Changed the variable names, added aditional dictionary size checks, fixed a corner case with the key transferes.

This commit is contained in:
Matthias Konrath 2019-08-26 12:27:40 +02:00
parent 13641771ba
commit 2edee59837

View file

@ -179,7 +179,7 @@ static int usage_hf14_autopwn(void) {
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h this help");
PrintAndLogEx(NORMAL, " k <sector> <keytype> <key> if a known key for a block is supplied");
PrintAndLogEx(NORMAL, " f <name>.dic dictionary file for key discovery (the file has to end in .dic)");
PrintAndLogEx(NORMAL, " f <name>.dic dictionary file for key discovery (the file has to end in .dic) max 2000 entries allowed");
PrintAndLogEx(NORMAL, " s slower acquisition (required by some non standard cards) for hardnested");
PrintAndLogEx(NORMAL, " v verbose output (statistcs)");
PrintAndLogEx(NORMAL, " l legacy mode (use the slow mfchk for the key enumeration)");
@ -1578,13 +1578,13 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
bool calibrate = true;
// Attack key storage variables
uint8_t *keyBlock;
uint16_t keycnt = 0;
sector_t *eSector;
uint8_t sectorsCnt = MIFARE_1K_MAXSECTOR;
int blockCnt = MIFARE_1K_MAXBLOCK;
uint8_t tmpKey[6] = {0};
size_t datalen = 0;
bool knowTargetKey = false;
uint16_t key_cnt = 0;
sector_t *e_sector;
uint8_t sectors_cnt = MIFARE_1K_MAXSECTOR;
int block_cnt = MIFARE_1K_MAXBLOCK;
uint8_t tmp_key[6] = {0};
size_t data_length = 0;
bool know_target_key = false;
// For the timier
uint64_t t1;
// Parameters and dictionary file
@ -1607,6 +1607,7 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
bool legacy_mfchk = false;
bool prng_type = false;
bool verbose = false;
int max_dictionary_size = 2000;
// Parse the options given by the user
ctmp = tolower(param_getchar(Cmd, 0));
@ -1628,8 +1629,8 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
break;
case '*':
// Get the number of sectors
sectorsCnt = NumOfSectors(param_getchar(Cmd, cmdp + 1));
blockCnt = NumOfBlocks(param_getchar(Cmd, cmdp + 1));
sectors_cnt = NumOfSectors(param_getchar(Cmd, cmdp + 1));
block_cnt = NumOfBlocks(param_getchar(Cmd, cmdp + 1));
cmdp ++;
break;
case 'k':
@ -1653,7 +1654,7 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
PrintAndLogEx(WARNING, "Key must include 12 HEX symbols");
return 1;
}
knowTargetKey = true;
know_target_key = true;
cmdp += 3;
case 's':
slow = true;
@ -1695,13 +1696,13 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
}
// Create the key storage stucture
eSector = calloc(sectorsCnt, sizeof(sector_t));
if (eSector == NULL) return PM3_EMALLOC;
e_sector = calloc(sectors_cnt, sizeof(sector_t));
if (e_sector == NULL) return PM3_EMALLOC;
// Clear the key storage datastructure
for (i=0; i<sectorsCnt; i++) {
for (i=0; i<sectors_cnt; i++) {
for (i2=0; i2<2; i2++) {
eSector[i].Key[i2] = 0;
eSector[i].foundKey[i2] = 0;
e_sector[i].Key[i2] = 0;
e_sector[i].foundKey[i2] = 0;
}
}
@ -1710,8 +1711,8 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
// Print operating parameters
if (verbose) {
PrintAndLogEx(INFO, "[ SETTINGS ] Card sectors .. " _YELLOW_("%d"), sectorsCnt);
PrintAndLogEx(INFO, "[ SETTINGS ] Key supplied .. " _YELLOW_("%s"), knowTargetKey ? "True" : "False");
PrintAndLogEx(INFO, "[ SETTINGS ] Card sectors .. " _YELLOW_("%d"), sectors_cnt);
