Chg: key gen algo refactoring. This will help in next step when implementing new json key template formats

This commit is contained in:
iceman1001 2020-01-02 11:42:57 +01:00
parent a0eae0d273
commit 1c98888ee5
2 changed files with 349 additions and 0 deletions

301
common/generator.c Normal file
View file

@ -0,0 +1,301 @@
//-----------------------------------------------------------------------------
// Copyright (C) 2019 iceman <iceman at iuse.se>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Generator commands
//-----------------------------------------------------------------------------
#include "generator.h"
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <inttypes.h>
#include <string.h>
#include "commonutil.h"
#include "util.h"
#include "pm3_cmd.h"
#include "ui.h"
// Implemetation tips:
// For each implementation of the algos, I recommend adding a self test for easy "simple unit" tests when Travic CI / Appveyour runs.
// See special note for MFC based algos.
//------------------------------------
// MFU/NTAG PWD/PACK generation stuff
// Italian transport system
// Amiibo
// Lego Dimension
// XYZ 3D printing
// Vinglock
//------------------------------------
const uint32_t c_D[] = {
0x6D835AFC, 0x7D15CD97, 0x0942B409, 0x32F9C923, 0xA811FB02, 0x64F121E8,
0xD1CC8B4E, 0xE8873E6F, 0x61399BBB, 0xF1B91926, 0xAC661520, 0xA21A31C9,
0xD424808D, 0xFE118E07, 0xD18E728D, 0xABAC9E17, 0x18066433, 0x00E18E79,
0x65A77305, 0x5AE9E297, 0x11FC628C, 0x7BB3431F, 0x942A8308, 0xB2F8FD20,
0x5728B869, 0x30726D5A
};
static void transform_D(uint8_t *ru) {
//Transform
uint8_t i;
uint8_t p = 0;
uint32_t v1 = ((ru[3] << 24) | (ru[2] << 16) | (ru[1] << 8) | ru[0]) + c_D[p++];
uint32_t v2 = ((ru[7] << 24) | (ru[6] << 16) | (ru[5] << 8) | ru[4]) + c_D[p++];
for (i = 0; i < 12; i += 2) {
uint32_t xor1 = v1 ^ v2;
uint32_t t1 = ROTL(xor1, v2 & 0x1F) + c_D[p++];
uint32_t xor2 = v2 ^ t1;
uint32_t t2 = ROTL(xor2, t1 & 0x1F) + c_D[p++];
uint32_t xor3 = t1 ^ t2;
uint32_t xor4 = t2 ^ v1;
v1 = ROTL(xor3, t2 & 0x1F) + c_D[p++];
v2 = ROTL(xor4, v1 & 0x1F) + c_D[p++];
}
//Re-use ru
ru[0] = v1 & 0xFF;
ru[1] = (v1 >> 8) & 0xFF;
ru[2] = (v1 >> 16) & 0xFF;
ru[3] = (v1 >> 24) & 0xFF;
ru[4] = v2 & 0xFF;
ru[5] = (v2 >> 8) & 0xFF;
ru[6] = (v2 >> 16) & 0xFF;
ru[7] = (v2 >> 24) & 0xFF;
}
// Transport system (IT) pwd generation algo nickname A.
