change: legic reader now uses xcorrelation and ssc based io

- Even tough legic tags transmit just AM using xcorrelation
   results in a significantly better signal quality.
 - Switching from bit bang to a hardware based ssc frees
   up CPU time for other tasks e.g. demodulation
This commit is contained in:
Andreas Dröscher 2018-07-29 12:18:08 +02:00
parent c59150657c
commit 3029223158

View file

@ -1,6 +1,7 @@
//-----------------------------------------------------------------------------
// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
// 2016 Iceman
// 2018 AntiCat (rwd rewritten)
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
@ -10,517 +11,430 @@
//-----------------------------------------------------------------------------
#include "legicrf.h"
static struct legic_frame {
uint8_t bits;
uint32_t data;
} current_frame;
#include "ticks.h" /* timers */
#include "crc.h" /* legic crc-4 */
#include "legic_prng.h" /* legic PRNG impl */
#include "legic.h" /* legic_card_select_t struct */
static enum {
STATE_DISCON,
STATE_IV,
STATE_CON,
} legic_state;
struct legic_frame {
uint32_t bits; /* length of frame */
uint8_t data[24]; /* preprocessed bits */
};
static crc_t legic_crc;
static int legic_read_count;
static uint32_t legic_prng_bc;
static uint32_t legic_prng_iv;
union frame_encoder {
uint32_t uint32; /* SAM7S512 does not support unaligned access as a */
uint8_t uint8[4]; /* workaround 32bit values are converted to 4x8bit */
};
static int legic_phase_drift;
static int legic_frame_drift;
static int legic_reqresp_drift;
static uint8_t* legic_mem; /* card memory, used for read, write and sim */
static legic_card_select_t card;/* metadata of currently selected card */
static crc_t legic_crc;
static int32_t input_threshold; /* values > threshold are 1 else 0 */
// LEGIC RF is using the common timer functions: StartCountUS() and GetCountUS()
#define RWD_TIME_PAUSE 20 /* 20us */
#define RWD_TIME_1 100 /* READER_TIME_PAUSE 20us off + 80us on = 100us */
#define RWD_TIME_0 60 /* READER_TIME_PAUSE 20us off + 40us on = 60us */
#define TAG_FRAME_WAIT 330 /* 330us from READER frame end to TAG frame start */
#define TAG_BIT_PERIOD 100 /* 100us */
#define LEGIC_CARD_MEMSIZE 1024 /* The largest Legic Prime card is 1k */
//-----------------------------------------------------------------------------
// I/O interface abstraction (ARM <-> FPGA)
//-----------------------------------------------------------------------------
// At TIMER_CLOCK3 (MCK/32)
// testing calculating in ticks. 1.5ticks = 1us
#define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks
#define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks
#define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */
#define TAG_BIT_PERIOD 142 // 100us == 100 * 1.5 == 150ticks
#define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495
static inline uint8_t rx_byte_from_fpga() {
for(;;) {
WDT_HIT();
#define OFFSET_LOG 1024
// ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
// Historically it used to be FREE_BUFFER_SIZE, which was 2744.
#define LEGIC_CARD_MEMSIZE 1024
static uint8_t* cardmem;
static void frame_append_bit(struct legic_frame * const f, uint8_t bit) {
// Overflow, won't happen
if (f->bits >= 31) return;
f->data |= (bit << f->bits);
f->bits++;
}
static void frame_clean(struct legic_frame * const f) {
f->data = 0;
f->bits = 0;
}
}
/* Generate Keystream */
uint32_t get_key_stream(int skip, int count) {
int i;
// Use int to enlarge timer tc to 32bit
legic_prng_bc += prng_timer->TC_CV;
// reset the prng timer.
/* If skip == -1, forward prng time based */
if(skip == -1) {
i = (legic_prng_bc + SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */
i -= legic_prng_count(); /* substract cycles of finished frames */
i -= count; /* substract current frame length, rewind to beginning */
legic_prng_forward(i);
} else {
legic_prng_forward(skip);
}
i = (count == 6) ? -1 : legic_read_count;
/* Generate KeyStream */
return legic_prng_get_bits(count);
}
}
/* Send a frame in reader mode, the FPGA must have been set up by
* LegicRfReader
*/
void frame_sendAsReader(uint32_t data, uint8_t bits){
uint32_t starttime = GET_TICKS, send = 0, mask = 1;
// xor lsfr onto data.
send = data ^ legic_prng_get_bits(bits);
for (; mask < BITMASK(bits); mask <<= 1) {
if (send & mask)
COIL_PULSE(RWD_TIME_1)
else
COIL_PULSE(RWD_TIME_0)
}
// Final pause to mark the end of the frame
COIL_PULSE(0);
// log
uint8_t cmdbytes[] = {bits, BYTEx(data,0), BYTEx(data,1), BYTEx(data,2), BYTEx(send,0), BYTEx(send,1), BYTEx(send,2)};
LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, true);
}
/* Receive a frame from the card in reader emulation mode, the FPGA and
* timer must have been set up by LegicRfReader and frame_sendAsReader.
