lf demod additions

data fskfcdetect (field clock and bit clock detect for FSK)
data fskdemodawid -AWID demod/decode
data fskdemodpyramid - AWID demod/decode
This commit is contained in:
marshmellow42 2015-01-18 18:13:32 -05:00
parent dc065b4e34
commit 1e090a61a1
5 changed files with 690 additions and 145 deletions

View file

@ -327,7 +327,8 @@ int Cmdmandecoderaw(const char *Cmd)
//by marshmellow
//biphase decode
//take 01 or 10 = 0 and 11 or 00 = 1
//takes 1 argument "offset" default = 0 if 1 it will shift the decode by one bit
//takes 2 arguments "offset" default = 0 if 1 it will shift the decode by one bit
// and "invert" default = 0 if 1 it will invert output
// since it is not like manchester and doesn't have an incorrect bit pattern we
// cannot determine if our decode is correct or if it should be shifted by one bit
// the argument offset allows us to manually shift if the output is incorrect
@ -339,8 +340,9 @@ int CmdBiphaseDecodeRaw(const char *Cmd)
int errCnt=0;
size_t size=0;
int offset=0;
int invert=0;
int high=0, low=0;
sscanf(Cmd, "%i", &offset);
sscanf(Cmd, "%i %i", &offset, &invert);
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
//get graphbuffer & high and low
for (;i<DemodBufferLen;++i){
@ -353,7 +355,7 @@ int CmdBiphaseDecodeRaw(const char *Cmd)
return 0;
}
size=i;
errCnt=BiphaseRawDecode(BitStream, &size, offset);
errCnt=BiphaseRawDecode(BitStream, &size, offset, invert);
if (errCnt>=20){
PrintAndLog("Too many errors attempting to decode: %d",errCnt);
return 0;
@ -714,6 +716,228 @@ int CmdFSKdemodIO(const char *Cmd)
DemodBufferLen=64;
return 1;
}
//by marshmellow
//AWID Prox demod - FSK RF/50 with preamble of 00000001 (always a 96 bit data stream)
//print full AWID Prox ID and some bit format details if found
int CmdFSKdemodAWID(const char *Cmd)
{
int verbose=1;
sscanf(Cmd, "%i", &verbose);
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t size = getFromGraphBuf(BitStream);
//get binary from fsk wave
int idx = AWIDdemodFSK(BitStream, size);
if (idx<=0){
if (verbose){
if (idx == -1)
PrintAndLog("Error: not enough samples");
else if (idx == -2)
PrintAndLog("Error: only noise found - no waves");
else if (idx == -3)
PrintAndLog("Error: problem during FSK demod");
// else if (idx == -3)
// PrintAndLog("Error: thought we had a tag but the parity failed");
else if (idx == -4)
PrintAndLog("Error: AWID preamble not found");
}
return 0;
}
// Index map
// 0 10 20 30 40 50 60
// | | | | | | |
// 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
// -----------------------------------------------------------------------------
// 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
// premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
// |---26 bit---| |-----117----||-------------142-------------|
// b = format bit len, o = odd parity of last 3 bits
// f = facility code, c = card number
// w = wiegand parity
// (26 bit format shown)
//get raw ID before removing parities
uint32_t rawLo = bytebits_to_byte(BitStream+idx+64,32);
uint32_t rawHi = bytebits_to_byte(BitStream+idx+32,32);
uint32_t rawHi2 = bytebits_to_byte(BitStream+idx,32);
size = removeParity(BitStream, idx+8, 4, 1, 88);
if (size != 66){
if (verbose) PrintAndLog("Error: at parity check-tag size does not match AWID format");
return 0;
}
// ok valid card found!
// Index map
// 0 10 20 30 40 50 60
// | | | | | | |
// 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
// -----------------------------------------------------------------------------
// 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
// bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
// |26 bit| |-117--| |-----142------|
// b = format bit len, o = odd parity of last 3 bits
// f = facility code, c = card number
// w = wiegand parity
// (26 bit format shown)
uint32_t fc = 0;
uint32_t cardnum = 0;
uint32_t code1 = 0;
uint32_t code2 = 0;
uint8_t fmtLen = bytebits_to_byte(BitStream,8);
if (fmtLen==26){
fc = bytebits_to_byte(BitStream+9, 8);
cardnum = bytebits_to_byte(BitStream+17, 16);
code1 = bytebits_to_byte(BitStream+8,fmtLen);
PrintAndLog("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
} else {
cardnum = bytebits_to_byte(BitStream+8+(fmtLen-17), 16);
if (fmtLen>32){
code1 = bytebits_to_byte(BitStream+8,fmtLen-32);
code2 = bytebits_to_byte(BitStream+8+(fmtLen-32),32);
PrintAndLog("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
} else{
code1 = bytebits_to_byte(BitStream+8,fmtLen);
PrintAndLog("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
}
}
//todo - convert hi2, hi, lo to demodbuffer for future sim/clone commands
return 1;
}
//by marshmellow
//Pyramid Prox demod - FSK RF/50 with preamble of 0000000000000001 (always a 128 bit data stream)
