proxmark3/client/emv/emvcore.c

842 lines
26 KiB
C
Raw Normal View History

2017-11-11 03:08:28 +08:00
//-----------------------------------------------------------------------------
// Copyright (C) 2017 Merlok
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// EMV core functions
//-----------------------------------------------------------------------------
#include "emvcore.h"
2017-11-25 10:28:02 +08:00
// Got from here. Thanks)
// https://eftlab.co.uk/index.php/site-map/knowledge-base/211-emv-aid-rid-pix
static const char *PSElist [] = {
2017-11-25 10:28:02 +08:00
"325041592E5359532E4444463031", // 2PAY.SYS.DDF01 - Visa Proximity Payment System Environment - PPSE
"315041592E5359532E4444463031" // 1PAY.SYS.DDF01 - Visa Payment System Environment - PSE
};
//static const size_t PSElistLen = sizeof(PSElist)/sizeof(char*);
2017-11-25 10:28:02 +08:00
typedef struct {
enum CardPSVendor vendor;
const char* aid;
} TAIDList;
static const TAIDList AIDlist [] = {
2017-11-25 10:28:02 +08:00
// Visa International
{ CV_VISA, "A00000000305076010"}, // VISA ELO Credit
{ CV_VISA, "A0000000031010" }, // VISA Debit/Credit (Classic)
{ CV_VISA, "A000000003101001" }, // VISA Credit
{ CV_VISA, "A000000003101002" }, // VISA Debit
{ CV_VISA, "A0000000032010" }, // VISA Electron
{ CV_VISA, "A0000000032020" }, // VISA
{ CV_VISA, "A0000000033010" }, // VISA Interlink
{ CV_VISA, "A0000000034010" }, // VISA Specific
{ CV_VISA, "A0000000035010" }, // VISA Specific
{ CV_VISA, "A0000000036010" }, // Domestic Visa Cash Stored Value
{ CV_VISA, "A0000000036020" }, // International Visa Cash Stored Value
{ CV_VISA, "A0000000038002" }, // VISA Auth, VisaRemAuthen EMV-CAP (DPA)
{ CV_VISA, "A0000000038010" }, // VISA Plus
{ CV_VISA, "A0000000039010" }, // VISA Loyalty
{ CV_VISA, "A000000003999910" }, // VISA Proprietary ATM
2017-11-25 10:28:02 +08:00
// Visa USA
{ CV_VISA, "A000000098" }, // Debit Card
{ CV_VISA, "A0000000980848" }, // Debit Card
2017-11-25 10:28:02 +08:00
// Mastercard International
{ CV_MASTERCARD, "A00000000401" }, // MasterCard PayPass
{ CV_MASTERCARD, "A0000000041010" }, // MasterCard Credit
{ CV_MASTERCARD, "A00000000410101213" }, // MasterCard Credit
{ CV_MASTERCARD, "A00000000410101215" }, // MasterCard Credit
{ CV_MASTERCARD, "A0000000042010" }, // MasterCard Specific
{ CV_MASTERCARD, "A0000000043010" }, // MasterCard Specific
{ CV_MASTERCARD, "A0000000043060" }, // Maestro (Debit)
{ CV_MASTERCARD, "A000000004306001" }, // Maestro (Debit)
{ CV_MASTERCARD, "A0000000044010" }, // MasterCard Specific
{ CV_MASTERCARD, "A0000000045010" }, // MasterCard Specific
{ CV_MASTERCARD, "A0000000046000" }, // Cirrus
{ CV_MASTERCARD, "A0000000048002" }, // SecureCode Auth EMV-CAP
{ CV_MASTERCARD, "A0000000049999" }, // MasterCard PayPass
2017-11-25 10:28:02 +08:00
// American Express
{ CV_AMERICANEXPRESS, "A000000025" },
{ CV_AMERICANEXPRESS, "A0000000250000" },
{ CV_AMERICANEXPRESS, "A00000002501" },
{ CV_AMERICANEXPRESS, "A000000025010402" },
{ CV_AMERICANEXPRESS, "A000000025010701" },
{ CV_AMERICANEXPRESS, "A000000025010801" },
2017-11-25 10:28:02 +08:00
// Groupement des Cartes Bancaires "CB"
{ CV_CB, "A0000000421010" }, // Cartes Bancaire EMV Card
{ CV_CB, "A0000000422010" },
{ CV_CB, "A0000000423010" },
{ CV_CB, "A0000000424010" },
{ CV_CB, "A0000000425010" },
2017-11-25 10:28:02 +08:00
// JCB CO., LTD.
{ CV_JCB, "A00000006510" }, // JCB
{ CV_JCB, "A0000000651010" }, // JCB J Smart Credit
// Other
{ CV_OTHER, "A0000001544442" }, // Banricompras Debito - Banrisul - Banco do Estado do Rio Grande do SUL - S.A.