uint32_t ul_ev1_pwdgenA(uint8_t *uid) {
uint8_t pos = (uid[3] ^ uid[4] ^ uid[5] ^ uid[6]) % 32;
uint32_t xortable[] = {
0x4f2711c1, 0x07D7BB83, 0x9636EF07, 0xB5F4460E, 0xF271141C, 0x7D7BB038, 0x636EF871, 0x5F4468E3,
0x271149C7, 0xD7BB0B8F, 0x36EF8F1E, 0xF446863D, 0x7114947A, 0x7BB0B0F5, 0x6EF8F9EB, 0x44686BD7,
0x11494fAF, 0xBB0B075F, 0xEF8F96BE, 0x4686B57C, 0x1494F2F9, 0xB0B07DF3, 0xF8F963E6, 0x686B5FCC,
0x494F2799, 0x0B07D733, 0x8F963667, 0x86B5F4CE, 0x94F2719C, 0xB07D7B38, 0xF9636E70, 0x6B5F44E0
};
uint8_t entry[] = {0x00, 0x00, 0x00, 0x00};
uint8_t pwd[] = {0x00, 0x00, 0x00, 0x00};
num_to_bytes(xortable[pos], 4, entry);
pwd[0] = entry[0] ^ uid[1] ^ uid[2] ^ uid[3];
pwd[1] = entry[1] ^ uid[0] ^ uid[2] ^ uid[4];
pwd[2] = entry[2] ^ uid[0] ^ uid[1] ^ uid[5];
pwd[3] = entry[3] ^ uid[6];
return (uint32_t)bytes_to_num(pwd, 4);
}
// Amiibo pwd generation algo nickname B. (very simple)
uint32_t ul_ev1_pwdgenB(uint8_t *uid) {
uint8_t pwd[] = {0x00, 0x00, 0x00, 0x00};
pwd[0] = uid[1] ^ uid[3] ^ 0xAA;
pwd[1] = uid[2] ^ uid[4] ^ 0x55;
pwd[2] = uid[3] ^ uid[5] ^ 0xAA;
pwd[3] = uid[4] ^ uid[6] ^ 0x55;
return (uint32_t)bytes_to_num(pwd, 4);
}
// Lego Dimension pwd generation algo nickname C.
uint32_t ul_ev1_pwdgenC(uint8_t *uid) {
uint32_t pwd = 0;
uint8_t base[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x28,
0x63, 0x29, 0x20, 0x43, 0x6f, 0x70, 0x79, 0x72,
0x69, 0x67, 0x68, 0x74, 0x20, 0x4c, 0x45, 0x47,
0x4f, 0x20, 0x32, 0x30, 0x31, 0x34, 0xaa, 0xaa
};
memcpy(base, uid, 7);
for (int i = 0; i < 32; i += 4) {
uint32_t b = *(uint32_t *)(base + i);
pwd = b + ROTR(pwd, 25) + ROTR(pwd, 10) - pwd;
}
return BSWAP_32(pwd);
}
// XYZ 3d printing pwd generation algo nickname D.
uint32_t ul_ev1_pwdgenD(uint8_t *uid) {
uint8_t i;
uint8_t r = (uid[1] + uid[3] + uid[5]) & 7; // rotation offset
uint8_t ru[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; // rotated UID
for (i = 0; i < 7; i++)
ru[(i + r) & 7] = uid[i];
transform_D(ru);
// calc key
uint32_t pwd = 0;
r = (ru[0] + ru[2] + ru[4] + ru[6]) & 3; // offset
for (i = 0; i < 4; i++)
pwd = ru[i + r] + (pwd << 8);
return BSWAP_32(pwd);
}
// pack generation for algo 1-3
uint16_t ul_ev1_packgenA(uint8_t *uid) {
uint16_t pack = (uid[0] ^ uid[1] ^ uid[2]) << 8 | (uid[2] ^ 8);
return pack;
}
uint16_t ul_ev1_packgenB(uint8_t *uid) {
return 0x8080;
}
uint16_t ul_ev1_packgenC(uint8_t *uid) {
return 0xaa55;
}
uint16_t ul_ev1_packgenD(uint8_t *uid) {
uint8_t i;
//Rotate
uint8_t r = (uid[2] + uid[5]) & 7; //Rotation offset
uint8_t ru[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; //Rotated UID
for (i = 0; i < 7; i++)
ru[(i + r) & 7] = uid[i];
transform_D(ru);
//Calc pack
uint32_t p = 0;
for (i = 0; i < 8; i++)
p += ru[i] * 13;
p ^= 0x5555;
return BSWAP_16(p & 0xFFFF);
}
//------------------------------------
// MFC key generation stuff
// Each algo implementation should offer two key generation functions.