//print full Farpointe Data/Pyramid Prox ID and some bit format details if found
int CmdFSKdemodPyramid(const char *Cmd)
{
int verbose=1;
sscanf(Cmd, "%i", &verbose);
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t size = getFromGraphBuf(BitStream);
//get binary from fsk wave
int idx = PyramiddemodFSK(BitStream, size);
if (idx < 0){
if (verbose){
if (idx == -5)
PrintAndLog("Error: not enough samples");
else if (idx == -1)
PrintAndLog("Error: only noise found - no waves");
else if (idx == -2)
PrintAndLog("Error: problem during FSK demod");
//else if (idx == -3)
// PrintAndLog("Error: thought we had a tag but the parity failed");
else if (idx == -4)
PrintAndLog("Error: AWID preamble not found");
}
PrintAndLog("idx: %d",idx);
return 0;
}
//PrintAndLog("DEBUG: idx: %d",idx);
// Index map
// 0 10 20 30 40 50 60
// | | | | | | |
// 0123456 7 8901234 5 6789012 3 4567890 1 2345678 9 0123456 7 8901234 5 6789012 3
// -----------------------------------------------------------------------------
// 0000000 0 0000000 1 0000000 1 0000000 1 0000000 1 0000000 1 0000000 1 0000000 1
// premable xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o
// 64 70 80 90 100 110 120
// | | | | | | |
// 4567890 1 2345678 9 0123456 7 8901234 5 6789012 3 4567890 1 2345678 9 0123456 7
// -----------------------------------------------------------------------------
// 0000000 1 0000000 1 0000000 1 0110111 0 0011000 1 0000001 0 0001100 1 1001010 0
// xxxxxxx o xxxxxxx o xxxxxxx o xswffff o ffffccc o ccccccc o ccccccw o ppppppp o
// |---115---||---------71---------|
// s = format start bit, o = odd parity of last 7 bits
// f = facility code, c = card number
// w = wiegand parity, x = extra space for other formats
// p = unknown checksum
// (26 bit format shown)
//get raw ID before removing parities
uint32_t rawLo = bytebits_to_byte(BitStream+idx+96,32);
uint32_t rawHi = bytebits_to_byte(BitStream+idx+64,32);
uint32_t rawHi2 = bytebits_to_byte(BitStream+idx+32,32);
uint32_t rawHi3 = bytebits_to_byte(BitStream+idx,32);
size = removeParity(BitStream, idx+8, 8, 1, 120);
if (size != 105){
if (verbose) PrintAndLog("Error: at parity check-tag size does not match Pyramid format, SIZE: %d, IDX: %d, hi3: %x",size, idx, rawHi3);
return 0;
}
// ok valid card found!
// Index map
// 0 10 20 30 40 50 60 70
// | | | | | | | |
// 01234567890123456789012345678901234567890123456789012345678901234567890
// -----------------------------------------------------------------------
// 00000000000000000000000000000000000000000000000000000000000000000000000
// xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
// 71 80 90 100
// | | | |
// 1 2 34567890 1234567890123456 7 8901234
// ---------------------------------------
// 1 1 01110011 0000000001000110 0 1001010
// s w ffffffff cccccccccccccccc w ppppppp
// |--115-| |------71------|
// s = format start bit, o = odd parity of last 7 bits
// f = facility code, c = card number
// w = wiegand parity, x = extra space for other formats
// p = unknown checksum
// (26 bit format shown)
//find start bit to get fmtLen
idx = 0;
int j;
for (j=0; j<size; j++){
if(BitStream[idx+j]) break;
}
uint8_t fmtLen = size-j-8;
uint32_t fc = 0;
uint32_t cardnum = 0;
uint32_t code1 = 0;
//uint32_t code2 = 0;
if (fmtLen==26){
fc = bytebits_to_byte(BitStream+73, 8);
cardnum = bytebits_to_byte(BitStream+81, 16);
code1 = bytebits_to_byte(BitStream+72,fmtLen);
PrintAndLog("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %x%08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi3, rawHi2, rawHi, rawLo);
} else if (fmtLen==45){
fmtLen=42; //end = 10 bits not 7 like 26 bit fmt
fc = bytebits_to_byte(BitStream+53, 10);
cardnum = bytebits_to_byte(BitStream+63, 32);
PrintAndLog("AWID Found - BitLength: %d, FC: %d, Card: %d - Raw: %x%08x%08x%08x", fmtLen, fc, cardnum, rawHi3, rawHi2, rawHi, rawLo);
} else {
cardnum = bytebits_to_byte(BitStream+81, 16);
if (fmtLen>32){
//code1 = bytebits_to_byte(BitStream+(size-fmtLen),fmtLen-32);
//code2 = bytebits_to_byte(BitStream+(size-32),32);
PrintAndLog("AWID Found - BitLength: %d -unknown BitLength- (%d), Raw: %x%08x%08x%08x", fmtLen, cardnum, rawHi3, rawHi2, rawHi, rawLo);
} else{
//code1 = bytebits_to_byte(BitStream+(size-fmtLen),fmtLen);
PrintAndLog("AWID Found - BitLength: %d -unknown BitLength- (%d), Raw: %x%08x%08x%08x", fmtLen, cardnum, rawHi3, rawHi2, rawHi, rawLo);
}
}
//todo - convert hi2, hi, lo to demodbuffer for future sim/clone commands
return 1;
}
int CmdFSKdemod(const char *Cmd) //old CmdFSKdemod needs updating
{
static const int LowTone[] = {
@ -833,6 +1057,21 @@ int CmdFSKdemod(const char *Cmd) //old CmdFSKdemod needs updating
return 0;
}
int CmdFSKfcDetect(const char *Cmd)
{
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t size = getFromGraphBuf(BitStream);