{ CV_OTHER, "F0000000030001" }, // BRADESCO
{ CV_OTHER, "A0000005241010" }, // RuPay - RuPay
{ CV_OTHER, "D5780000021010" } // Bankaxept - Bankaxept
2017-11-25 10:28:02 +08:00
};
static const size_t AIDlistLen = sizeof(AIDlist)/sizeof(TAIDList);
2017-11-25 10:28:02 +08:00
static bool APDULogging = false;
void SetAPDULogging(bool logging) {
APDULogging = logging;
}
enum CardPSVendor GetCardPSVendor(uint8_t * AID, size_t AIDlen) {
char buf[100] = {0};
if (AIDlen < 1)
return CV_NA;
hex_to_buffer((uint8_t *)buf, AID, AIDlen, sizeof(buf) - 1, 0, 0, true);
for(int i = 0; i < AIDlistLen; i ++) {
if (strncmp(AIDlist[i].aid, buf, strlen(AIDlist[i].aid)) == 0){
return AIDlist[i].vendor;
}
}
return CV_NA;
}
static bool print_cb(void *data, const struct tlv *tlv, int level, bool is_leaf) {
emv_tag_dump(tlv, stdout, level);
if (is_leaf) {
dump_buffer(tlv->value, tlv->len, stdout, level);
}
2017-11-11 03:08:28 +08:00
return true;
}
void TLVPrintFromBuffer(uint8_t *data, int datalen) {
struct tlvdb *t = NULL;
t = tlvdb_parse_multi(data, datalen);
if (t) {
PrintAndLogEx(NORMAL, "-------------------- TLV decoded --------------------");
2017-11-11 03:08:28 +08:00
tlvdb_visit(t, print_cb, NULL, 0);
2017-11-11 03:08:28 +08:00
tlvdb_free(t);
} else {
PrintAndLogEx(WARNING, "TLV ERROR: Can't parse response as TLV tree.");
2017-11-11 03:08:28 +08:00
}
}
2017-11-25 10:28:02 +08:00
void TLVPrintFromTLVLev(struct tlvdb *tlv, int level) {
2017-11-25 10:28:02 +08:00
if (!tlv)
return;
tlvdb_visit(tlv, print_cb, NULL, level);
}
void TLVPrintFromTLV(struct tlvdb *tlv) {
TLVPrintFromTLVLev(tlv, 0);
2017-11-25 10:28:02 +08:00
}
void TLVPrintAIDlistFromSelectTLV(struct tlvdb *tlv) {
PrintAndLogEx(NORMAL, "|------------------|--------|-------------------------|");
PrintAndLogEx(NORMAL, "| AID |Priority| Name |");
PrintAndLogEx(NORMAL, "|------------------|--------|-------------------------|");
2017-11-25 10:28:02 +08:00
struct tlvdb *ttmp = tlvdb_find(tlv, 0x6f);
if (!ttmp)
PrintAndLogEx(NORMAL, "| none |");
2017-11-25 10:28:02 +08:00
while (ttmp) {
const struct tlv *tgAID = tlvdb_get_inchild(ttmp, 0x84, NULL);
const struct tlv *tgName = tlvdb_get_inchild(ttmp, 0x50, NULL);
const struct tlv *tgPrio = tlvdb_get_inchild(ttmp, 0x87, NULL);
if (!tgAID)
break;
PrintAndLogEx(NORMAL, "|%s| %s |%s|",
2017-11-25 10:28:02 +08:00
sprint_hex_inrow_ex(tgAID->value, tgAID->len, 18),
(tgPrio) ? sprint_hex(tgPrio->value, 1) : " ",
(tgName) ? sprint_ascii_ex(tgName->value, tgName->len, 25) : " ");
ttmp = tlvdb_find_next(ttmp, 0x6f);
}
PrintAndLogEx(NORMAL, "|------------------|--------|-------------------------|");
2017-11-25 10:28:02 +08:00
}
struct tlvdb *GetPANFromTrack2(const struct tlv *track2) {
char track2Hex[200] = {0};
uint8_t PAN[100] = {0};
int PANlen = 0;
char *tmp = track2Hex;
2017-11-25 10:28:02 +08:00
if (!track2)
return NULL;
for (int i = 0; i < track2->len; ++i, tmp += 2)
sprintf(tmp, "%02x", (unsigned int)track2->value[i]);
int posD = strchr(track2Hex, 'd') - track2Hex;
if (posD < 1)
return NULL;
track2Hex[posD] = 0;
if (strlen(track2Hex) % 2) {
track2Hex[posD] = 'F';
track2Hex[posD + 1] = '\0';
}