// 1. function that returns all keys
// 2. function that returns one key, target sector | block
//------------------------------------
//------------------------------------
// MFC keyfile generation stuff
//------------------------------------
// Vinglock
void mfc_algo_ving_one(uint8_t *uid, uint8_t sector) {
return 0;
}
void mfc_algo_ving_all(uint8_t *uid, uint8_t *keys) {}
// Yale Doorman
void mfc_algo_yale_one(uint8_t *uid, uint8_t sector) {
return 0;
}
void mfc_algo_yale_all(uint8_t *uid, uint8_t *keys) {}
// Saflok / Maid UID to key.
uint64_t mfc_algo_saflok_one(uint8_t *uid, uint8_t sector) {
return 0;
}
void mfc_algo_saflok_all(uint8_t *uid, uint8_t *keys) {
}
// MIZIP algo
void mfc_algo_mizip_one(uint8_t *uid, uint8_t sector) {
return 0;
}
// returns all Mifare Mini (MFM) 10 keys.
// keys must have 5*2*6 = 60bytes space
void mfc_algo_mizip_all(uint8_t *uid, uint8_t *keys) {
uint64_t xor_tbl[] = {
0x09125a2589e5ULL, 0xF12C8453D821ULL,
0xAB75C937922FULL, 0x73E799FE3241ULL,
0xE27241AF2C09ULL, 0xAA4D137656AEULL,
0x317AB72F4490ULL, 0xB01327272DFDULL
};
// A
num_to_bytes(0xA0A1A2A3A4A5ULL, 6, keys);
for (uint8_t i = 0; i < 4; i++) {
uint64_t a =
(uint64_t)(uid[0] ^ xor_tbl[i]) << 40 |
(uint64_t)(uid[1] ^ xor_tbl[i]) << 32 |
(uint64_t)(uid[2] ^ xor_tbl[i]) << 24 |
(uint64_t)(uid[3] ^ xor_tbl[i]) << 16 |
(uint64_t)(uid[1] ^ xor_tbl[i]) << 8 |
(uint64_t)(uid[2] ^ xor_tbl[i])
;
num_to_bytes(a, 6, keys + (1 * i * 6));
}
// B
num_to_bytes(0xB4C132439eefULL, 6, keys + (5 * 6));
for (uint8_t i = 0; i < 4; i++) {
uint64_t b =
(uint64_t)(uid[2] ^ xor_tbl[i + 1]) << 40 |
(uint64_t)(uid[3] ^ xor_tbl[i + 1]) << 32 |
(uint64_t)(uid[0] ^ xor_tbl[i + 1]) << 24 |
(uint64_t)(uid[1] ^ xor_tbl[i + 1]) << 16 |
(uint64_t)(uid[2] ^ xor_tbl[i + 1]) << 8 |
(uint64_t)(uid[3] ^ xor_tbl[i + 1])
;
num_to_bytes(b, 6, keys + 30 + (1 * i * 6));
}
}
// Disney Infinity algo
void mfc_algo_di_one(uint8_t *uid, uint8_t sector) {
return 0;
}
void mfc_algo_di_all(uint8_t *uid, uint8_t *keys) {}
// Skylanders
void mfc_algo_sky_one(uint8_t *uid, uint8_t sector) {
return 0;
}
void mfc_algo_sky_all(uint8_t *uid, uint8_t *keys) {}
//------------------------------------
// Self tests
//------------------------------------
int generator_selftest() {
PrintAndLogEx(SUCCESS, "Generators selftest");
PrintAndLogEx(SUCCESS, "-------------------");
bool success;
uint8_t uid1[] = {0x04, 0x11, 0x12, 0x11, 0x12, 0x11, 0x10};
uint32_t pwd1 = ul_ev1_pwdgenA(uid1);
success = (pwd1 == 0x8432EB17);
PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %08X | %s", sprint_hex(uid1, 7), pwd1, success ? "OK" : "->8432EB17<-");