*
* The LEGIC RF protocol from card to reader does not include explicit
* frame start/stop information or length information. The reader must
* know beforehand how many bits it wants to receive. (Notably: a card
* sending a stream of 0-bits is indistinguishable from no card present.)
*
* Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but
* I'm not smart enough to use it. Instead I have patched hi_read_tx to output
* the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look
* for edges. Count the edges in each bit interval. If they are approximately
* 0 this was a 0-bit, if they are approximately equal to the number of edges
* expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the
* timer that's still running from frame_sendAsReader in order to get a synchronization
* with the frame that we just sent.
*
* FIXME: Because we're relying on the hysteresis to just do the right thing
* the range is severely reduced (and you'll probably also need a good antenna).
* So this should be fixed some time in the future for a proper receiver.
*/
static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits) {
if ( bits > 32 ) return;
uint8_t i = bits, edges = 0;
uint32_t the_bit = 1, next_bit_at = 0, data = 0;
uint32_t old_level = 0;
volatile uint32_t level = 0;
frame_clean(f);
// calibrate the prng.
legic_prng_forward(2);
data = legic_prng_get_bits(bits);
//FIXED time between sending frame and now listening frame. 330us
uint32_t starttime = GET_TICKS;
// its about 9+9 ticks delay from end-send to here.
WaitTicks( 477 );
next_bit_at = GET_TICKS + TAG_BIT_PERIOD;
while ( i-- ){
edges = 0;
while ( GET_TICKS < next_bit_at) {
level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
if (level != old_level)
++edges;
old_level = level;
}
next_bit_at += TAG_BIT_PERIOD;
// We expect 42 edges (ONE)
if ( edges > 20 )
data ^= the_bit;
the_bit <<= 1;
}
// output
f->data = data;
f->bits = bits;
// log
uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1)};
LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, false);
}
// Setup pm3 as a Legic Reader
static uint32_t setup_phase_reader(uint8_t iv) {
// Switch on carrier and let the tag charge for 5ms
HIGH(GPIO_SSC_DOUT);
WaitUS(5000);
ResetTicks();
legic_prng_init(0);
// send IV handshake
frame_sendAsReader(iv, 7);
// tag and reader has same IV.
legic_prng_init(iv);
frame_receiveAsReader(&current_frame, 6);
// 292us (438t) - fixed delay before sending ack.
// minus log and stuff 100tick?
WaitTicks(338);
legic_prng_forward(3);
// Send obsfuscated acknowledgment frame.
// 0x19 = 0x18 MIM22, 0x01 LSB READCMD
// 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD
switch ( current_frame.data ) {
case 0x0D: frame_sendAsReader(0x19, 6); break;
case 0x1D:
case 0x3D: frame_sendAsReader(0x39, 6); break;
default: break;
}
legic_prng_forward(2);
return current_frame.data;
}
void LegicCommonInit(bool clear_mem) {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
/* Bitbang the transmitter */
SHORT_COIL;
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
// reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
cardmem = BigBuf_get_EM_addr();
if ( clear_mem )
memset(cardmem, 0x00, LEGIC_CARD_MEMSIZE);
clear_trace();
set_tracing(true);
crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
StartTicks();
}
// Switch off carrier, make sure tag is reset
static void switch_off_tag_rwd(void) {
SHORT_COIL;
WaitUS(20);
WDT_HIT();
}
// calculate crc4 for a legic READ command
static uint32_t legic4Crc(uint8_t cmd, uint16_t byte_index, uint8_t value, uint8_t cmd_sz) {
crc_clear(&legic_crc);
uint32_t temp = (value << cmd_sz) | (byte_index << 1) | cmd;
crc_update(&legic_crc, temp, cmd_sz + 8 );
return crc_finish(&legic_crc);
}
int legic_read_byte( uint16_t index, uint8_t cmd_sz) {
uint8_t byte, crc, calcCrc = 0;
uint32_t cmd = (index << 1) | LEGIC_READ;
// 90ticks = 60us (should be 100us but crc calc takes time.)