param_gethex_to_eol(track2Hex, 0, PAN, sizeof(PAN), &PANlen);
return tlvdb_fixed(0x5a, PANlen, PAN);
}
struct tlvdb *GetdCVVRawFromTrack2(const struct tlv *track2) {
char track2Hex[200] = {0};
char dCVVHex[100] = {0};
uint8_t dCVV[100] = {0};
int dCVVlen = 0;
const int PINlen = 5; // must calculated from 9F67 MSD Offset but i have not seen this tag)
char *tmp = track2Hex;
if (!track2)
return NULL;
for (int i = 0; i < track2->len; ++i, tmp += 2)
sprintf(tmp, "%02x", (unsigned int)track2->value[i]);
int posD = strchr(track2Hex, 'd') - track2Hex;
if (posD < 1)
return NULL;
memset(dCVVHex, '0', 32);
// ATC
memcpy(dCVVHex + 0, track2Hex + posD + PINlen + 11, 4);
// PAN 5 hex
memcpy(dCVVHex + 4, track2Hex, 5);
// expire date
memcpy(dCVVHex + 9, track2Hex + posD + 1, 4);
// service code
memcpy(dCVVHex + 13, track2Hex + posD + 5, 3);
param_gethex_to_eol(dCVVHex, 0, dCVV, sizeof(dCVV), &dCVVlen);
return tlvdb_fixed(0x02, dCVVlen, dCVV);
}
int EMVExchangeEx(bool ActivateField, bool LeaveFieldON, sAPDU apdu, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw, struct tlvdb *tlv) {
2017-11-25 10:28:02 +08:00
uint8_t data[APDU_RES_LEN] = {0};
2017-11-25 10:28:02 +08:00
*ResultLen = 0;
if (sw) *sw = 0;
uint16_t isw = 0;
if (ActivateField)
DropField();
// COMPUTE APDU
memcpy(data, &apdu, 5);
if (apdu.data)
memcpy(&data[5], apdu.data, apdu.Lc);
2017-11-25 10:28:02 +08:00
if (APDULogging)
PrintAndLogEx(NORMAL, ">>>> %s", sprint_hex(data, 6 + apdu.Lc));
2017-11-25 10:28:02 +08:00
// 6 byes + data = INS + CLA + P1 + P2 + Lc + <data = Nc> + Le
int res = ExchangeAPDU14a(data, 6 + apdu.Lc, ActivateField, LeaveFieldON, Result, (int)MaxResultLen, (int *)ResultLen);
2017-11-25 10:28:02 +08:00
if (res) {
return res;
}
if (APDULogging)
PrintAndLogEx(NORMAL, "<<<< %s", sprint_hex(Result, *ResultLen));
2017-11-25 10:28:02 +08:00
*ResultLen -= 2;
isw = Result[*ResultLen] * 0x0100 + Result[*ResultLen + 1];
if (sw)
*sw = isw;
if (isw != 0x9000) {
if (APDULogging)
PrintAndLogEx(WARNING, "APDU(%02x%02x) ERROR: [%4X] %s", apdu.CLA, apdu.INS, isw, GetAPDUCodeDescription(*sw >> 8, *sw & 0xff));
2017-11-25 10:28:02 +08:00
return 5;
}
// add to tlv tree
if (tlv) {
struct tlvdb *t = tlvdb_parse_multi(Result, *ResultLen);
tlvdb_add(tlv, t);
}
return 0;
}
int EMVExchange(bool LeaveFieldON, sAPDU apdu, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw, struct tlvdb *tlv) {
return EMVExchangeEx(false, LeaveFieldON, apdu, Result, MaxResultLen, ResultLen, sw, tlv);
}
int EMVSelect(bool ActivateField, bool LeaveFieldON, uint8_t *AID, size_t AIDLen, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw, struct tlvdb *tlv) {
return EMVExchangeEx(ActivateField, LeaveFieldON, (sAPDU){0x00, 0xa4, 0x04, 0x00, AIDLen, AID}, Result, MaxResultLen, ResultLen, sw, tlv);
}
2017-11-25 10:28:02 +08:00
int EMVSelectPSE(bool ActivateField, bool LeaveFieldON, uint8_t PSENum, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw) {
uint8_t buf[APDU_AID_LEN] = {0};
*ResultLen = 0;
int len = 0;
int res = 0;
switch (PSENum) {
case 1:
param_gethex_to_eol(PSElist[1], 0, buf, sizeof(buf), &len);
break;
case 2:
param_gethex_to_eol(PSElist[0], 0, buf, sizeof(buf), &len);
break;
default:
return -1;
}
// select
res = EMVSelect(ActivateField, LeaveFieldON, buf, len, Result, MaxResultLen, ResultLen, sw, NULL);
return res;
}
int EMVSearchPSE(bool ActivateField, bool LeaveFieldON, bool decodeTLV, struct tlvdb *tlv) {
uint8_t data[APDU_RES_LEN] = {0};
size_t datalen = 0;
uint16_t sw = 0;
int res;
// select PPSE
res = EMVSelectPSE(ActivateField, true, 2, data, sizeof(data), &datalen, &sw);
if (!res){
struct tlvdb *t = NULL;
t = tlvdb_parse_multi(data, datalen);
if (t) {
int retrycnt = 0;
struct tlvdb *ttmp = tlvdb_find_path(t, (tlv_tag_t[]){0x6f, 0xa5, 0xbf0c, 0x61, 0x00});
if (!ttmp)
PrintAndLogEx(FAILED, "PPSE don't have records.");
2017-11-25 10:28:02 +08:00
while (ttmp) {
const struct tlv *tgAID = tlvdb_get_inchild(ttmp, 0x4f, NULL);
if (tgAID) {
res = EMVSelect(false, true, (uint8_t *)tgAID->value, tgAID->len, data, sizeof(data), &datalen, &sw, tlv);
// retry if error and not returned sw error
if (res && res != 5) {
if (++retrycnt < 3){
continue;
} else {
// card select error, proxmark error
if (res == 1) {
PrintAndLogEx(WARNING, "Exit...");
2017-11-25 10:28:02 +08:00
return 1;
}
retrycnt = 0;
PrintAndLogEx(NORMAL, "Retry failed [%s]. Skiped...", sprint_hex_inrow(tgAID->value, tgAID->len));
2017-11-25 10:28:02 +08:00
}
// next element
ttmp = tlvdb_find_next(ttmp, 0x61);
continue;
}
retrycnt = 0;
// all is ok
if (decodeTLV){
PrintAndLogEx(NORMAL, "%s:", sprint_hex_inrow(tgAID->value, tgAID->len));
2017-11-25 10:28:02 +08:00
TLVPrintFromBuffer(data, datalen);
}
}
ttmp = tlvdb_find_next(ttmp, 0x61);
}
tlvdb_free(t);
} else {
PrintAndLogEx(WARNING, "PPSE ERROR: Can't get TLV from response.");
2017-11-25 10:28:02 +08:00
}
} else {
PrintAndLogEx(WARNING, "PPSE ERROR: Can't select PPSE AID. Error: %d", res);
2017-11-25 10:28:02 +08:00
}
if(!LeaveFieldON)
DropField();
return res;
}
int EMVSearch(bool ActivateField, bool LeaveFieldON, bool decodeTLV, struct tlvdb *tlv) {
uint8_t aidbuf[APDU_AID_LEN] = {0};
int aidlen = 0;
uint8_t data[APDU_RES_LEN] = {0};
size_t datalen = 0;
uint16_t sw = 0;
int res = 0;
int retrycnt = 0;
for(int i = 0; i < AIDlistLen; i ++) {
param_gethex_to_eol(AIDlist[i].aid, 0, aidbuf, sizeof(aidbuf), &aidlen);
2017-11-25 10:28:02 +08:00
res = EMVSelect((i == 0) ? ActivateField : false, (i == AIDlistLen - 1) ? LeaveFieldON : true, aidbuf, aidlen, data, sizeof(data), &datalen, &sw, tlv);
// retry if error and not returned sw error
if (res && res != 5) {
if (++retrycnt < 3){
i--;
} else {
// card select error, proxmark error
if (res == 1) {
PrintAndLogEx(WARNING, "Exit...");
2017-11-25 10:28:02 +08:00
return 1;
}
retrycnt = 0;
PrintAndLogEx(FAILED, "Retry failed [%s]. Skiped...", AIDlist[i].aid);
2017-11-25 10:28:02 +08:00
}
continue;
}
retrycnt = 0;
if (res)
continue;
if (decodeTLV){
PrintAndLogEx(NORMAL, "%s:", AIDlist[i].aid);
2017-11-25 10:28:02 +08:00
TLVPrintFromBuffer(data, datalen);
}
}
return 0;
}
int EMVSelectApplication(struct tlvdb *tlv, uint8_t *AID, size_t *AIDlen) {
// check priority. 0x00 - highest
2017-11-25 10:28:02 +08:00
int prio = 0xffff;
*AIDlen = 0;
struct tlvdb *ttmp = tlvdb_find(tlv, 0x6f);
if (!ttmp)
return 1;
while (ttmp) {
