) B(green)
LEDsoff();
iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
// Allocate memory from BigBuf for some buffers
// free all previous allocations first
2019-03-10 07:00:59 +08:00
BigBuf_free();
BigBuf_Clear_ext(false);
2019-03-10 03:34:41 +08:00
clear_trace();
set_tracing(true);
// The command (reader -> tag) that we're receiving.
uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
// The response (tag -> reader) that we're receiving.
uint8_t receivedResp[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t receivedRespPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
// allocate the DMA buffer, used to stream samples from the FPGA
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
uint8_t *data = dmaBuf;
uint8_t previous_data = 0;
2019-04-10 02:41:01 +08:00
int dataLen, maxDataLen = 0;
2019-03-10 03:34:41 +08:00
bool ReaderIsActive = false;
bool TagIsActive = false;
// We won't start recording the frames that we acquire until we trigger;
// a good trigger condition to get started is probably when we see a
// response from the tag.
// triggered == false -- to wait first for card
//bool triggered = !(param & 0x03);
// Set up the demodulator for tag -> reader responses.
Demod14aInit(receivedResp, receivedRespPar);
2019-03-10 03:34:41 +08:00
// Set up the demodulator for the reader -> tag commands
Uart14aInit(receivedCmd, receivedCmdPar);
2019-03-10 03:34:41 +08:00
// Setup and start DMA.
// set transfer address and number of bytes. Start transfer.
2019-03-10 07:00:59 +08:00
if (!FpgaSetupSscDma(dmaBuf, DMA_BUFFER_SIZE)) {
2021-08-22 05:02:27 +08:00
if (g_dbglevel > 1) Dbprintf("[!] FpgaSetupSscDma failed. Exiting");
2019-03-10 03:34:41 +08:00
return;
}
tUart14a *uart = GetUart14a();
tDemod14a *demod = GetDemod14a();
2019-03-10 03:34:41 +08:00
MfSniffInit();
uint32_t sniffCounter = 0;
// loop and listen
2022-01-07 02:41:45 +08:00
while (BUTTON_PRESS() == false) {
2019-03-10 03:34:41 +08:00
WDT_HIT();
LED_A_ON();
2019-03-10 07:00:59 +08:00
/*
if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
// check if a transaction is completed (timeout after 2000ms).
// if yes, stop the DMA transfer and send what we have so far to the client
if (BigBuf_get_traceLen()) {
MfSniffSend();
// Reset everything - we missed some sniffed data anyway while the DMA was stopped
sniffCounter = 0;
dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
data = dmaBuf;
maxDataLen = 0;
ReaderIsActive = false;
TagIsActive = false;
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
}
}
*/
2019-03-10 03:34:41 +08:00
// number of bytes we have processed so far
int register readBufDataP = data - dmaBuf;
// number of bytes already transferred
int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
if (readBufDataP <= dmaBufDataP) // we are processing the same block of data which is currently being transferred
dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
else
dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
// test for length of buffer
if (dataLen > maxDataLen) { // we are more behind than ever...
maxDataLen = dataLen;
if (dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
Dbprintf("[!] blew circular buffer! | datalen %u", dataLen);
break;
}
}
if (dataLen < 1) continue;
// primary buffer was stopped ( <-- we lost data!
if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t)dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
Dbprintf("[-] RxEmpty ERROR | data length %d", dataLen); // temporary
}
// secondary buffer sets as primary, secondary buffer was stopped
if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t)dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
}
LED_A_OFF();
// Need two samples to feed Miller and Manchester-Decoder
if (sniffCounter & 0x01) {
// no need to try decoding tag data if the reader is sending
if (!TagIsActive) {
uint8_t readerbyte = (previous_data & 0xF0) | (*data >> 4);
2019-03-10 07:00:59 +08:00
if (MillerDecoding(readerbyte, (sniffCounter - 1) * 4)) {
2019-03-10 03:34:41 +08:00
LogTrace(receivedCmd, uart->len, 0, 0, NULL, true);
Demod14aReset();
Uart14aReset();
2019-03-10 03:34:41 +08:00
}
ReaderIsActive = (uart->state != STATE_14A_UNSYNCD);
2019-03-10 03:34:41 +08:00
}
// no need to try decoding tag data if the reader is sending
if (!ReaderIsActive) {
uint8_t tagbyte = (previous_data << 4) | (*data & 0x0F);