uint32_t ans = countFC(BitStream, size);
int fc1, fc2, rf1;
fc1 = (ans >> 8) & 0xFF;
fc2 = ans & 0xFF;
rf1 = (ans >>16) & 0xFF;
PrintAndLog("Detected Field Clocks: FC/%d, FC/%d - Bit Clock: RF/%d", fc1, fc2, rf1);
return 1;
}
int CmdDetectNRZpskClockRate(const char *Cmd)
{
GetNRZpskClock("",0,0);
@ -1560,19 +1799,22 @@ static command_t CommandTable[] =
{"help", CmdHelp, 1, "This help"},
{"amp", CmdAmp, 1, "Amplify peaks"},
{"askdemod", Cmdaskdemod, 1, "<0 or 1> -- Attempt to demodulate simple ASK tags"},
{"askmandemod", Cmdaskmandemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate ASK/Manchester tags and output binary (args optional[clock will try Auto-detect])"},
{"askrawdemod", Cmdaskrawdemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate ASK tags and output binary (args optional[clock will try Auto-detect])"},
{"askmandemod", Cmdaskmandemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate ASK/Manchester tags and output binary (args optional)"},
{"askrawdemod", Cmdaskrawdemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate ASK tags and output bin (args optional)"},
{"autocorr", CmdAutoCorr, 1, "<window length> -- Autocorrelation over window"},
{"biphaserawdecode",CmdBiphaseDecodeRaw,1,"[offset] Biphase decode binary stream already in graph buffer (offset = bit to start decode from)"},
{"biphaserawdecode",CmdBiphaseDecodeRaw,1,"[offset] [invert<0|1>] Biphase decode bin stream in demod buffer (offset = 0|1 bits to shift the decode start)"},
{"bitsamples", CmdBitsamples, 0, "Get raw samples as bitstring"},
{"bitstream", CmdBitstream, 1, "[clock rate] -- Convert waveform into a bitstream"},
{"buffclear", CmdBuffClear, 1, "Clear sample buffer and graph window"},
{"dec", CmdDec, 1, "Decimate samples"},
{"detectclock", CmdDetectClockRate, 1, "Detect ASK clock rate"},
{"fskdemod", CmdFSKdemod, 1, "Demodulate graph window as a HID FSK"},
{"fskhiddemod", CmdFSKdemodHID, 1, "Demodulate graph window as a HID FSK using raw"},
{"fskiodemod", CmdFSKdemodIO, 1, "Demodulate graph window as an IO Prox FSK using raw"},
{"fskrawdemod", CmdFSKrawdemod, 1, "[clock rate] [invert] [rchigh] [rclow] Demodulate graph window from FSK to binary (clock = 50)(invert = 1|0)(rchigh = 10)(rclow=8)"},
{"fskawiddemod", CmdFSKdemodAWID, 1, "Demodulate graph window as an AWID FSK tag using raw"},
{"fskfcdetect", CmdFSKfcDetect, 1, "Try to detect the Field Clock of an FSK wave"},
{"fskhiddemod", CmdFSKdemodHID, 1, "Demodulate graph window as a HID FSK tag using raw"},
{"fskiodemod", CmdFSKdemodIO, 1, "Demodulate graph window as an IO Prox tag FSK using raw"},
{"fskpyramiddemod",CmdFSKdemodPyramid,1, "Demodulate graph window as a Pyramid FSK tag using raw"},
{"fskrawdemod", CmdFSKrawdemod, 1, "[clock rate] [invert] [rchigh] [rclow] Demodulate graph window from FSK to bin (clock = 50)(invert = 1|0)(rchigh = 10)(rclow=8)"},
{"grid", CmdGrid, 1, "<x> <y> -- overlay grid on graph window, use zero value to turn off either"},
{"hexsamples", CmdHexsamples, 0, "<bytes> [<offset>] -- Dump big buffer as hex bytes"},
{"hide", CmdHide, 1, "Hide graph window"},
@ -1587,8 +1829,8 @@ static command_t CommandTable[] =
{"plot", CmdPlot, 1, "Show graph window (hit 'h' in window for keystroke help)"},
{"pskclean", CmdPskClean, 1, "Attempt to clean psk wave"},
{"pskdetectclock",CmdDetectNRZpskClockRate, 1, "Detect ASK, PSK, or NRZ clock rate"},
{"pskindalademod",CmdIndalaDecode, 1, "[clock] [invert<0|1>] -- Attempt to demodulate psk indala tags and output ID binary & hex (args optional[clock will try Auto-detect])"},
{"psknrzrawdemod",CmdpskNRZrawDemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate psk or nrz tags and output binary (args optional[clock will try Auto-detect])"},
{"pskindalademod",CmdIndalaDecode, 1, "[clock] [invert<0|1>] -- Attempt to demodulate psk indala tags and output ID binary & hex (args optional)"},
{"psknrzrawdemod",CmdpskNRZrawDemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate psk or nrz tags and output binary (args optional)"},
{"samples", CmdSamples, 0, "[512 - 40000] -- Get raw samples for graph window"},
{"save", CmdSave, 1, "<filename> -- Save trace (from graph window)"},
{"scale", CmdScale, 1, "<int> -- Set cursor display scale"},

View file

@ -26,9 +26,11 @@ int CmdBitstream(const char *Cmd);
int CmdBuffClear(const char *Cmd);
int CmdDec(const char *Cmd);
int CmdDetectClockRate(const char *Cmd);
int CmdFSKdemodAWID(const char *Cmd);
int CmdFSKdemod(const char *Cmd);
int CmdFSKdemodHID(const char *Cmd);
int CmdFSKdemodIO(const char *Cmd);
int CmdFSKdemodPyramid(const char *Cmd);
int CmdFSKrawdemod(const char *Cmd);
int CmdDetectNRZpskClockRate(const char *Cmd);
int CmdpskNRZrawDemod(const char *Cmd);

View file