//WaitTicks(330); // 330ticks prng(4) - works
WaitTicks(240); // 240ticks prng(3) - works
frame_sendAsReader(cmd, cmd_sz);
frame_receiveAsReader(&current_frame, 12);
// CRC check.
byte = BYTEx(current_frame.data, 0);
crc = BYTEx(current_frame.data, 1);
calcCrc = legic4Crc(LEGIC_READ, index, byte, cmd_sz);
if( calcCrc != crc ) {
Dbprintf("!!! crc mismatch: %x != %x !!!", calcCrc, crc);
return -1;
}
legic_prng_forward(3);
return byte;
}
/*
* - assemble a write_cmd_frame with crc and send it
* - wait until the tag sends back an ACK ('1' bit unencrypted)
* - forward the prng based on the timing
*/
bool legic_write_byte(uint16_t index, uint8_t byte, uint8_t addr_sz) {
bool isOK = false;
int8_t i = 40;
uint8_t edges = 0;
uint8_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd;
uint32_t steps = 0, next_bit_at, start, crc, old_level = 0;
crc = legic4Crc(LEGIC_WRITE, index, byte, addr_sz+1);
// send write command
uint32_t cmd = LEGIC_WRITE;
cmd |= index << 1; // index
cmd |= byte << (addr_sz+1); // Data
cmd |= (crc & 0xF ) << (addr_sz+1+8); // CRC
WaitTicks(240);
frame_sendAsReader(cmd, cmd_sz);
LINE_IN;
start = GET_TICKS;
// ACK, - one single "1" bit after 3.6ms
// 3.6ms = 3600us * 1.5 = 5400ticks.
WaitTicks(5400);
next_bit_at = GET_TICKS + TAG_BIT_PERIOD;
while ( i-- ) {
WDT_HIT();
edges = 0;
while ( GET_TICKS < next_bit_at) {
volatile uint32_t level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
if (level != old_level)
++edges;
old_level = level;
}
next_bit_at += TAG_BIT_PERIOD;
// We expect 42 edges (ONE)
if(edges > 20 ) {
steps = ( (GET_TICKS - start) / TAG_BIT_PERIOD);
legic_prng_forward(steps);
isOK = true;
goto OUT;
}
// wait for byte be become available in rx holding register
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
return AT91C_BASE_SSC->SSC_RHR;
}
OUT: ;
legic_prng_forward(1);
uint8_t cmdbytes[] = {1, isOK, BYTEx(steps, 0), BYTEx(steps, 1) };
LogTrace(cmdbytes, sizeof(cmdbytes), start, GET_TICKS, NULL, false);
return isOK;
}
}
int LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv) {
uint16_t i = 0;
uint8_t isOK = 1;
legic_card_select_t card;
LegicCommonInit(true);
if ( legic_select_card_iv(&card, iv) ) {
isOK = 0;
goto OUT;
}
static inline void tx_byte_to_fpga(uint8_t byte) {
for(;;) {
WDT_HIT();
if (len + offset > card.cardsize)
len = card.cardsize - offset;
// put byte into tx holding register as soon as it is ready
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = byte;
return;
}
}
}
LED_B_ON();
while (i < len) {
int r = legic_read_byte(offset + i, card.cmdsize);
if (r == -1 || BUTTON_PRESS()) {
if ( MF_DBGLEVEL >= 2) DbpString("operation aborted");
isOK = 0;
goto OUT;
}
cardmem[i++] = r;
WDT_HIT();
}
//-----------------------------------------------------------------------------
// Demodulation
//-----------------------------------------------------------------------------
OUT:
WDT_HIT();
switch_off_tag_rwd();
LEDsoff();
cmd_send(CMD_ACK, isOK, len, 0, cardmem, len);
return 0;
// Returns am aproximated power measurement
//
// The FPGA running on the xcorrelation kernel samples the subcarrier at ~3 MHz.
// The kernel was initialy designed to receive BSPK/2-PSK. Hance, it reports an
// I/Q pair every 18.9us (8 bits i and 8 bits q).
//
// The subcarrier amplitude can be calculated using Pythagoras sqrt(i^2 + q^2).