const struct tlv *tgAID = tlvdb_get_inchild(ttmp, 0x84, NULL);
const struct tlv *tgPrio = tlvdb_get_inchild(ttmp, 0x87, NULL);
if (!tgAID)
break;
if (tgPrio) {
int pt = bytes_to_num((uint8_t*)tgPrio->value, (tgPrio->len < 2) ? tgPrio->len : 2);
if (pt < prio) {
prio = pt;
memcpy(AID, tgAID->value, tgAID->len);
*AIDlen = tgAID->len;
}
} else {
// takes the first application from list wo priority
if (!*AIDlen) {
memcpy(AID, tgAID->value, tgAID->len);
*AIDlen = tgAID->len;
}
}
ttmp = tlvdb_find_next(ttmp, 0x6f);
}
return 0;
}
int EMVGPO(bool LeaveFieldON, uint8_t *PDOL, size_t PDOLLen, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw, struct tlvdb *tlv) {
return EMVExchange(LeaveFieldON, (sAPDU){0x80, 0xa8, 0x00, 0x00, PDOLLen, PDOL}, Result, MaxResultLen, ResultLen, sw, tlv);
2017-11-25 10:28:02 +08:00
}
int EMVReadRecord(bool LeaveFieldON, uint8_t SFI, uint8_t SFIrec, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw, struct tlvdb *tlv) {
return EMVExchange(LeaveFieldON, (sAPDU){0x00, 0xb2, SFIrec, (SFI << 3) | 0x04, 0, NULL}, Result, MaxResultLen, ResultLen, sw, tlv);
}
2017-11-25 10:28:02 +08:00
int EMVAC(bool LeaveFieldON, uint8_t RefControl, uint8_t *CDOL, size_t CDOLLen, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw, struct tlvdb *tlv) {
return EMVExchange(LeaveFieldON, (sAPDU){0x80, 0xae, RefControl, 0x00, CDOLLen, CDOL}, Result, MaxResultLen, ResultLen, sw, tlv);
2017-11-25 10:28:02 +08:00
}
int EMVGenerateChallenge(bool LeaveFieldON, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw, struct tlvdb *tlv) {
return EMVExchange(LeaveFieldON, (sAPDU){0x00, 0x84, 0x00, 0x00, 0x00, NULL}, Result, MaxResultLen, ResultLen, sw, tlv);
}
2017-11-25 10:28:02 +08:00
int EMVInternalAuthenticate(bool LeaveFieldON, uint8_t *DDOL, size_t DDOLLen, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw, struct tlvdb *tlv) {
return EMVExchange(LeaveFieldON, (sAPDU){0x00, 0x88, 0x00, 0x00, DDOLLen, DDOL}, Result, MaxResultLen, ResultLen, sw, tlv);
}
int MSCComputeCryptoChecksum(bool LeaveFieldON, uint8_t *UDOL, uint8_t UDOLlen, uint8_t *Result, size_t MaxResultLen, size_t *ResultLen, uint16_t *sw, struct tlvdb *tlv) {
return EMVExchange(LeaveFieldON, (sAPDU){0x80, 0x2a, 0x8e, 0x80, UDOLlen, UDOL}, Result, MaxResultLen, ResultLen, sw, tlv);
}
// Authentication
static struct emv_pk *get_ca_pk(struct tlvdb *db) {
const struct tlv *df_tlv = tlvdb_get(db, 0x84, NULL);
const struct tlv *caidx_tlv = tlvdb_get(db, 0x8f, NULL);
if (!df_tlv || !caidx_tlv || df_tlv->len < 6 || caidx_tlv->len != 1)
return NULL;
PrintAndLogEx(NORMAL, "CA public key index 0x%0x", caidx_tlv->value[0]);
return emv_pk_get_ca_pk(df_tlv->value, caidx_tlv->value[0]);
}
int trSDA(struct tlvdb *tlv) {
struct emv_pk *pk = get_ca_pk(tlv);
if (!pk) {
PrintAndLogEx(WARNING, "Error: Key not found. Exit.");
return 2;
}
struct emv_pk *issuer_pk = emv_pki_recover_issuer_cert(pk, tlv);
if (!issuer_pk) {
emv_pk_free(pk);
PrintAndLogEx(WARNING, "Error: Issuer certificate not found. Exit.");
return 2;
}
PrintAndLogEx(SUCCESS, "Issuer PK recovered. RID %02hhx:%02hhx:%02hhx:%02hhx:%02hhx IDX %02hhx CSN %02hhx:%02hhx:%02hhx",
issuer_pk->rid[0],
issuer_pk->rid[1],