@ -388,7 +388,7 @@ static void ChkBitstream(const char *str)
}
}
}
//appears to attempt to simulate manchester
int CmdLFSim(const char *Cmd)
{
int i,j;
@ -581,6 +581,16 @@ int CmdLFfind(const char *Cmd)
PrintAndLog("Valid IO Prox ID Found!");
return 1;
}
ans=CmdFSKdemodPyramid("0");
if (ans>0) {
PrintAndLog("Valid Pyramid ID Found!");
return 1;
}
ans=CmdFSKdemodAWID("0");
if (ans>0) {
PrintAndLog("Valid AWID ID Found!");
return 1;
}
ans=CmdFSKdemodHID("");
if (ans>0) {
PrintAndLog("Valid HID Prox ID Found!");

View file

@ -5,13 +5,30 @@
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency commands
// Low frequency demod/decode commands
//-----------------------------------------------------------------------------
#include <stdlib.h>
#include <string.h>
#include "lfdemod.h"
//by marshmellow
//get high and low with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
{
*high=0;
*low=255;
// get high and low thresholds
for (int i=0; i < size; i++){
if (BitStream[i] > *high) *high = BitStream[i];
if (BitStream[i] < *low) *low = BitStream[i];
}
if (*high < 123) return -1; // just noise
*high = (int)(((*high-128)*(((float)fuzzHi)/100))+128);
*low = (int)(((*low-128)*(((float)fuzzLo)/100))+128);
return 1;
}
//by marshmellow
//takes 1s and 0s and searches for EM410x format - output EM ID
uint64_t Em410xDecode(uint8_t *BitStream, size_t size)
@ -72,7 +89,6 @@ uint64_t Em410xDecode(uint8_t *BitStream, size_t size)
int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
{
int i;
int high = 0, low = 255;
*clk=DetectASKClock(BinStream, *size, *clk); //clock default
if (*clk<8) *clk =64;
@ -81,22 +97,12 @@ int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
uint32_t initLoopMax = 200;
if (initLoopMax > *size) initLoopMax=*size;
// Detect high and lows
for (i = 0; i < initLoopMax; ++i) //200 samples should be enough to find high and low values
{
if (BinStream[i] > high)
high = BinStream[i];
else if (BinStream[i] < low)
low = BinStream[i];
}
if ((high < 129) ){ //throw away static (anything < 1 graph)
//PrintAndLog("no data found");
return -2;
}
//25% fuzz in case highs and lows aren't clipped [marshmellow]
high=(int)(((high-128)*.75)+128);
low= (int)(((low-128)*.75)+128);
// 25% fuzz in case highs and lows aren't clipped [marshmellow]
int high, low, ans;
ans = getHiLo(BinStream, initLoopMax, &high, &low, 75, 75);
if (ans<1) return -2; //just noise
//PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
// PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
int lastBit = 0; //set first clock check
uint32_t bitnum = 0; //output counter
int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
@ -108,13 +114,13 @@ int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
uint32_t bestStart = *size;
uint32_t bestErrCnt = (*size/1000);
uint32_t maxErr = (*size/1000);
//PrintAndLog("DEBUG - lastbit - %d",lastBit);
//loop to find first wave that works
// PrintAndLog("DEBUG - lastbit - %d",lastBit);
// loop to find first wave that works
for (iii=0; iii < gLen; ++iii){
if ((BinStream[iii] >= high) || (BinStream[iii] <= low)){
lastBit=iii-*clk;
errCnt=0;
//loop through to see if this start location works
// loop through to see if this start location works
for (i = iii; i < *size; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){
lastBit+=*clk;
@ -242,17 +248,17 @@ int manrawdecode(uint8_t * BitStream, size_t *size)
//by marshmellow
//take 01 or 10 = 0 and 11 or 00 = 1
int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset)
int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
{
uint8_t bitnum=0;
uint32_t errCnt =0;
uint32_t i=1;
uint32_t i;
i=offset;
for (;i<*size-2;i+=2){
for (;i<*size-2; i+=2){
if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
BitStream[bitnum++]=1;
BitStream[bitnum++]=1^invert;
} else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
BitStream[bitnum++]=0;
BitStream[bitnum++]=invert;
} else {
BitStream[bitnum++]=77;
errCnt++;
@ -271,31 +277,21 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
{
uint32_t i;
// int invert=0; //invert default
int high = 0, low = 255;
int clk2 = *clk;
*clk=DetectASKClock(BinStream, *size, *clk); //clock default
uint8_t BitStream[502] = {0};
//uint8_t BitStream[502] = {0};
//HACK: if clock not detected correctly - default
if (*clk<8) *clk =64;
if (*clk<32) *clk=32;
if (*clk<32 && clk2==0) *clk=32;
if (*invert != 0 && *invert != 1) *invert =0;
uint32_t initLoopMax = 200;
if (initLoopMax > *size) initLoopMax=*size;
// Detect high and lows
for (i = 0; i < initLoopMax; ++i) //200 samples should be plenty to find high and low values
{
if (BinStream[i] > high)
high = BinStream[i];
else if (BinStream[i] < low)
low = BinStream[i];
}
if ((high < 129)){ //throw away static high has to be more than 0 on graph.