// To reduce CPU time the amplitude is approximated by using linear functions:
// am = MAX(ABS(i),ABS(q)) + 1/2*MIN(ABS(i),ABSq))
//
// Note: The SSC receiver is never synchronized the calculation my be performed
// on a i/q pair from two subsequent correlations, but does not matter.
static inline int32_t sample_power() {
int32_t q = (int8_t)rx_byte_from_fpga(); q = ABS(q);
int32_t i = (int8_t)rx_byte_from_fpga(); i = ABS(i);
return MAX(i, q) + (MIN(i, q) >> 1);
}
// Returns a demedulated bit
//
// An aproximated power measurement is available every 18.9us. The bit time
// is 100us. The code samples 5 times and uses samples 3 and 4.
//
// Note: The demodulator is drifting (18.9us * 5 = 94.5us), since the longest
// respons is 12 bits, the demodulator will stay in sync with a margin of
// error of 20us left. Sending the next request will resync the card.
static inline bool rx_bit() {
static int32_t p[5];
for(size_t i = 0; i<5; ++i) {
p[i] = sample_power();
}
if((p[2] > input_threshold) && (p[3] > input_threshold)) {
return true;
}
if((p[2] < input_threshold) && (p[3] < input_threshold)) {
return false;
}
Dbprintf("rx_bit failed %i vs %i (threshold %i)", p[2], p[3], input_threshold);
return false;
}
//-----------------------------------------------------------------------------
// Modulation
//
// Modulation is a little bit more tricky as demedulation ssp_clk is running at
// 105.4 kHz resulting in a ssc bit periode of 9.4us and ssc frame periode of
// 76us. Legic has a strange pause-puls modulation with a 60us 0-bit and 100us
// 1-bit periode. The following functions use bit stuffing to aproximate the
// modulation. The default state of all bits is 1 the. The code adds pauses:
// - A 1 is aproximated by b1100000000 = 0x0300
// - A 0 is aproximated by b110000 = 0x0030
//
// Note: The modulator expect to be run on a little-endian system and the frame
// length to not exeed 11 bits. The frame length is not checked.
//-----------------------------------------------------------------------------
static void clean_frame(struct legic_frame *f) {
memset(f->data, 0xff, sizeof(f->data));
// add end of frame pause
f->data[0] ^= 0x03;
f->bits = 2;
}
static void append_to_frame(struct legic_frame *f, uint8_t bit) {
uint8_t bit_pos = f->bits % 8; // calculate bits used in partially used byte
uint8_t byte_pos = f->bits / 8; // calculate next free or partially used byte
static union frame_encoder frame_encoder;
if(bit) {
frame_encoder.uint32 = 0x0300 << bit_pos; // appended bits at bit_pos
f->bits += 10; // store amount of bits appended
} else {
frame_encoder.uint32 = 0x0030 << bit_pos; // appended bits at bit_pos
f->bits += 6; // store amount of bits appended
}
// Move data from encoder to frame. This d-tour is necessary bacause the uC
// does not support unaligned access. We use bitwise not and xor to flip bits.
for(uint8_t i = 0; i < sizeof(frame_encoder); ++i) {
f->data[i + byte_pos] ^= frame_encoder.uint8[i];
}
}
static uint8_t finalize_frame(struct legic_frame *f) {
// convert bits into full bytes
return (f->bits + 7) / 8;
}
//-----------------------------------------------------------------------------
// Frame Handling
//
// The LEGIC RF protocol from card to reader does not include explicit frame
// start/stop information or length information. The reader must know beforehand
// how many bits it wants to receive.
// Notably: a card sending a stream of 0-bits is indistinguishable from no card
// present.
//-----------------------------------------------------------------------------
static void tx_frame(uint32_t frame, uint8_t len) {
static struct legic_frame legic_frame;
clean_frame(&legic_frame);
// add bit by bit to frame, MSB (last bit on air) first, this reverses the order
// reverse order keeps last pause aligned to byte boundry and in sync with ret
// of last tx_byte_to_fpga call. this in turn syncs our rx phase perfectly.