PrintAndLogEx(INFO, "[ SETTINGS ] Key supplied .. " _YELLOW_("%s"), know_target_key ? "True" : "False");
PrintAndLogEx(INFO, "[ SETTINGS ] Known sector .. " _YELLOW_("%d"), blockNo);
PrintAndLogEx(INFO, "[ SETTINGS ] Keytype ....... " _YELLOW_("%c"), keyType ? 'B' : 'A');
PrintAndLogEx(INFO, "[ SETTINGS ] Kown key ...... " _YELLOW_("0x%02x%02x%02x%02x%02x%02x"), key[0], key[1], key[2], key[3], key[4], key[5]);
@ -1721,7 +1722,7 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
}
// Check the user supplied key
if (knowTargetKey == false)
if (know_target_key == false)
PrintAndLogEx(WARNING, "No known key was supplied, the following attacks might fail!");
else {
if (mfCheckKeys(FirstBlockOfSector(blockNo), keyType, true, 1, key, &key64) == PM3_SUCCESS) {
@ -1732,10 +1733,10 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
key[0], key[1], key[2], key[3], key[4], key[5]);
// Store the key for the nested / hardnested attack (if supplied by the user)
eSector[blockNo].Key[keyType] = bytes_to_num(key, 6);
eSector[blockNo].foundKey[keyType] = 3;
e_sector[blockNo].Key[keyType] = bytes_to_num(key, 6);
e_sector[blockNo].foundKey[keyType] = 3;
} else {
knowTargetKey = false;
know_target_key = false;
PrintAndLogEx(FAILED, "Key is wrong. Can't authenticate to sector:"_RED_("%3d") " key type:"_RED_("%c") " key: " _RED_("0x%02x%02x%02x%02x%02x%02x"),
blockNo,
keyType ? 'B' : 'A',
@ -1743,21 +1744,21 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
PrintAndLogEx(WARNING, "Let's see if just the sector or key type are not correct, and then we also give the dictionary a try ;)");
}
// Check if the user supplied key is used by other sectors
for (i=0; i<sectorsCnt; i++) {
for (i=0; i<sectors_cnt; i++) {
for (i2=0; i2<2; i2++) {
if (eSector[i].foundKey[i2] == 0) {
if (e_sector[i].foundKey[i2] == 0) {
if (mfCheckKeys(FirstBlockOfSector(i), i2, true, 1, key, &key64) == PM3_SUCCESS) {
eSector[i].Key[i2] = bytes_to_num(key, 6);
eSector[i].foundKey[i2] = 4;
e_sector[i].Key[i2] = bytes_to_num(key, 6);
e_sector[i].foundKey[i2] = 4;
PrintAndLogEx(SUCCESS, "[ REUSED KEY ] Valid KEY FOUND: sector:%3d key type:%c key: " _YELLOW_("0x%02x%02x%02x%02x%02x%02x"),
i,
i2 ? 'B' : 'A',
key[0], key[1], key[2], key[3], key[4], key[5]);
// If the user supplied secctor / keytype was wrong --> just be nice and correct it ;)
if (knowTargetKey == false) {
num_to_bytes(eSector[i].Key[i2], 6, key);
knowTargetKey = true;
if (know_target_key == false) {
num_to_bytes(e_sector[i].Key[i2], 6, key);
know_target_key = true;
blockNo = i; keyType = i2;
PrintAndLogEx(SUCCESS, "[ SETTINGS ] The following key will be used for the nested / hardnested attack: sector:"
_RED_("%3d") " key type:"_RED_("%c") " key: " _RED_("0x%02x%02x%02x%02x%02x%02x"),
@ -1773,19 +1774,26 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
// Load the dictionary
if (strlen(filename) != 0) {
keyBlock = calloc(6 * 2000, sizeof(uint8_t));
loadFileDICTIONARY(filename, keyBlock, &datalen, 6, &keycnt);
keyBlock = calloc(6 * max_dictionary_size, sizeof(uint8_t));
loadFileDICTIONARY(filename, keyBlock, &data_length, 6, &key_cnt);
if ((data_length / 6) > max_dictionary_size) {
// This is not a good solution (loadFileDICTIONARY needs a maxdatalen)!