//noise <= -10 here
// PrintAndLog("no data found");
return -2;
}
//25% fuzz in case highs and lows aren't clipped [marshmellow]
high=(int)(((high-128)*.75)+128);
low= (int)(((low-128)*.75)+128);
int high, low, ans;
ans = getHiLo(BinStream, initLoopMax, &high, &low, 75, 75);
if (ans<1) return -2; //just noise
//PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
int lastBit = 0; //set first clock check
@ -310,6 +306,7 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
uint8_t errCnt =0;
uint32_t bestStart = *size;
uint32_t bestErrCnt = (*size/1000);
uint32_t maxErr = bestErrCnt;
uint8_t midBit=0;
//PrintAndLog("DEBUG - lastbit - %d",lastBit);
//loop to find first wave that works
@ -320,30 +317,30 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
for (i = iii; i < *size; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
lastBit+=*clk;
BitStream[bitnum] = *invert;
bitnum++;
//BitStream[bitnum] = *invert;
//bitnum++;
midBit=0;
} else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){
//low found and we are expecting a bar
lastBit+=*clk;
BitStream[bitnum] = 1- *invert;
bitnum++;
//BitStream[bitnum] = 1- *invert;
//bitnum++;
midBit=0;
} else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
//mid bar?
midBit=1;
BitStream[bitnum]= 1- *invert;
bitnum++;
//BitStream[bitnum]= 1- *invert;
//bitnum++;
} else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
//mid bar?
midBit=1;
BitStream[bitnum]= *invert;
bitnum++;
//BitStream[bitnum]= *invert;
//bitnum++;
} else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){
//no mid bar found
midBit=1;
BitStream[bitnum]= BitStream[bitnum-1];
bitnum++;
//BitStream[bitnum]= BitStream[bitnum-1];
//bitnum++;
} else {
//mid value found or no bar supposed to be here
@ -351,45 +348,94 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
//should have hit a high or low based on clock!!
//debug
//PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
if (bitnum > 0){
BitStream[bitnum]=77;
bitnum++;
}
//if (bitnum > 0){
// BitStream[bitnum]=77;
// bitnum++;
//}
errCnt++;
lastBit+=*clk;//skip over until hit too many errors
if (errCnt > ((*size/1000))){ //allow 1 error for every 1000 samples else start over
errCnt=0;
bitnum=0;//start over
// bitnum=0;//start over
break;
}
}
}
if (bitnum>500) break;
if ((i-iii)>(500 * *clk)) break; //got enough bits
}
//we got more than 64 good bits and not all errors
if ((bitnum > (64+errCnt)) && (errCnt<(*size/1000))) {
if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt<(*size/1000))) {
//possible good read
if (errCnt==0) break; //great read - finish
if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish
if (errCnt==0){
bestStart=iii;
bestErrCnt=errCnt;
break; //great read - finish
}
if (errCnt<bestErrCnt){ //set this as new best run
bestErrCnt=errCnt;
bestStart = iii;
}
}
}
if (iii>=gLen){ //exhausted test
//if there was a ok test go back to that one and re-run the best run (then dump after that run)
if (bestErrCnt < (*size/1000)) iii=bestStart;
}
}
if (bitnum>16){
for (i=0; i < bitnum; ++i){
BinStream[i]=BitStream[i];
if (bestErrCnt<maxErr){
//best run is good enough - set to best run and overwrite BinStream
iii=bestStart;
lastBit = bestStart - *clk;
bitnum=0;
for (i = iii; i < *size; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){
lastBit += *clk;
BinStream[bitnum] = *invert;
bitnum++;
midBit=0;
} else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){
//low found and we are expecting a bar
lastBit+=*clk;
BinStream[bitnum] = 1-*invert;
bitnum++;
midBit=0;
} else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
//mid bar?
midBit=1;
BinStream[bitnum] = 1 - *invert;
bitnum++;
} else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
//mid bar?
midBit=1;
BinStream[bitnum] = *invert;
bitnum++;
} else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){
//no mid bar found
midBit=1;
if (bitnum!=0) BinStream[bitnum] = BinStream[bitnum-1];
bitnum++;
} else {
//mid value found or no bar supposed to be here
if ((i-lastBit)>(*clk+tol)){
//should have hit a high or low based on clock!!