while(len > 0) {
uint8_t lsb = (frame >> --len) & 0x01;
append_to_frame(&legic_frame, lsb ^ legic_prng_get_bit());
legic_prng_forward(1);
}
// finalize frame, returns length in bytes
len = finalize_frame(&legic_frame);
// start tx with first frame preloaded
tx_byte_to_fpga(legic_frame.data[--len]);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
// transmit frame, MSB first
while(len > 0) {
tx_byte_to_fpga(legic_frame.data[--len]);
}
// tx queue has 2 cycles, add 2 empty frames to leave function in sync
tx_byte_to_fpga(0xff); // blocks until last frame is loaded into shift register
tx_byte_to_fpga(0xff); // blocks until last frame is done
}
static uint32_t rx_frame(uint8_t len) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_QUARTER);
uint32_t frame = 0;
for(uint8_t i = 0; i < len; i++) {
frame |= (rx_bit() ^ legic_prng_get_bit()) << i;
legic_prng_forward(1);
}
return frame;
}
//-----------------------------------------------------------------------------
// Legic Reader
//-----------------------------------------------------------------------------
int init_card(uint8_t cardtype, legic_card_select_t *p_card) {
p_card->tagtype = cardtype;
switch(p_card->tagtype) {
case 0x0d:
p_card->cmdsize = 6;
p_card->addrsize = 5;
p_card->cardsize = 22;
break;
case 0x1d:
p_card->cmdsize = 9;
p_card->addrsize = 8;
p_card->cardsize = 256;
break;
case 0x3d:
p_card->cmdsize = 11;
p_card->addrsize = 10;
p_card->cardsize = 1024;
break;
default:
p_card->cmdsize = 0;
p_card->addrsize = 0;
p_card->cardsize = 0;
return 2;
}
return 0;
}
static void init_reader(bool clear_mem) {
// configure FPGA
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_QUARTER);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// configure SSC with defaults (note: defaults are MSB first - Legic has LSB first,
// the rx stream is bit stuff in reverse to fix this. However, reversing the order
// will align the last pause to a byte boundry and we want that for synchronisation.
FpgaSetupSsc();
// and additonaly set Data Default to 1, to prevent glitches when switching to tx.
AT91C_BASE_SSC->SSC_TFMR |= AT91C_SSC_DATDEF;
// reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
legic_mem = BigBuf_get_EM_addr();
if(legic_mem) {
memset(legic_mem, 0x00, LEGIC_CARD_MEMSIZE);
}
// start trace
clear_trace();
set_tracing(true);
// init crc calculator
crc_init(&legic_crc, 4, 0x19 >> 1, 0x05, 0);
// start us timer
StartCountUS();
}
// Setup reader to card connection
//
// The setup consists of a three way handshake:
// - Transmit initialisation vector 7 bits
// - Receive card type 6 bits
// - Acknowledge frame 6 bits
static uint32_t setup_phase_reader(uint8_t iv) {
uint32_t ts = GetCountUS();
// Switch on carrier and let the card charge for 5ms.
// Use the time to calibrate the treshhold.
input_threshold = 8; // heuristically determined
do {
int32_t sample = sample_power();
if(sample > input_threshold) {
input_threshold = sample;
}
} while(GetCountUS() < ts + 5000);
// Set threshold to noise floor * 2
input_threshold <<= 1;
legic_prng_init(0);
tx_frame(iv, 7);
ts = GetCountUS();
// configure iv
legic_prng_init(iv);
legic_prng_forward(2);
// wait until card is expect to respond
while(GetCountUS() < ts + TAG_FRAME_WAIT) { };
// receive card type
int32_t card_type = rx_frame(6);
// send obsfuscated acknowledgment frame
switch (card_type) {
case 0x0D:
tx_frame(0x19, 6); // MIM22 | READCMD = 0x18 | 0x01
break;
case 0x1D:
case 0x3D:
tx_frame(0x39, 6); // MIM256 | READCMD = 0x38 | 0x01
break;
}
return card_type;
}
static uint8_t calc_crc4(uint16_t cmd, uint8_t cmd_sz, uint8_t value) {
crc_clear(&legic_crc);
crc_update(&legic_crc, (value << cmd_sz) | cmd, 8 + cmd_sz);
return crc_finish(&legic_crc);
}
static int16_t read_byte(uint16_t index, uint8_t cmd_sz) {
uint16_t cmd = (index << 1) | LEGIC_READ;
// read one byte
tx_frame(cmd, cmd_sz);
uint32_t frame = rx_frame(12);
// split frame into data and crc
uint8_t byte = BYTEx(frame, 0);
uint8_t crc = BYTEx(frame, 1);
// check received against calculated crc