2019-03-10 07:00:59 +08:00
if (ManchesterDecoding(tagbyte, 0, (sniffCounter - 1) * 4)) {
2019-03-10 03:34:41 +08:00
LogTrace(receivedResp, demod->len, 0, 0, NULL, false);
Demod14aReset();
Uart14aReset();
2019-03-10 03:34:41 +08:00
}
TagIsActive = (demod->state != DEMOD_14A_UNSYNCD);
2019-03-10 03:34:41 +08:00
}
}
previous_data = *data;
sniffCounter++;
data++;
if (data == dmaBuf + DMA_BUFFER_SIZE)
data = dmaBuf;
} // main cycle
MfSniffEnd();
switch_off();
}
void MfSniffInit(void) {
2019-03-10 03:34:41 +08:00
memset(sniffUID, 0x00, sizeof(sniffUID));
memset(sniffATQA, 0x00, sizeof(sniffATQA));
memset(sniffBuf, 0x00, sizeof(sniffBuf));
sniffSAK = 0;
sniffUIDType = SNF_UID_4;
timerData = 0;
}
void MfSniffEnd(void) {
2019-03-10 03:34:41 +08:00
LED_B_ON();
2019-04-18 18:43:35 +08:00
reply_old(CMD_ACK, 0, 0, 0, 0, 0);
2019-03-10 03:34:41 +08:00
LED_B_OFF();
}
/*
bool RAMFUNC MfSniffLogic(const uint8_t *data, uint16_t len, uint8_t *parity, uint16_t bitCnt, bool reader) {
2019-03-10 03:34:41 +08:00
// reset on 7-Bit commands from reader
if (reader && (len == 1) && (bitCnt == 7)) {
sniffState = SNF_INIT;
}
switch (sniffState) {
case SNF_INIT:{
// REQA,WUPA or MAGICWUP from reader
if ((len == 1) && (reader) && (bitCnt == 7) ) {
MfSniffInit();
sniffState = (data[0] == MIFARE_MAGICWUPC1) ? SNF_MAGIC_WUPC2 : SNF_ATQA;
}
break;
}
case SNF_MAGIC_WUPC2: {
if ((len == 1) && (reader) && (data[0] == MIFARE_MAGICWUPC2) ) {
sniffState = SNF_CARD_IDLE;
}
break;
}
case SNF_ATQA:{
// ATQA from tag
if ((!reader) && (len == 2)) {
sniffATQA[0] = data[0];
sniffATQA[1] = data[1];
sniffState = SNF_UID;
}
break;
}
case SNF_UID: {
if ( !reader ) break;
if ( len != 9 ) break;
if ( !CheckCrc14A(data, 9)) break;
2019-03-10 03:34:41 +08:00
if ( data[1] != 0x70 ) break;
Dbprintf("[!] UID | %x", data[0]);
if ((data[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT)) {
// UID_4 - select 4 Byte UID from reader
memcpy(sniffUID, data+2, 4);
sniffUIDType = SNF_UID_4;
sniffState = SNF_SAK;
} else if ((data[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2)) {
// UID_7 - Select 2nd part of 7 Byte UID
// get rid of 0x88
sniffUID[0] = sniffUID[1];
sniffUID[1] = sniffUID[2];
sniffUID[2] = sniffUID[3];
//new uid bytes
memcpy(sniffUID+3, data+2, 4);
sniffUIDType = SNF_UID_7;
sniffState = SNF_SAK;
} else if ((data[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3)) {
// UID_10 - Select 3nd part of 10 Byte UID
// 3+3+4 = 10.
// get ride of previous 0x88
sniffUID[3] = sniffUID[4];
sniffUID[4] = sniffUID[5];
sniffUID[5] = sniffUID[6];
// new uid bytes
memcpy(sniffUID+6, data+2, 4);
sniffUIDType = SNF_UID_10;
sniffState = SNF_SAK;
}
break;
}
case SNF_SAK:{
// SAK from card?
if ((!reader) && (len == 3) && (CheckCrc14A(data, 3))) {
2019-03-10 03:34:41 +08:00
sniffSAK = data[0];
// CL2 UID part to be expected
if (( sniffSAK == 0x04) && (sniffUIDType == SNF_UID_4)) {
sniffState = SNF_UID;
// CL3 UID part to be expected
} else if ((sniffSAK == 0x04) && (sniffUIDType == SNF_UID_7)) {
sniffState = SNF_UID;
} else {
// select completed
sniffState = SNF_CARD_IDLE;
}
}
break;
}
case SNF_CARD_IDLE:{ // trace the card select sequence
sniffBuf[0] = 0xFF;
sniffBuf[1] = 0xFF;
memcpy(sniffBuf + 2, sniffUID, sizeof(sniffUID));
memcpy(sniffBuf + 12, sniffATQA, sizeof(sniffATQA));
sniffBuf[14] = sniffSAK;
sniffBuf[15] = 0xFF;
sniffBuf[16] = 0xFF;
LogTrace(sniffBuf, sizeof(sniffBuf), 0, 0, NULL, true);
sniffState = SNF_CARD_CMD;
} // intentionally no break;
case SNF_CARD_CMD:{
LogTrace(data, len, 0, 0, NULL, reader);
timerData = GetTickCount();
break;
}
default:
sniffState = SNF_INIT;
break;
}
return false;
}
*/
2020-05-10 22:59:38 +08:00
void RAMFUNC MfSniffSend(void) {
2019-06-08 00:41:39 +08:00
uint16_t tracelen = BigBuf_get_traceLen();
2019-03-10 03:34:41 +08:00
int packlen = tracelen; // total number of bytes to send
uint8_t *data = BigBuf_get_addr();
while (packlen > 0) {
LED_B_ON();
2019-06-08 00:41:39 +08:00
uint16_t chunksize = MIN(PM3_CMD_DATA_SIZE, packlen); // chunk size 512
2019-04-18 18:43:35 +08:00
reply_old(CMD_ACK, 1, tracelen, chunksize, data + tracelen - packlen, chunksize);
2019-03-10 03:34:41 +08:00
packlen -= chunksize;
LED_B_OFF();
}
LED_B_ON();
2019-04-18 18:43:35 +08:00
reply_old(CMD_ACK, 2, 0, 0, 0, 0); // 2 == data transfer finished.
2019-03-10 03:34:41 +08:00
LED_B_OFF();
2019-03-12 07:12:26 +08:00
}