PrintAndLogEx(FAILED, "The loaded dictionary is too large: %d (allowed: %d)", data_length, max_dictionary_size);
free(keyBlock); // This won't work too well, because data on the stack is already overflown !!!
free(e_sector);
return 1;
}
} else {
keyBlock = calloc(ARRAYLEN(g_mifare_default_keys), 6);
if (keyBlock == NULL) {
free(eSector);
free(e_sector);
return 1;
}
for (int cnt = 0; cnt < ARRAYLEN(g_mifare_default_keys); cnt++) {
num_to_bytes(g_mifare_default_keys[cnt], 6, keyBlock + cnt * 6);
}
keycnt = ARRAYLEN(g_mifare_default_keys);
key_cnt = ARRAYLEN(g_mifare_default_keys);
}
// Start the timer
@ -1795,15 +1803,15 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
PrintAndLogEx(INFO, "Enumerating the card keys with the dictionary!");
if (legacy_mfchk) {
// Check all the sectors
for (i=0; i<sectorsCnt; i++) {
for (i=0; i<sectors_cnt; i++) {
for (i2=0; i2<2; i2++) {
// Check if the key is known
if (eSector[i].foundKey[i2] == 0) {
for (i3=0; i3<keycnt; i3++) {
if (e_sector[i].foundKey[i2] == 0) {
for (i3=0; i3<key_cnt; i3++) {
printf("."); fflush(stdout);
if (mfCheckKeys(FirstBlockOfSector(i), i2, true, 1, (keyBlock + (6*i3)), &key64) == PM3_SUCCESS) {
eSector[i].Key[i2] = bytes_to_num((keyBlock + (6*i3)), 6);
eSector[i].foundKey[i2] = 1;
e_sector[i].Key[i2] = bytes_to_num((keyBlock + (6*i3)), 6);
e_sector[i].foundKey[i2] = 1;
break;
}
}
@ -1812,27 +1820,27 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
}
printf("\n"); fflush(stdout);
} else {
int chunksize = keycnt > (PM3_CMD_DATA_SIZE / 6) ? (PM3_CMD_DATA_SIZE / 6) : keycnt;
int chunksize = key_cnt > (PM3_CMD_DATA_SIZE / 6) ? (PM3_CMD_DATA_SIZE / 6) : key_cnt;
bool firstChunk = true, lastChunk = false;
for (uint8_t strategy = 1; strategy < 3; strategy++) {
PrintAndLogEx(INFO, "Running strategy %u", strategy);
// main keychunk loop
for (i = 0; i < keycnt; i += chunksize) {
for (i = 0; i < key_cnt; i += chunksize) {
if (kbd_enter_pressed()) {
PrintAndLogEx(WARNING, "\naborted via keyboard!\n");
i = keycnt; strategy = 3; break; // Exit the loop
i = key_cnt; strategy = 3; break; // Exit the loop
}
uint32_t size = ((keycnt - i) > chunksize) ? chunksize : keycnt - i;
uint32_t size = ((key_cnt - i) > chunksize) ? chunksize : key_cnt - i;
// last chunk?