uint8_t calc_crc = calc_crc4(cmd, cmd_sz, byte);
if(calc_crc != crc) {
Dbprintf("!!! crc mismatch: %x != %x !!!", calc_crc, crc);
return -1;
}
return byte;
}
//-----------------------------------------------------------------------------
// Command Line Interface
//
// Only this functions are public / called from appmain.c
//-----------------------------------------------------------------------------
void LegicRfInfo(void) {
// configure ARM and FPGA
init_reader(false);
// establish shared secret and detect card type
uint8_t card_type = setup_phase_reader(0x01);
if(init_card(card_type, &card) != 0) {
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT;
}
// read UID
for(uint8_t i = 0; i < sizeof(card.uid); ++i) {
int16_t byte = read_byte(i, card.cmdsize);
if(byte == -1) {
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT;
}
card.uid[i] = byte & 0xFF;
}
// read MCC and check against UID
int16_t mcc = read_byte(4, card.cmdsize);
int16_t calc_mcc = CRC8Legic(card.uid, 4);;
if(mcc != calc_mcc) {
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT;
}
// OK
cmd_send(CMD_ACK, 1, 0, 0, (uint8_t*)&card, sizeof(legic_card_select_t));
OUT:
switch_off();
}
void LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv) {
// configure ARM and FPGA
init_reader(false);
// establish shared secret and detect card type
uint8_t card_type = setup_phase_reader(iv);
if(init_card(card_type, &card) != 0) {
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT;
}
// do not read beyond card memory
if(len + offset > card.cardsize) {
len = card.cardsize - offset;
}
for(uint16_t i = 0; i < len; ++i) {
int16_t byte = read_byte(offset + i, card.cmdsize);
if(byte == -1) {
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT;
}
legic_mem[i] = byte;
}
// OK
cmd_send(CMD_ACK, 1, len, 0, legic_mem, len);
OUT:
switch_off();
}
void LegicRfWriter(uint16_t offset, uint16_t len, uint8_t iv, uint8_t *data) {
#define LOWERLIMIT 4
uint8_t isOK = 1, msg = 0;
legic_card_select_t card;
// uid NOT is writeable.
if ( offset <= LOWERLIMIT ) {
isOK = 0;
goto OUT;
}
LegicCommonInit(false);
if ( legic_select_card_iv(&card, iv) ) {
isOK = 0;
msg = 1;
goto OUT;
}
if ( len + offset > card.cardsize)
len = card.cardsize - offset;
LED_B_ON();
while( len > 0 ) {
--len;
if ( !legic_write_byte( len + offset, data[len], card.addrsize) ) {
Dbprintf("operation failed | %02X | %02X | %02X", len + offset, len, data[len] );
isOK = 0;
goto OUT;
}
WDT_HIT();
}
OUT:
cmd_send(CMD_ACK, isOK, msg,0,0,0);
switch_off_tag_rwd();
LEDsoff();
}
int legic_select_card_iv(legic_card_select_t *p_card, uint8_t iv){
if ( p_card == NULL ) return 1;
p_card->tagtype = setup_phase_reader(iv);
switch(p_card->tagtype) {
case 0x0d:
p_card->cmdsize = 6;
p_card->addrsize = 5;
p_card->cardsize = 22;
break;
case 0x1d:
p_card->cmdsize = 9;
p_card->addrsize = 8;
p_card->cardsize = 256;
break;
case 0x3d:
p_card->cmdsize = 11;
p_card->addrsize = 10;
p_card->cardsize = 1024;
break;
default:
p_card->cmdsize = 0;
p_card->addrsize = 0;
p_card->cardsize = 0;
return 2;
}
return 0;
}
int legic_select_card(legic_card_select_t *p_card){
return legic_select_card_iv(p_card, 0x01);
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void LegicRfInfo(void){
int r;
uint8_t buf[sizeof(legic_card_select_t)] = {0x00};
legic_card_select_t *card = (legic_card_select_t*) buf;
LegicCommonInit(false);
if ( legic_select_card(card) ) {
cmd_send(CMD_ACK,0,0,0,0,0);
goto OUT;
}
// read UID bytes
for ( uint8_t i = 0; i < sizeof(card->uid); ++i) {
r = legic_read_byte(i, card->cmdsize);
if ( r == -1 ) {
cmd_send(CMD_ACK,0,0,0,0,0);
goto OUT;
}
card->uid[i] = r & 0xFF;
}
// MCC byte.
r = legic_read_byte(4, card->cmdsize);
uint32_t calc_mcc = CRC8Legic(card->uid, 4);;
if ( r != calc_mcc) {
cmd_send(CMD_ACK,0,0,0,0,0);
goto OUT;
}
// OK
cmd_send(CMD_ACK, 1, 0, 0, buf, sizeof(legic_card_select_t));
OUT:
switch_off_tag_rwd();
LEDsoff();
}
}
}
cmd_send(CMD_ACK, 0, 0, 0, 0, 0); //TODO Implement
}
void LegicRfSimulate(int phase, int frame, int reqresp) {