//debug
//PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
if (bitnum > 0){
BinStream[bitnum]=77;
bitnum++;
}
lastBit+=*clk;//skip over error
}
}
if (bitnum >=400) break;
}
*size=bitnum;
} else return -1;
return errCnt;
} else{
*invert=bestStart;
*clk=iii;
return -1;
}
return bestErrCnt;
}
//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
@ -589,37 +635,128 @@ int IOdemodFSK(uint8_t *dest, size_t size)
return 0;
}
// by marshmellow
// pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
// returns 1 if passed
int parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
{
uint8_t ans = 0;
for (int i = 0; i < bitLen; i++){
ans ^= ((bits >> i) & 1);
}
//PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
return (ans == pType);
}
// by marshmellow
// takes a array of binary values, start position, length of bits per parity (includes parity bit),
// Parity Type (1 for odd 0 for even), and binary Length (length to run)
size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
{
uint32_t parityWd = 0;
size_t j = 0, bitCnt = 0;
for (int word = 0; word < (bLen); word+=pLen){
for (int bit=0; bit < pLen; bit++){
parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
BitStream[j++] = (BitStream[startIdx+word+bit]);
}
j--;
// if parity fails then return 0
if (parityTest(parityWd, pLen, pType) == 0) return -1;
bitCnt+=(pLen-1);
parityWd = 0;
}
// if we got here then all the parities passed
//return ID start index and size
return bitCnt;
}
// by marshmellow
// FSK Demod then try to locate an AWID ID
int AWIDdemodFSK(uint8_t *dest, size_t size)
{
static const uint8_t THRESHOLD = 123;
uint32_t idx=0;
//make sure buffer has data
if (size < 96*50) return -1;
//test samples are not just noise
uint8_t justNoise = 1;
for(idx=0; idx < size && justNoise ;idx++){
justNoise = dest[idx] < THRESHOLD;
}
if(justNoise) return -2;
// FSK demodulator
size = fskdemod(dest, size, 50, 1, 10, 8); // RF/64 and invert
if (size < 96) return -3; //did we get a good demod?
uint8_t mask[] = {0,0,0,0,0,0,0,1};
for( idx=0; idx < (size - 96); idx++) {
if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
// frame marker found
//return ID start index and size
return idx;
//size should always be 96
}
}
//never found mask
return -4;
}
// by marshmellow
// FSK Demod then try to locate an Farpointe Data (pyramid) ID
int PyramiddemodFSK(uint8_t *dest, size_t size)
{
static const uint8_t THRESHOLD = 123;
uint32_t idx=0;
// size_t size2 = size;
//make sure buffer has data
if (size < 128*50) return -5;
//test samples are not just noise
uint8_t justNoise = 1;
for(idx=0; idx < size && justNoise ;idx++){
justNoise = dest[idx] < THRESHOLD;
}
if(justNoise) return -1;
// FSK demodulator
size = fskdemod(dest, size, 50, 1, 10, 8); // RF/64 and invert
if (size < 128) return -2; //did we get a good demod?
uint8_t mask[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
for( idx=0; idx < (size - 128); idx++) {
if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
// frame marker found
return idx;
}
}
//never found mask
return -4;
}
// by marshmellow
// not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
// maybe somehow adjust peak trimming value based on samples to fix?
int DetectASKClock(uint8_t dest[], size_t size, int clock)
{
int i=0;
int peak=0;
int low=255;
int clk[]={16,32,40,50,64,100,128,256};
int clk[]={8,16,32,40,50,64,100,128,256};
int loopCnt = 256; //don't need to loop through entire array...
if (size<loopCnt) loopCnt = size;
//if we already have a valid clock quit
for (;i<8;++i)
if (clk[i] == clock) return clock;
//get high and low peak
for (i=0; i < loopCnt; ++i){
if(dest[i] > peak){
peak = dest[i];
}
if(dest[i] < low){
low = dest[i];
}
}
peak=(int)(((peak-128)*.75)+128);
low= (int)(((low-128)*.75)+128);
int peak, low;
getHiLo(dest, loopCnt, &peak, &low, 75, 75);
int ii;
int clkCnt;
int tol = 0;
int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000};
int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
int errCnt=0;
//test each valid clock from smallest to greatest to see which lines up
for(clkCnt=0; clkCnt < 6; ++clkCnt){
@ -651,7 +788,7 @@ int DetectASKClock(uint8_t dest[], size_t size, int clock)
}
int iii=0;
int best=0;
for (iii=0; iii<7;++iii){
for (iii=0; iii<8;++iii){
if (bestErr[iii]<bestErr[best]){
// current best bit to error ratio vs new bit to error ratio
if (((size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii]) ){
@ -667,8 +804,6 @@ int DetectASKClock(uint8_t dest[], size_t size, int clock)
int DetectpskNRZClock(uint8_t dest[], size_t size, int clock)
{
int i=0;
int peak=0;
int low=255;
int clk[]={16,32,40,50,64,100,128,256};
int loopCnt = 2048; //don't need to loop through entire array...