if (size == keycnt - i)
if (size == key_cnt - i)
lastChunk = true;
int res = mfCheckKeys_fast(sectorsCnt, firstChunk, lastChunk, strategy, size, keyBlock + (i * 6), eSector, false);
int res = mfCheckKeys_fast(sectors_cnt, firstChunk, lastChunk, strategy, size, keyBlock + (i * 6), e_sector, false);
if (firstChunk)
firstChunk = false;
// all keys, aborted
if (res == 0 || res == 2) {
i = keycnt; strategy = 3; break; // Exit the loop
i = key_cnt; strategy = 3; break; // Exit the loop
}
} // end chunks of keys
firstChunk = true;
@ -1841,19 +1849,19 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
}
// Analyse the dictionary attack
for (i=0; i<sectorsCnt; i++) {
for (i=0; i<sectors_cnt; i++) {
for (i2=0; i2<2; i2++) {
if (eSector[i].foundKey[i2] == 1) {
num_to_bytes(eSector[i].Key[i2], 6, tmpKey);
if (e_sector[i].foundKey[i2] == 1) {
num_to_bytes(e_sector[i].Key[i2], 6, tmp_key);
PrintAndLogEx(SUCCESS, "[ DICT. KEY ] Valid KEY FOUND: sector:%3d key type:%c key: " _YELLOW_("0x%02x%02x%02x%02x%02x%02x"),
i,
i2 ? 'B' : 'A',
tmpKey[0], tmpKey[1], tmpKey[2], tmpKey[3], tmpKey[4], tmpKey[5]);
tmp_key[0], tmp_key[1], tmp_key[2], tmp_key[3], tmp_key[4], tmp_key[5]);
// Store vaild credentials for the nested / hardnested attack if none exist
if (knowTargetKey == false) {
num_to_bytes(eSector[i].Key[i2], 6, key);
knowTargetKey = true;
if (know_target_key == false) {
num_to_bytes(e_sector[i].Key[i2], 6, key);
know_target_key = true;
blockNo = i; keyType = i2;
PrintAndLogEx(SUCCESS, "[ SETTINGS ] The following key will be used for the nested / hardnested attack: sector:"
_RED_("%3d") " key type:"_RED_("%c") " key: " _RED_("0x%02x%02x%02x%02x%02x%02x"),
@ -1866,7 +1874,7 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
}
// Check if at least one sector key was found
if (knowTargetKey == false) {
if (know_target_key == false) {
// Check if the darkside attack can be used
if (prng_type) {
PrintAndLogEx(INFO, "No key was found ... time to go to the dark side ;)");
@ -1903,68 +1911,68 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
goto noValidKeyFound;
}
// Store the keys
eSector[blockNo].Key[keyType] = bytes_to_num(key, 6);
eSector[blockNo].foundKey[keyType] = 2;
e_sector[blockNo].Key[keyType] = bytes_to_num(key, 6);
e_sector[blockNo].foundKey[keyType] = 2;
} else {
noValidKeyFound:
PrintAndLogEx(FAILED, "No usable key was found!");
free(keyBlock);
free(eSector);
free(e_sector);
return 1;
}
}
free(keyBlock);
// Clear the needed variables
num_to_bytes(0, 6, tmpKey);
num_to_bytes(0, 6, tmp_key);
// Iterate over each sector and key(A/B)
for (current_sector_i=0; current_sector_i < sectorsCnt; current_sector_i++) {
for (current_sector_i=0; current_sector_i < sectors_cnt; current_sector_i++) {
for (current_key_type_i=0; current_key_type_i < 2; current_key_type_i++) {
// If the key is already known, just skip it
if (eSector[current_sector_i].foundKey[current_key_type_i] == 0) {
if (e_sector[current_sector_i].foundKey[current_key_type_i] == 0) {
// Try the found keys are reused
if (bytes_to_num(tmpKey, 6) != 0) {
// <!> The fast check --> mfCheckKeys_fast(sectorsCnt, true, true, 2, 1, tmpKey, eSector, false);
if (bytes_to_num(tmp_key, 6) != 0) {
// <!> The fast check --> mfCheckKeys_fast(sectors_cnt, true, true, 2, 1, tmp_key, e_sector, false);
// <!> Returns false keys, so we just stick to the slower mfchk.