issuer_pk->rid[2],
issuer_pk->rid[3],
issuer_pk->rid[4],
issuer_pk->index,
issuer_pk->serial[0],
issuer_pk->serial[1],
issuer_pk->serial[2]
);
const struct tlv *sda_tlv = tlvdb_get(tlv, 0x21, NULL);
if (!sda_tlv || sda_tlv->len < 1) {
emv_pk_free(issuer_pk);
emv_pk_free(pk);
PrintAndLogEx(WARNING, "Error: Can't find input list for Offline Data Authentication. Exit.");
return 3;
}
struct tlvdb *dac_db = emv_pki_recover_dac(issuer_pk, tlv, sda_tlv);
if (dac_db) {
const struct tlv *dac_tlv = tlvdb_get(dac_db, 0x9f45, NULL);
PrintAndLogEx(NORMAL, "SDA verified OK. (%02hhx:%02hhx)\n", dac_tlv->value[0], dac_tlv->value[1]);
tlvdb_add(tlv, dac_db);
} else {
emv_pk_free(issuer_pk);
emv_pk_free(pk);
PrintAndLogEx(WARNING, "Error: SSAD verify error");
return 4;
}
emv_pk_free(issuer_pk);
emv_pk_free(pk);
return 0;
}
static const unsigned char default_ddol_value[] = {0x9f, 0x37, 0x04};
static struct tlv default_ddol_tlv = {.tag = 0x9f49, .len = 3, .value = default_ddol_value };
int trDDA(bool decodeTLV, struct tlvdb *tlv) {
uint8_t buf[APDU_RES_LEN] = {0};
size_t len = 0;
uint16_t sw = 0;
struct emv_pk *pk = get_ca_pk(tlv);
if (!pk) {
PrintAndLogEx(WARNING, "Error: Key not found. Exit.");
return 2;
}
const struct tlv *sda_tlv = tlvdb_get(tlv, 0x21, NULL);
if (!sda_tlv || sda_tlv->len < 1) {
emv_pk_free(pk);
PrintAndLogEx(WARNING, "Error: Can't find input list for Offline Data Authentication. Exit.");
return 3;
}
struct emv_pk *issuer_pk = emv_pki_recover_issuer_cert(pk, tlv);
if (!issuer_pk) {
emv_pk_free(pk);
PrintAndLogEx(WARNING, "Error: Issuer certificate not found. Exit.");
return 2;
}
PrintAndLogEx(SUCCESS, "Issuer PK recovered. RID %02hhx:%02hhx:%02hhx:%02hhx:%02hhx IDX %02hhx CSN %02hhx:%02hhx:%02hhx\n",
issuer_pk->rid[0],
issuer_pk->rid[1],
issuer_pk->rid[2],
issuer_pk->rid[3],
issuer_pk->rid[4],
issuer_pk->index,
issuer_pk->serial[0],
issuer_pk->serial[1],
issuer_pk->serial[2]
);
struct emv_pk *icc_pk = emv_pki_recover_icc_cert(issuer_pk, tlv, sda_tlv);
if (!icc_pk) {
emv_pk_free(pk);
emv_pk_free(issuer_pk);
PrintAndLogEx(WARNING, "Error: ICC setrificate not found. Exit.");
return 2;
}
PrintAndLogEx(SUCCESS, "ICC PK recovered. RID %02hhx:%02hhx:%02hhx:%02hhx:%02hhx IDX %02hhx CSN %02hhx:%02hhx:%02hhx\n",
icc_pk->rid[0],
icc_pk->rid[1],
icc_pk->rid[2],
icc_pk->rid[3],
icc_pk->rid[4],
icc_pk->index,
icc_pk->serial[0],
icc_pk->serial[1],
icc_pk->serial[2]
);
struct emv_pk *icc_pe_pk = emv_pki_recover_icc_pe_cert(issuer_pk, tlv);
if (!icc_pe_pk) {
PrintAndLogEx(WARNING, "WARNING: ICC PE PK recover error. ");
} else {
PrintAndLogEx(SUCCESS, "ICC PE PK recovered. RID %02hhx:%02hhx:%02hhx:%02hhx:%02hhx IDX %02hhx CSN %02hhx:%02hhx:%02hhx\n",
icc_pe_pk->rid[0],
icc_pe_pk->rid[1],
icc_pe_pk->rid[2],
icc_pe_pk->rid[3],
icc_pe_pk->rid[4],
icc_pe_pk->index,
icc_pe_pk->serial[0],
icc_pe_pk->serial[1],
icc_pe_pk->serial[2]
);
}
// 9F4B: Signed Dynamic Application Data
const struct tlv *sdad_tlv = tlvdb_get(tlv, 0x9f4b, NULL);
// DDA with internal authenticate OR fDDA with filled 0x9F4B tag (GPO result)
// EMV kernel3 v2.4, contactless book C-3, C.1., page 147
if (sdad_tlv) {