if (size<loopCnt) loopCnt = size;
@ -678,16 +813,9 @@ int DetectpskNRZClock(uint8_t dest[], size_t size, int clock)
if (clk[i] == clock) return clock;
//get high and low peak
for (i=0; i < loopCnt; ++i){
if(dest[i] > peak){
peak = dest[i];
}
if(dest[i] < low){
low = dest[i];
}
}
peak=(int)(((peak-128)*.75)+128);
low= (int)(((low-128)*.75)+128);
int peak, low;
getHiLo(dest, loopCnt, &peak, &low, 75, 75);
//PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
int ii;
uint8_t clkCnt;
@ -698,7 +826,7 @@ int DetectpskNRZClock(uint8_t dest[], size_t size, int clock)
int peaksdet[]={0,0,0,0,0,0,0,0,0};
//test each valid clock from smallest to greatest to see which lines up
for(clkCnt=0; clkCnt < 6; ++clkCnt){
if (clk[clkCnt] == 32){
if (clk[clkCnt] >= 32){
tol=1;
}else{
tol=0;
@ -749,40 +877,37 @@ int DetectpskNRZClock(uint8_t dest[], size_t size, int clock)
}
//by marshmellow (attempt to get rid of high immediately after a low)
void pskCleanWave(uint8_t *bitStream, size_t size)
void pskCleanWave(uint8_t *BitStream, size_t size)
{
int i;
int low=255;
int high=0;
int gap = 4;
// int loopMax = 2048;
int newLow=0;
int newLow=0;
int newHigh=0;
for (i=0; i < size; ++i){
if (bitStream[i] < low) low=bitStream[i];
if (bitStream[i] > high) high=bitStream[i];
}
high = (int)(((high-128)*.80)+128);
low = (int)(((low-128)*.90)+128);
//low = (uint8_t)(((int)(low)-128)*.80)+128;
for (i=0; i < size; ++i){
int high, low;
getHiLo(BitStream, size, &high, &low, 80, 90);
for (i=0; i < size; ++i){
if (newLow == 1){
bitStream[i]=low+8;
gap--;
if (BitStream[i]>low){
BitStream[i]=low+8;
gap--;
}
if (gap == 0){
newLow=0;
gap=4;
}
}else if (newHigh == 1){
bitStream[i]=high-8;
gap--;
if (BitStream[i]<high){
BitStream[i]=high-8;
gap--;
}
if (gap == 0){
newHigh=0;
gap=4;
}
}
if (bitStream[i] <= low) newLow=1;
if (bitStream[i] >= high) newHigh=1;
if (BitStream[i] <= low) newLow=1;
if (BitStream[i] >= high) newHigh=1;
}
return;
}
@ -853,7 +978,7 @@ int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
}
//by marshmellow - demodulate PSK wave or NRZ wave (both similar enough)
//by marshmellow - demodulate PSK1 wave or NRZ wave (both similar enough)
//peaks switch bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert)
{
@ -861,22 +986,14 @@ int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert)
int clk2 = DetectpskNRZClock(dest, *size, *clk);
*clk=clk2;
uint32_t i;
uint8_t high=0, low=255;
int high, low, ans;
ans = getHiLo(dest, 1260, &high, &low, 75, 80); //25% fuzz on high 20% fuzz on low
if (ans<1) return -2; //just noise
uint32_t gLen = *size;
if (gLen > 1280) gLen=1280;
// get high
for (i=0; i < gLen; ++i){
if (dest[i] > high) high = dest[i];
if (dest[i] < low) low = dest[i];
}
//fudge high/low bars by 25%
high = (uint8_t)((((int)(high)-128)*.75)+128);
low = (uint8_t)((((int)(low)-128)*.80)+128);
//PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
int lastBit = 0; //set first clock check
uint32_t bitnum = 0; //output counter
uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
uint8_t tol = 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
if (*clk==32) tol = 2; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
uint32_t iii = 0;
uint8_t errCnt =0;
@ -931,7 +1048,6 @@ int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert)
bestErrCnt = errCnt;
break; //great read - finish
}
if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish
if (errCnt < bestErrCnt){ //set this as new best run
bestErrCnt = errCnt;
bestStart = iii;
@ -995,3 +1111,169 @@ int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert)
return errCnt;
}
//by marshmellow
//countFC is to detect the field clock and bit clock rates.