for (i=0; i<sectorsCnt; i++) {
for (i=0; i<sectors_cnt; i++) {
for (i2=0; i2<2; i2++) {
// Check if the sector key is already broken
if (eSector[i].foundKey[i2] == 0) {
if (e_sector[i].foundKey[i2] == 0) {
// Check if the key works
if (mfCheckKeys(FirstBlockOfSector(i), i2, true, 1, tmpKey, &key64) == PM3_SUCCESS) {
eSector[i].Key[i2] = bytes_to_num(tmpKey, 6);
eSector[i].foundKey[i2] = 4;
if (mfCheckKeys(FirstBlockOfSector(i), i2, true, 1, tmp_key, &key64) == PM3_SUCCESS) {
e_sector[i].Key[i2] = bytes_to_num(tmp_key, 6);
e_sector[i].foundKey[i2] = 4;
PrintAndLogEx(SUCCESS, "[ REUSED KEY ] Valid KEY FOUND: sector:%3d key type:%c key: " _YELLOW_("0x%02x%02x%02x%02x%02x%02x"),
i,
i2 ? 'B' : 'A',
tmpKey[0], tmpKey[1], tmpKey[2], tmpKey[3], tmpKey[4], tmpKey[5]);
tmp_key[0], tmp_key[1], tmp_key[2], tmp_key[3], tmp_key[4], tmp_key[5]);
}
}
}
}
}
// Clear the last found key
num_to_bytes(0, 6, tmpKey);
num_to_bytes(0, 6, tmp_key);
// Use the nested / hardnested attack
if (eSector[current_sector_i].foundKey[current_key_type_i] == 0) {
if (e_sector[current_sector_i].foundKey[current_key_type_i] == 0) {
if (prng_type) {
PrintAndLogEx(INFO, "[ NESTED ] Sector no:%3d, target key type:%c",
current_sector_i,
current_key_type_i ? 'B' : 'A');
isOK = mfnested(FirstBlockOfSector(blockNo), keyType, key, FirstBlockOfSector(current_sector_i), current_key_type_i, tmpKey, calibrate);
isOK = mfnested(FirstBlockOfSector(blockNo), keyType, key, FirstBlockOfSector(current_sector_i), current_key_type_i, tmp_key, calibrate);
switch (isOK) {
case -1 :
PrintAndLogEx(ERR, "\nError: No response from Proxmark3.");
free(eSector);
free(e_sector);
return 1;
break;
case -2 :
PrintAndLogEx(WARNING, "\nButton pressed. Aborted.");
free(eSector);
free(e_sector);
return 1;
break;
case -3 :
@ -1979,12 +1987,12 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
break;
case -5 :
calibrate = false;
eSector[current_sector_i].Key[current_key_type_i] = bytes_to_num(tmpKey, 6);
eSector[current_sector_i].foundKey[current_key_type_i] = 5;
e_sector[current_sector_i].Key[current_key_type_i] = bytes_to_num(tmp_key, 6);
e_sector[current_sector_i].foundKey[current_key_type_i] = 5;
break;
default :
PrintAndLogEx(ERR, "unknown Error.\n");
free(eSector);
free(e_sector);
return 1;
break;
}
@ -2008,26 +2016,26 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
default :
break;
}
free(eSector);
free(e_sector);
return 2;
}
// Copy the found key to the tmpKey variale (for the following print statement, and the mfCheckKeys above)
num_to_bytes(foundkey, 6, tmpKey);
eSector[current_sector_i].Key[current_key_type_i] = foundkey;
eSector[current_sector_i].foundKey[current_key_type_i] = 6;
// Copy the found key to the tmp_key variale (for the following print statement, and the mfCheckKeys above)
num_to_bytes(foundkey, 6, tmp_key);
e_sector[current_sector_i].Key[current_key_type_i] = foundkey;
e_sector[current_sector_i].foundKey[current_key_type_i] = 6;
}
// Check if the key was found
if (eSector[current_sector_i].foundKey[current_key_type_i] != 0) {
if (e_sector[current_sector_i].foundKey[current_key_type_i] != 0) {
PrintAndLogEx(SUCCESS, "[BROCKEN KEY] Valid KEY FOUND: sector:%3d key type:%c key: " _YELLOW_("0x%02x%02x%02x%02x%02x%02x"),
current_sector_i,
current_key_type_i ? 'B' : 'A',
tmpKey[0], tmpKey[1], tmpKey[2], tmpKey[3], tmpKey[4], tmpKey[5]);