uint8_t uid2[] = {0x04, 0x1f, 0x98, 0xea, 0x1e, 0x3e, 0x81};
uint32_t pwd2 = ul_ev1_pwdgenB(uid2);
success = (pwd2 == 0x5fd37eca);
PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %08X | %s", sprint_hex(uid2, 7), pwd2, success ? "OK" : "->5fd37eca<--");
uint8_t uid3[] = {0x04, 0x62, 0xB6, 0x8A, 0xB4, 0x42, 0x80};
uint32_t pwd3 = ul_ev1_pwdgenC(uid3);
success = (pwd3 == 0x5a349515);
PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %08X | %s", sprint_hex(uid3, 7), pwd3, success ? "OK" : "->5a349515<--");
uint8_t uid4[] = {0x04, 0xC5, 0xDF, 0x4A, 0x6D, 0x51, 0x80};
uint32_t pwd4 = ul_ev1_pwdgenD(uid4);
success = (pwd4 == 0x72B1EC61);
PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %08X | %s", sprint_hex(uid4, 7), pwd4, success ? "OK" : "->72B1EC61<--");
uint8_t uid5[] = {0x11, 0x22, 0x33, 0x44};
uint64_t key1 = mfc_algo_a(uid5);
success = (key1 == 0xD1E2AA68E39A);
PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %"PRIx64" | %s", sprint_hex(uid5, 4), key1, success ? "OK" : "->D1E2AA68E39A<--");
PrintAndLogEx(SUCCESS, "-------------------");
return PM3_SUCCESS;
}

48
common/generator.h Normal file
View file

@ -0,0 +1,48 @@
//-----------------------------------------------------------------------------
// Copyright (C) 2019 iceman <iceman at iuse.se>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Generator commands
//-----------------------------------------------------------------------------
#ifndef GENERATOR_H__
#define GENERATOR_H__
#include "common.h"
uint32_t ul_ev1_pwdgenA(uint8_t *uid);
uint32_t ul_ev1_pwdgenB(uint8_t *uid);
uint32_t ul_ev1_pwdgenC(uint8_t *uid);
uint32_t ul_ev1_pwdgenD(uint8_t *uid);
uint16_t ul_ev1_packgenA(uint8_t *uid);
uint16_t ul_ev1_packgenB(uint8_t *uid);
uint16_t ul_ev1_packgenC(uint8_t *uid);
uint16_t ul_ev1_packgenD(uint8_t *uid);
uint64_t mfc_algo_ving_one(uint8_t *uid, uint8_t sector);
void mfc_algo_ving_all(uint8_t *uid, uint8_t *keys);
uint64_t mfc_algo_yale_one(uint8_t *uid, uint8_t sector);
void mfc_algo_yale_all(uint8_t *uid, uint8_t *keys);
uint64_t mfc_algo_saflok_one(uint8_t *uid, uint8_t sector);
void mfc_algo_saflok_all(uint8_t *uid, uint8_t *keys);
uint64_t mfc_algo_saflok_one(uint8_t *uid, uint8_t sector);
void mfc_algo_saflok_all(uint8_t *uid, uint8_t *keys);
uint64_t mfc_algo_mizip_one(uint8_t *uid, uint8_t sector);
void mfc_algo_mizip_all(uint8_t *uid, uint8_t *keys);
uint64_t mfc_algo_di_one(uint8_t *uid, uint8_t sector);
void mfc_algo_di_all(uint8_t *uid, uint8_t *keys);
uint64_t mfc_algo_sky_one(uint8_t *uid, uint8_t sector);
void mfc_algo_sky_all(uint8_t *uid, uint8_t *keys);
int generator_selftest();
#endif