//for fsk or ask not psk or nrz
uint32_t countFC(uint8_t *BitStream, size_t size)
{
// get high/low thresholds
int high, low;
getHiLo(BitStream,10, &high, &low, 100, 100);
// get zero crossing
uint8_t zeroC = (high-low)/2+low;
uint8_t clk[]={8,16,32,40,50,64,100,128};
uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0};
uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0};
uint8_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0};
// uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0};
uint8_t fcLensFnd = 0;
uint8_t rfLensFnd = 0;
uint8_t lastBit=0;
uint8_t curBit=0;
uint8_t lastFCcnt=0;
uint32_t errCnt=0;
uint32_t fcCounter = 0;
uint32_t rfCounter = 0;
uint8_t firstBitFnd = 0;
int i;
// prime i to first up transition
for (i = 1; i < size; i++)
if (BitStream[i]>=zeroC && BitStream[i-1]<zeroC)
break;
for (; i < size; i++){
curBit = BitStream[i];
lastBit = BitStream[i-1];
if (lastBit<zeroC && curBit >= zeroC){
// new up transition
fcCounter++;
rfCounter++;
if (fcCounter > 3 && fcCounter < 256){
//we've counted enough that it could be a valid field clock
//if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
if (lastFCcnt==5 && fcCounter==9) fcCounter--;
//if odd and not rc/5 add one (for when we get a fc 9 instead of 10)
if ((fcCounter==9 && fcCounter & 1) || fcCounter==4) fcCounter++;
//look for bit clock (rf/xx)
if ((fcCounter<lastFCcnt || fcCounter>lastFCcnt)){
//not the same size as the last wave - start of new bit sequence
if (firstBitFnd>1){ //skip first wave change - probably not a complete bit
for (int ii=0; ii<10; ii++){
if (rfLens[ii]==rfCounter){
//rfCnts[ii]++;
rfCounter=0;
break;
}
}
if (rfCounter>0 && rfLensFnd<10){
//PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
//rfCnts[rfLensFnd]++;
rfLens[rfLensFnd++]=rfCounter;
}
} else {
//PrintAndLog("DEBUG i: %d",i);
firstBitFnd++;
}
rfCounter=0;
lastFCcnt=fcCounter;
}
// save last field clock count (fc/xx)
// find which fcLens to save it to:
for (int ii=0; ii<10; ii++){
if (fcLens[ii]==fcCounter){
fcCnts[ii]++;
fcCounter=0;
break;
}
}
if (fcCounter>0 && fcLensFnd<10){
//add new fc length
//PrintAndLog("FCCntr %d",fcCounter);
fcCnts[fcLensFnd]++;
fcLens[fcLensFnd++]=fcCounter;
}
} else{
// hmmm this should not happen often - count them
errCnt++;
}
// reset counter
fcCounter=0;
} else {
// count sample
fcCounter++;
rfCounter++;
}
}
// if too many errors return errors as negative number (IS THIS NEEDED?)
if (errCnt>100) return -1*errCnt;
uint8_t maxCnt1=0, best1=9, best2=9, best3=9, rfHighest=10, rfHighest2=10, rfHighest3=10;
// go through fclens and find which ones are bigest 2
for (i=0; i<10; i++){
// PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d, RF %d",fcLens[i],fcCnts[i],errCnt,rfLens[i]);
// get the 3 best FC values
if (fcCnts[i]>maxCnt1) {
best3=best2;
best2=best1;
maxCnt1=fcCnts[i];
best1=i;
} else if(fcCnts[i]>fcCnts[best2]){
best3=best2;
best2=i;
} else if(fcCnts[i]>fcCnts[best3]){
best3=i;
}
//get highest 2 RF values (might need to get more values to compare or compare all?)
if (rfLens[i]>rfLens[rfHighest]){
rfHighest3=rfHighest2;
rfHighest2=rfHighest;
rfHighest=i;
} else if(rfLens[i]>rfLens[rfHighest2]){
rfHighest3=rfHighest2;
rfHighest2=i;
} else if(rfLens[i]>rfLens[rfHighest3]){
rfHighest3=i;
}
}
// set allowed clock remainder tolerance to be 1 large field clock length
// we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
int tol1 = (fcLens[best1]>fcLens[best2]) ? fcLens[best1] : fcLens[best2];
// loop to find the highest clock that has a remainder less than the tolerance
// compare samples counted divided by
int ii=7;
for (; ii>=0; ii--){
if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
break;
}
}
}
}
if (ii<0) ii=7; // oops we went too far
// TODO: take top 3 answers and compare to known Field clocks to get top 2
uint32_t fcs=0;
// PrintAndLog("DEBUG: Best %d best2 %d best3 %d, clk %d, clk2 %d",fcLens[best1],fcLens[best2],fcLens[best3],clk[i],clk[ii]);
//
if (fcLens[best1]>fcLens[best2]){
fcs = (((uint32_t)clk[ii])<<16) | (((uint32_t)fcLens[best1])<<8) | ((fcLens[best2]));
} else {
fcs = (((uint32_t)clk[ii])<<16) | (((uint32_t)fcLens[best2])<<8) | ((fcLens[best1]));
}
return fcs;
}

View file

@ -4,7 +4,11 @@
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency commands
// Low frequency demod related commands
// marshmellow
// note that many of these demods are not the slickest code and they often rely
// on peaks and clock instead of converting to clean signal.
//
//-----------------------------------------------------------------------------
#ifndef LFDEMOD_H__
@ -15,7 +19,7 @@ int DetectASKClock(uint8_t dest[], size_t size, int clock);
int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert);
uint64_t Em410xDecode(uint8_t *BitStream,size_t size);
int manrawdecode(uint8_t *BitStream, size_t *size);
int BiphaseRawDecode(uint8_t * BitStream, size_t *size, int offset);
int BiphaseRawDecode(uint8_t * BitStream, size_t *size, int offset, int invert);
int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert);
int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_t *lo);
int IOdemodFSK(uint8_t *dest, size_t size);
@ -25,5 +29,10 @@ int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert);
int DetectpskNRZClock(uint8_t dest[], size_t size, int clock);
int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert);
void pskCleanWave(uint8_t *bitStream, size_t size);
int PyramiddemodFSK(uint8_t *dest, size_t size);
int AWIDdemodFSK(uint8_t *dest, size_t size);
size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen);
uint32_t countFC(uint8_t *BitStream, size_t size);
int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo);
#endif