PrintAndLogEx(NORMAL, "\n* * Got Signed Dynamic Application Data (9F4B) form GPO. Maybe fDDA...");
const struct tlvdb *atc_db = emv_pki_recover_atc_ex(icc_pk, tlv, true);
if (!atc_db) {
PrintAndLogEx(WARNING, "Error: Can't recover IDN (ICC Dynamic Number)");
emv_pk_free(pk);
emv_pk_free(issuer_pk);
emv_pk_free(icc_pk);
return 8;
}
// 9f36 Application Transaction Counter (ATC)
const struct tlv *atc_tlv = tlvdb_get(atc_db, 0x9f36, NULL);
if(atc_tlv) {
PrintAndLogEx(NORMAL, "\nATC (Application Transaction Counter) [%zu] %s", atc_tlv->len, sprint_hex_inrow(atc_tlv->value, atc_tlv->len));
const struct tlv *core_atc_tlv = tlvdb_get(tlv, 0x9f36, NULL);
if(tlv_equal(core_atc_tlv, atc_tlv)) {
PrintAndLogEx(SUCCESS, "ATC check OK.");
PrintAndLogEx(SUCCESS, "fDDA (fast DDA) verified OK.");
} else {
PrintAndLogEx(WARNING, "Error: fDDA verified, but ATC in the certificate and ATC in the record not the same.");
}
} else {
PrintAndLogEx(NORMAL, "\nERROR: fDDA (fast DDA) verify error");
emv_pk_free(pk);
emv_pk_free(issuer_pk);
emv_pk_free(icc_pk);
return 9;
}
} else {
struct tlvdb *dac_db = emv_pki_recover_dac(issuer_pk, tlv, sda_tlv);
if (dac_db) {
const struct tlv *dac_tlv = tlvdb_get(dac_db, 0x9f45, NULL);
PrintAndLogEx(NORMAL, "SDA verified OK. (%02hhx:%02hhx)\n", dac_tlv->value[0], dac_tlv->value[1]);
tlvdb_add(tlv, dac_db);
} else {
PrintAndLogEx(WARNING, "Error: SSAD verify error");
emv_pk_free(pk);
emv_pk_free(issuer_pk);
emv_pk_free(icc_pk);
return 4;
}
PrintAndLogEx(NORMAL, "\n* Calc DDOL");
const struct tlv *ddol_tlv = tlvdb_get(tlv, 0x9f49, NULL);
if (!ddol_tlv) {
ddol_tlv = &default_ddol_tlv;
PrintAndLogEx(NORMAL, "DDOL [9f49] not found. Using default DDOL");
}
struct tlv *ddol_data_tlv = dol_process(ddol_tlv, tlv, 0);
if (!ddol_data_tlv) {
PrintAndLogEx(WARNING, "Error: Can't create DDOL TLV");
emv_pk_free(pk);
emv_pk_free(issuer_pk);
emv_pk_free(icc_pk);
return 5;
}
PrintAndLogEx(NORMAL, "DDOL data[%d]: %s", ddol_data_tlv->len, sprint_hex(ddol_data_tlv->value, ddol_data_tlv->len));
PrintAndLogEx(NORMAL, "\n* Internal Authenticate");
int res = EMVInternalAuthenticate(true, (uint8_t *)ddol_data_tlv->value, ddol_data_tlv->len, buf, sizeof(buf), &len, &sw, NULL);
if (res) {
PrintAndLogEx(WARNING, "Internal Authenticate error(%d): %4x. Exit...", res, sw);
free(ddol_data_tlv);
emv_pk_free(pk);
emv_pk_free(issuer_pk);
emv_pk_free(icc_pk);
return 6;
}
struct tlvdb *dda_db = NULL;
if (buf[0] == 0x80) {
if (len < 3 ) {
PrintAndLogEx(WARNING, "Error: Internal Authenticate format1 parsing error. length=%d", len);
} else {
// 9f4b Signed Dynamic Application Data
dda_db = tlvdb_fixed(0x9f4b, len - 2, buf + 2);
tlvdb_add(tlv, dda_db);
if (decodeTLV){
PrintAndLogEx(NORMAL, "* * Decode response format 1:");
TLVPrintFromTLV(dda_db);
}
}
} else {
dda_db = tlvdb_parse_multi(buf, len);
if(!dda_db) {
PrintAndLogEx(WARNING, "Error: Can't parse Internal Authenticate result as TLV");
free(ddol_data_tlv);
emv_pk_free(pk);
emv_pk_free(issuer_pk);
emv_pk_free(icc_pk);
return 7;
}
tlvdb_add(tlv, dda_db);
if (decodeTLV)
TLVPrintFromTLV(dda_db);
}
struct tlvdb *idn_db = emv_pki_recover_idn_ex(icc_pk, dda_db, ddol_data_tlv, true);
free(ddol_data_tlv);
if (!idn_db) {