tmp_key[0], tmp_key[1], tmp_key[2], tmp_key[3], tmp_key[4], tmp_key[5]);
} else {
PrintAndLogEx(FAILED, "[BROCKEN KEY] Valid KEY NOT FOUND: sector:%3d key type:%c key: " _YELLOW_("0x%02x%02x%02x%02x%02x%02x"),
current_sector_i,
current_key_type_i ? 'B' : 'A',
tmpKey[0], tmpKey[1], tmpKey[2], tmpKey[3], tmpKey[4], tmpKey[5]);
tmp_key[0], tmp_key[1], tmp_key[2], tmp_key[3], tmp_key[4], tmp_key[5]);
}
}
}
@ -2037,7 +2045,7 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
// Show the results to the user
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(INFO, "Found Keys:");
printKeyTable(sectorsCnt, eSector);
printKeyTable(sectors_cnt, e_sector);
if (verbose) {
PrintAndLogEx(INFO, "[ INFO ] Key res types:");
PrintAndLogEx(INFO, " 1: Dictionary");
@ -2051,26 +2059,28 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
// Transfere the found keys to the simulator and dump the keys and card data
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(INFO, "Dumping the keys:");
createKeyDump(sectorsCnt, eSector, GenerateFilename("hf-mf-", "-key.bin"));
createKeyDump(sectors_cnt, e_sector, GenerateFilename("hf-mf-", "-key.bin"));
PrintAndLogEx(SUCCESS, "Transfering the found keys to the simulator memory");
for (current_sector_i=0; current_sector_i < sectorsCnt; current_sector_i++) {
PrintAndLogEx(SUCCESS, "Transfering the found keys to the simulator memory (Cmd Error: 04 can occour, but this shouldn't be a problem)");
for (current_sector_i=0; current_sector_i < sectors_cnt; current_sector_i++) {
mfEmlGetMem(block, current_sector_i, 1);
if (eSector[current_sector_i].foundKey[0])
num_to_bytes(eSector[current_sector_i].Key[0], 6, block);
if (eSector[current_sector_i].foundKey[1])
num_to_bytes(eSector[current_sector_i].Key[1], 6, block + 10);
if (e_sector[current_sector_i].foundKey[0])
num_to_bytes(e_sector[current_sector_i].Key[0], 6, block);
if (e_sector[current_sector_i].foundKey[1])
num_to_bytes(e_sector[current_sector_i].Key[1], 6, block + 10);
mfEmlSetMem(block, FirstBlockOfSector(current_sector_i) + NumBlocksPerSector(current_sector_i) - 1, 1);
}
clearCommandBuffer();
SendCommandMIX(CMD_HF_MIFARE_EML_LOAD, sectorsCnt, 0, 0, NULL, 0);
SendCommandMIX(CMD_HF_MIFARE_EML_LOAD, sectors_cnt, 0, 0, NULL, 0);
clearCommandBuffer();
SendCommandMIX(CMD_HF_MIFARE_EML_LOAD, sectors_cnt, 1, 0, NULL, 0);
bytes = blockCnt * MFBLOCK_SIZE;
bytes = block_cnt * MFBLOCK_SIZE;
dump = calloc(bytes, sizeof(uint8_t));
if (!dump) {
PrintAndLogEx(WARNING, "Fail, cannot allocate memory");
free(eSector);
free(e_sector);
return PM3_EMALLOC;
}
memset(dump, 0, bytes);
@ -2078,7 +2088,7 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
PrintAndLogEx(INFO, "Downloading the card content from emulator memory");
if (!GetFromDevice(BIG_BUF_EML, dump, bytes, 0, NULL, 0, NULL, 2500, false)) {
PrintAndLogEx(WARNING, "Fail, transfer from device time-out");
free(eSector);
free(e_sector);
free(dump);
return PM3_ETIMEOUT;
}
@ -2089,13 +2099,13 @@ static int CmdHF14AMfAutoPWN(const char *Cmd) {
saveFile(filename, ".bin", dump, bytes);
saveFileEML(filename, dump, bytes, MFBLOCK_SIZE);
saveFileJSON(filename, jsfCardMemory, dump, bytes);
// Generate and show statistics
t1 = msclock() - t1;
PrintAndLogEx(INFO, "Required time for the autopwn attack: " _YELLOW_("%.0f") " seconds", (float)t1 / 1000.0);
free(dump);
free(eSector);
free(e_sector);
return 0;
}