PrintAndLogEx(WARNING, "Error: Can't recover IDN (ICC Dynamic Number)");
tlvdb_free(dda_db);
emv_pk_free(pk);
emv_pk_free(issuer_pk);
emv_pk_free(icc_pk);
return 8;
}
tlvdb_free(dda_db);
// 9f4c ICC Dynamic Number
const struct tlv *idn_tlv = tlvdb_get(idn_db, 0x9f4c, NULL);
if(idn_tlv) {
PrintAndLogEx(NORMAL, "\nIDN (ICC Dynamic Number) [%zu] %s", idn_tlv->len, sprint_hex_inrow(idn_tlv->value, idn_tlv->len));
PrintAndLogEx(NORMAL, "DDA verified OK.");
tlvdb_add(tlv, idn_db);
tlvdb_free(idn_db);
} else {
PrintAndLogEx(NORMAL, "\nERROR: DDA verify error");
tlvdb_free(idn_db);
emv_pk_free(pk);
emv_pk_free(issuer_pk);
emv_pk_free(icc_pk);
return 9;
}
}
emv_pk_free(pk);
emv_pk_free(issuer_pk);
emv_pk_free(icc_pk);
return 0;
}
int trCDA(struct tlvdb *tlv, struct tlvdb *ac_tlv, struct tlv *pdol_data_tlv, struct tlv *ac_data_tlv) {
struct emv_pk *pk = get_ca_pk(tlv);
if (!pk) {
PrintAndLogEx(WARNING, "Error: Key not found. Exit.");
return 2;
}
const struct tlv *sda_tlv = tlvdb_get(tlv, 0x21, NULL);
if (!sda_tlv || sda_tlv->len < 1) {
PrintAndLogEx(WARNING, "Error: Can't find input list for Offline Data Authentication. Exit.");
emv_pk_free(pk);
return 3;
}
struct emv_pk *issuer_pk = emv_pki_recover_issuer_cert(pk, tlv);
if (!issuer_pk) {
PrintAndLogEx(WARNING, "Error: Issuer certificate not found. Exit.");
emv_pk_free(pk);
return 2;
}
PrintAndLogEx(SUCCESS, "Issuer PK recovered. RID %02hhx:%02hhx:%02hhx:%02hhx:%02hhx IDX %02hhx CSN %02hhx:%02hhx:%02hhx\n",
issuer_pk->rid[0],
issuer_pk->rid[1],
issuer_pk->rid[2],
issuer_pk->rid[3],
issuer_pk->rid[4],
issuer_pk->index,
issuer_pk->serial[0],
issuer_pk->serial[1],
issuer_pk->serial[2]
);
struct emv_pk *icc_pk = emv_pki_recover_icc_cert(issuer_pk, tlv, sda_tlv);
if (!icc_pk) {
PrintAndLogEx(WARNING, "Error: ICC setrificate not found. Exit.");
emv_pk_free(pk);
emv_pk_free(issuer_pk);
return 2;
}
PrintAndLogEx(SUCCESS, "ICC PK recovered. RID %02hhx:%02hhx:%02hhx:%02hhx:%02hhx IDX %02hhx CSN %02hhx:%02hhx:%02hhx\n",
icc_pk->rid[0],
icc_pk->rid[1],
icc_pk->rid[2],
icc_pk->rid[3],
icc_pk->rid[4],
icc_pk->index,
icc_pk->serial[0],
icc_pk->serial[1],
icc_pk->serial[2]
);
struct tlvdb *dac_db = emv_pki_recover_dac(issuer_pk, tlv, sda_tlv);
if (dac_db) {
const struct tlv *dac_tlv = tlvdb_get(dac_db, 0x9f45, NULL);
PrintAndLogEx(NORMAL, "SSAD verified OK. (%02hhx:%02hhx)", dac_tlv->value[0], dac_tlv->value[1]);
tlvdb_add(tlv, dac_db);
} else {
PrintAndLogEx(WARNING, "Error: SSAD verify error");
emv_pk_free(pk);
emv_pk_free(issuer_pk);
emv_pk_free(icc_pk);
return 4;
}
PrintAndLogEx(NORMAL, "\n* * Check Signed Dynamic Application Data (SDAD)");
struct tlvdb *idn_db = emv_pki_perform_cda_ex(icc_pk, tlv, ac_tlv,
pdol_data_tlv, // pdol
ac_data_tlv, // cdol1
NULL, // cdol2
true);
if (idn_db) {
const struct tlv *idn_tlv = tlvdb_get(idn_db, 0x9f4c, NULL);
PrintAndLogEx(NORMAL, "\nIDN (ICC Dynamic Number) [%zu] %s", idn_tlv->len, sprint_hex_inrow(idn_tlv->value, idn_tlv->len));
PrintAndLogEx(NORMAL, "CDA verified OK.");
tlvdb_add(tlv, idn_db);
} else {
PrintAndLogEx(NORMAL, "\nERROR: CDA verify error");
}
emv_pk_free(pk);
emv_pk_free(issuer_pk);
emv_pk_free(icc_pk);
return 0;
}